Uniform Words are Primitive

Doron Puder

Department of Mathematics, Hebrew University

doronpuder@gmail.com

September 13, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

Doron Puder Uniform Words are Primitive

æ

Uniform words, Primitive words

副 🕨 🖉 🖻 🕨 🖉 🖿 👘

æ

- Uniform words, Primitive words
- ▶ The main results + examples

白 ト イヨ ト イヨト

- Uniform words, Primitive words
- ▶ The main results + examples
- Consequences of the main theorem

- Uniform words, Primitive words
- ▶ The main results + examples
- Consequences of the main theorem
- Some ingredients of the proof

► *G* - some finite group

★ 문 ► ★ 문 ►

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)

白 ト イヨト イヨト

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of g²

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of r^2 $rhr^{-1}h^{-1}$
 - g^2 $ghg^{-1}h^{-1}$

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh²

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²
- More concretely: is it uniform? (\forall finite G)

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²
- More concretely: is it uniform? (\forall finite G)
 X

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²
- More concretely: is it uniform? (\forall finite G)
 X
 X

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²
- More concretely: is it uniform? (\forall finite G) X X V

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²
- More concretely: is it uniform? (\forall finite G) X X \bigvee \bigvee

- ► G some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
 g² ghg⁻¹h⁻¹ kghg⁻¹h⁻¹ ghgh² ghgh⁻²
- More concretely: is it uniform? (\forall finite G) X X \bigvee \bigvee X

• Let
$$w \in \mathbf{F}_k$$
,

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

• Let $w \in \mathbf{F}_k$, G some finite group

□ > < E > < E > -

æ

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: \underline{G \times G \times \cdots \times G} \longrightarrow G$

周▶ 《理》 《理》

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: \mathcal{G} \times \mathcal{G} \times \cdots \times \mathcal{G} \longrightarrow \mathcal{G}$

k

個 と く ヨ と く ヨ と …

E.g. $w = abab^{-2}$

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G} \longrightarrow G$

E.g.
$$w = abab^{-2}$$
 : $(g, h) \longrightarrow ghgh^{-2}$

周▶ 《理》 《理》

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: G \times G \times \cdots \times G \longrightarrow G$
- E.g. $w = abab^{-2}$: $(g, h)^{\kappa} \longrightarrow ghgh^{-2}$ • Question:

$$(g_1,..,g_k) \sim U(G^k)$$

個 と く ヨ と く ヨ と …

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: G \times G \times \cdots \times G \longrightarrow G$
- E.g. $w = abab^{-2}$: $(g, h)^{\kappa} \longrightarrow ghgh^{-2}$ • Question:
 - $(g_1,..,g_k) \sim U(G^k) \stackrel{?}{\Rightarrow} w(g_1,..,g_k) \sim U(G)$

個 と く ヨ と く ヨ と …

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: G \times G \times \cdots \times G \longrightarrow G$
 - E.g. $w = abab^{-2}$: (g, h) $\mapsto ghgh^{-2}$
- Question: $(g_1, ..., g_k) \sim U(G^k) \stackrel{?}{\Rightarrow} w(g_1, ..., g_k) \sim U(G)$
- Equivalently, as $G^k \cong \operatorname{Hom}(\mathbf{F}_k, G)$,

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: G \times G \times \cdots \times G \longrightarrow G$
 - E.g. $w = abab^{-2}$: (g, h) $\mapsto ghgh^{-2}$
- Question:
 - $(g_1,..,g_k) \sim U(G^k) \stackrel{?}{\Rightarrow} w(g_1,..,g_k) \sim U(G)$
- Equivalently, as $G^k \cong \operatorname{Hom}(\mathbf{F}_k, G)$, $\alpha_G \sim U(\operatorname{Hom}(\mathbf{F}_k, G))$

個 と く ヨ と く ヨ と …

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: G \times G \times \cdots \times G \longrightarrow G$
 - E.g. $w = abab^{-2}$: (g, h) $\mapsto ghgh^{-2}$
- Question:
 - $(g_1,..,g_k) \sim U(G^k) \stackrel{?}{\Rightarrow} w(g_1,..,g_k) \sim U(G)$
- Equivalently, as $G^k \cong \operatorname{Hom}(\mathbf{F}_k, G)$, $\alpha_G \sim U(\operatorname{Hom}(\mathbf{F}_k, G)) \stackrel{?}{\Longrightarrow} \alpha_G(w) \sim U(G)$

御 と くき とくき とうき

- Let $w \in \mathbf{F}_k$, G some finite group
- Consider the map $w: \mathcal{G} \times \mathcal{G} \times \cdots \times \mathcal{G} \longrightarrow \mathcal{G}$
 - E.g. $w = abab^{-2}$: (g, h) $\mapsto ghgh^{-2}$
- Question:
 - $(g_1,..,g_k) \sim U(G^k) \stackrel{?}{\Rightarrow} w(g_1,..,g_k) \sim U(G)$
- Equivalently, as $G^k \cong \operatorname{Hom}(\mathbf{F}_k, G)$, $\alpha_G \sim U(\operatorname{Hom}(\mathbf{F}_k, G)) \xrightarrow{?} \alpha_G(w) \sim U(G)$

Definition

 $w \in \mathbf{F}_k$ is called **uniform** if \forall finite group G, $\alpha_G(w) \sim U(G)$.

► A **basis** of a free group is a free generating set

A basis of a free group is a free generating set
 E.g. ⟨ab, abab²⟩ = F₂

- A basis of a free group is a free generating set
 E.g. ⟨ab, abab²⟩ = F₂
- *w* ∈ **F**_k is called **primitive** if it belongs to some basis.

- A basis of a free group is a free generating set
 E.g. ⟨ab, abab²⟩ = F₂
- w ∈ F_k is called primitive if it belongs to some basis.
 E.g. a, ab, abab²

- A basis of a free group is a free generating set
 E.g. ⟨ab, abab²⟩ = F₂
- w ∈ F_k is called **primitive** if it belongs to some basis.

E.g. a, ab, $abab^2$

Primitive words are rare.
$w \in \mathbf{F}_k$ is **uniform** if \forall finite G, $\alpha_G(w) \sim U(G)$.

白 と く ヨ と く ヨ と …

 $w \in \mathbf{F}_k$ is **uniform** if \forall finite G, $\alpha_G(w) \sim U(G)$. $w \in \mathbf{F}_k$ is **primitive** if it belongs to some basis.

- $w \in \mathbf{F}_k$ is **uniform** if \forall finite G, $\alpha_G(w) \sim U(G)$. $w \in \mathbf{F}_k$ is **primitive** if it belongs to some basis.
 - α_G ∈ Hom(F_k, G) is uniquely determined by arbitrary images of a basis. Thus,

- $w \in \mathbf{F}_k$ is **uniform** if \forall finite G, $\alpha_G(w) \sim U(G)$. $w \in \mathbf{F}_k$ is **primitive** if it belongs to some basis.
 - α_G ∈ Hom(F_k, G) is uniquely determined by arbitrary images of a basis. Thus,

Observation w is primitive \implies w is uniform

- $w \in \mathbf{F}_k$ is **uniform** if \forall finite G, $\alpha_G(w) \sim U(G)$. $w \in \mathbf{F}_k$ is **primitive** if it belongs to some basis.
 - α_G ∈ Hom(F_k, G) is uniquely determined by arbitrary images of a basis. Thus,

Observation $w \text{ is primitive} \implies w \text{ is uniform}$ E.g. for $w = abab^2$, $\alpha_G(w) \sim U(G)$

Observation w is primitive \implies w is uniform

Observation w is primitive $\implies w$ is uniform Conjecture (Gelander, Larsen, Lubotzky, Shalev, Linial-P, Amit-Vishne, ...) w is primitive $\Leftarrow w$ is uniform

Observation w is primitive $\implies w$ is uniform Conjecture (Gelander, Larsen, Lubotzky, Shalev, Linial-P, Amit-Vishne, ...) w is primitive $\iff w$ is uniform

• \exists many similar and extended open problems

The Main Results

Theorem 1 (2011) The conjecture holds for \mathbf{F}_2 .

-∢ ≣ ▶

Theorem 1 (2011)

The conjecture holds for \mathbf{F}_{2} .

 Key ingredient: a new graph-theoretic algorithm to detect primitivity (& free factors)

Theorem 1 (2011)

The conjecture holds for \mathbf{F}_{2} .

- Key ingredient: a new graph-theoretic algorithm to detect primitivity (& free factors)
- Theorem 2 (P-Parzanchevski)

The conjecture holds for $\mathbf{F}_k \forall k$.

Theorem 1 (2011)

The conjecture holds for \mathbf{F}_{2} .

- Key ingredient: a new graph-theoretic algorithm to detect primitivity (& free factors)
- Theorem 2 (P-Parzanchevski)

The conjecture holds for $\mathbf{F}_k \forall k$.

 The proof involves: Stallings core graphs, random covering spaces, Möbius inversions, algebraic extensions of free groups,...

Doron Puder Uniform Words are Primitive

→ < 문→ < 문→

▲ 문 ▶ | ▲ 문 ▶

The Main Results

- ∢ ≣ ▶

Doron Puder Uniform Words are Primitive

・ロン ・回 と ・ ヨン ・ ヨン

æ

In 94', Nica

• introduced a simple technique to calculate $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$

★ E ► < E ►</p>

In 94', Nica

- introduced a simple technique to calculate $\mathbb{E}|\operatorname{fix}(\alpha_{S_n}(w))|$
- showed it is a rational expression in n

In 94', Nica

- introduced a simple technique to calculate $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$
- showed it is a rational expression in n
- E.g. $w = a^2 b^2 c^2$:

$$\mathbb{E}\big|\mathrm{fix}\big(\alpha_{\mathcal{S}_n}(w)\big)\big| = \frac{n^2 - 2n + 2}{(n-1)^2}$$

We write Laurent series: $w = a^2 b^2 c^2$

$$\mathbb{E}\left|\operatorname{fix}(\alpha_{\mathcal{S}_n}(w))\right| = \frac{n^2 - 2n + 2}{(n-1)^2}$$

白 と く ヨ と く ヨ と …

3

We write Laurent series: $w = a^2 b^2 c^2$ $\mathbb{E} \left| \operatorname{fix} \left(\alpha_{S_n}(w) \right) \right| = \frac{n^2 - 2n + 2}{(n-1)^2} =$ $= 1 + \frac{1}{n^2} + O\left(\frac{1}{n^3}\right)$

 $w = a^2 b^2 c^2$ We write Laurent series: $\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = \frac{n^2 - 2n + 2}{(n-1)^2} =$ $\frac{1}{n^2}$ + $O\left(\frac{1}{n^3}\right)$ expectation for uniform permutation

 $w = a^2 b^2 c^2$ We write Laurent series: $\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = \frac{n^2 - 2n + 2}{(n-1)^2} =$ $+ \frac{1}{n^2} + O\left(\frac{1}{r^3}\right)$ expectation for order of magnitude uniform permutation of deviation

 $w = a^2 h^2 c^2$ We write Laurent series: $\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = \frac{n^2 - 2n + 2}{(n-1)^2} =$ $+ \frac{1}{n^2} + O\left(\frac{1}{n^3}\right)$ expectation for order of magnitude uniform permutation of deviation

3: the **primitivity rank** of w

白 と く ヨ と く ヨ と …

æ

Definition The primitivity rank of w is:

Definition The primitivity rank of w is:

$$\pi(w) =$$

- - E + - E +

Definition The primitivity rank of w is:

$$\pi(w) = \left\{ \begin{array}{cc} & & J \leq \mathbf{F}_k \\ & & & \end{array} \right\}$$

Definition The primitivity rank of w is:

$$\pi(w) = \left\{ \qquad \middle| \qquad w \in J \leq \mathbf{F}_k \right.$$

- - E + - E +

Definition The primitivity rank of w is:

$$\pi(w) = \left\{ \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ \end{array} \right\}$$

Definition The primitivity rank of w is:

$$\pi(w) = \left\{ \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is not primitive in } J \end{array} \right\}$$

Definition The primitivity rank of w is:

$$\pi(w) = \left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is not primitive in } J \end{array} \right\}$$

Definition The primitivity rank of w is:

$$\pi(w) = \min\left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } not \text{ primitive in } J \end{array} \right\}$$

Definition The primitivity rank of w is:

$$\pi(w) = \min \left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not } \textit{primitive in } J \end{array} \right\}$$

If no such J exists, $\pi(w) = \infty$.

Definition The primitivity rank of w is:

$$\pi(w) = \min \left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not primitive in } J \end{array} \right\}$$

If no such J exists, $\pi(w) = \infty$.

• w primitive in \mathbf{F}_k
Definition The primitivity rank of w is:

$$\pi(w) = \min \left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not } \textit{primitive in } J \end{array} \right\}$$

If no such J exists,
$$\pi(w) = \infty$$
.

w primitive in *F_k* ⇒ *w* primitive in *J* for every *J* containing *w*

Definition The primitivity rank of w is:

$$\pi(w) = \min \left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not } \textit{primitive in } J \end{array} \right\}$$

If no such J exists,
$$\pi(w) = \infty$$
.

• w primitive in \mathbf{F}_k $\implies w$ primitive in J for every J containing w $\implies \pi(w) = \infty$

Definition The primitivity rank of w is:

$$\pi(w) = \min\left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not } \textit{primitive in } J \end{array} \right\}$$

If no such J exists,
$$\pi(w) = \infty$$
.

w primitive in F_k
 ⇒ *w* primitive in *J* for every *J* containing *w* ⇒ π(w) = ∞
 w not primitive in F_k ⇒

Definition The primitivity rank of w is:

$$\pi(w) = \min\left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not } \textit{primitive in } J \end{array} \right\}$$

If no such J exists, $\pi(w) = \infty$.

w primitive in F_k
 ⇒ *w* primitive in *J* for every *J* containing *w* ⇒ π(w) = ∞
 w not primitive in F_k ⇒ π(w) < k

Definition The primitivity rank of w is:

$$\pi(w) = \min\left\{ \mathsf{rk}(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \quad s.t. \\ w \text{ is } \textit{not } \textit{primitive in } J \end{array} \right\}$$

If no such J exists, $\pi(w) = \infty$.

• w primitive in \mathbf{F}_k

 $\implies w \text{ primitive in } J \text{ for every } J \text{ containing } w$ $\implies \pi(w) = \infty$

• w not primitive in $\mathbf{F}_k \Longrightarrow \pi(w) \le k$

▶ Thus, $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

$$\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right.$$

御 と く ヨ と く ヨ と … ヨ

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \ s.t. \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

$$\pi(w) = \infty \iff$$

コン くほと くほと ……ほ

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

 $\pi(w) = 0 \quad \Longleftrightarrow$

$$\pi(w) = \infty \quad \Longleftrightarrow$$

w is primitive

御 と く ヨ と く ヨ と … ヨ

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \ s.t. \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

$$\pi(w) = 0 \iff w = 1$$

$$\pi(w) = \infty \quad \Longleftrightarrow$$

w is primitive

御 と く ヨ と く ヨ と … ヨ

Doron Puder Uniform Words are Primitive

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

$$\pi(w) = 0 \iff w = 1$$

 $\pi(w) = 1 \iff$

$$\pi(w) = \infty \iff$$

w is primitive

御 と く ヨ と く ヨ と … ヨ

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

母 と く ヨ と く ヨ と …

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

 $\pi(w) = 0 \quad \Longleftrightarrow \qquad w = 1$ $\pi(w) = 1 \quad \Longleftrightarrow \qquad w \text{ is a power}$ E.g. $\pi([a, b]) = \pi(a^2b^2) = 2$

 $\pi(w) = \infty \iff$

w is primitive

母 と く ヨ と く ヨ と …

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

 $\begin{aligned} \pi(w) &= 0 &\iff w = 1 \\ \pi(w) &= 1 &\iff w \text{ is a power} \\ & \text{E.g. } \pi([a, b]) = \pi(a^2b^2) = 2 \\ \pi(w_1w_2) &= \pi(w_1) + \pi(w_2) \text{ for words with disjoint letters} \end{aligned}$

 $\pi(w) = \infty \iff$

w is primitive

白 と く ヨ と く ヨ と

 $\pi(w) = \min \left\{ rk(J) \mid \begin{array}{c} w \in J \leq \mathbf{F}_k \text{ s.t.} \\ w \text{ is not primitive in } J \end{array} \right\}$ $\pi(w) \in \{0, 1, 2, \dots, k\} \cup \{\infty\}$

 $\begin{aligned} \pi(w) &= 0 \iff w = 1 \\ \pi(w) &= 1 \iff w \text{ is a power} \\ & \text{E.g. } \pi([a, b]) = \pi(a^2b^2) = 2 \\ \pi(w_1w_2) &= \pi(w_1) + \pi(w_2) \text{ for words with disjoint letters} \\ & \text{E.g. } \pi(x_1^2x_2^2\dots x_d^2) = d \\ & \vdots \\ \pi(w) &= \infty \iff w \text{ is primitive} \end{aligned}$

白 ト イヨト イヨト

Doron Puder Uniform Words are Primitive

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem 3 (P-Parzanchevski)

Doron Puder Uniform Words are Primitive

同 と く ヨ と く ヨ と …

Theorem 3 (P-Parzanchevski) $fix(\alpha_{S_n}(w))$

同 と く ヨ と く ヨ と

Theorem 3 (P-Parzanchevski) $\mathbb{E}|\operatorname{fix}(\alpha_{S_n}(w))|$

同 と く ヨ と く ヨ と

Theorem 3 (P-Parzanchevski) $\mathbb{E}|\operatorname{fix}(\alpha_{S_n}(w))| = 1 +$

同 と く ヨ と く ヨ と

Theorem 3 (P-Parzanchevski) $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) | = 1 + \frac{1}{n^{\pi(w)-1}}$

伺 と く き と く き と

向下 イヨト イヨト

向下 イヨト イヨト

Crit(w) - the set of "critical" subgroups of **F**_k:

向下 イヨト イヨト

Crit(w) - the set of "critical" subgroups of \mathbf{F}_k : $Crit(w) = \left\{ J \leq \mathbf{F}_k \right|$

伺い イヨン イヨン ニヨ

Crit(w) - the set of "critical" subgroups of \mathbf{F}_k : $Crit(w) = \left\{ J \leq \mathbf{F}_k \right| \qquad \stackrel{w \in J}{}$

伺い イヨト イヨト 三日

Crit(w) - the set of "critical" subgroups of \mathbf{F}_k : $Crit(w) = \left\{ J \leq \mathbf{F}_k \mid w \text{ is not primitive in } J \right\}$

★御▶ ★理▶ ★理▶ → 理

 $Crit(w) - \text{ the set of "critical" subgroups of } \mathbf{F}_k:$ $Crit(w) = \left\{ J \leq \mathbf{F}_k \mid w \text{ is not primitive in } J \right\}$ $rk(J) = \pi(w)$

個人 くほん くほん しほ

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

個 と く ヨ と く ヨ と …

Theorem (3) $\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 1: $w = a^2 b^2 c^2$

Doron Puder Uniform Words are Primitive

白 と く ヨ と く ヨ と …

Theorem (3) $\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 1: $w = a^2 b^2 c^2$ $\pi(w) = 3$,

< 注▶ < 注▶ -

A ₽

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$ Example 1: $w = a^2 b^2 c^2$

 $\pi(w) = 3$, $Crit(w) = {\mathbf{F}_3}$

回 と く ヨ と く ヨ と …

2

Theorem (3) $\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{|\operatorname{Crit}(w)|}{n^{\pi(w)-1}} + O(\frac{1}{n^{\pi(w)}})$ Example 1: $w = a^2 b^2 c^2$ $\pi(w) = 3$, $Crit(w) = \{\mathbf{F}_3\}$ Thus, -1

$$\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{1}{n^2} + O(\frac{1}{n^3})$$

同 と く ヨ と く ヨ と …

2

Theorem (3)

$$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$$

Doron Puder Uniform Words are Primitive

・ロト ・回 ト ・ヨト ・ヨト

Theorem (3)

$$\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$$

Example 2: $w = u^d$,
Theorem (3)

$$\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$

白 と く ヨ と く ヨ と

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$ $\pi(w) = 1$,

御 と く き と く き と

2

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$ $\pi(w) = 1$, Crit(w) =

白 と く ヨ と く ヨ と …

2

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$ $\pi(w) = 1$, $Crit(w) = \{ \langle u^m \rangle \mid m | d, 1 \le m < d \}$

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$ $\pi(w) = 1$, $Crit(w) = \{ \langle u^m \rangle \mid m | d, 1 \le m < d \}$ Thus, if $\delta(d) = \#$ of divisors of d

伺 ト イヨト イヨト

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$ $\pi(w) = 1$, $Crit(w) = \{ \langle u^m \rangle \mid m | d, 1 \le m < d \}$ Thus, if $\delta(d) = \#$ of divisors of d

$$\mathbb{E} \big| \mathrm{fix} \big(lpha_{\mathcal{S}_n}(w) \big) \big| = 1 + rac{\delta(d) - 1}{n^0} + O \big(rac{1}{n} \big)$$

伺 ト イヨト イヨト

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2: $w = u^d$, $(d \ge 2, u \text{ non-power})$ $\pi(w) = 1$, $Crit(w) = \{ \langle u^m \rangle \mid m | d, 1 \le m < d \}$ Thus, if $\delta(d) = \#$ of divisors of d

$$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{\delta(d) - 1}{n^0} + O\left(\frac{1}{n}\right) = \delta(d) + O\left(\frac{1}{n}\right)$$

伺 ト イヨト イヨト

$$\pi(w) \mid \text{Description} \quad \left| \mathbb{E} \left[\begin{smallmatrix} \# \text{ fixed points} \\ \text{ of } \alpha_{S_n}(w) \end{smallmatrix} \right] \right|$$

Doron Puder Uniform Words are Primitive

同 と く ヨ と く ヨ と …

$\pi(w)$	Description	$\mathbb{E}\left[\begin{smallmatrix}\# \text{ fixed points}\\ \text{ of } \alpha_{S_n}(w)\end{smallmatrix}\right]$
0	w = 1	n

白 ト イヨト イヨト

3

$\pi(w)$	Description	$\mathbb{E}\left[\begin{smallmatrix}\# \text{ fixed points}\\ \text{ of } \alpha_{S_n}(w)\end{smallmatrix}\right]$
0	w = 1	n
1	w is a power	$\sim 1 + Crit(w) $

白 と く ヨ と く ヨ と …

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{c} \# \text{ fixed points} \\ \text{ of } \alpha_{S_n}(w) \end{array}\right]$
0	w = 1	n
1	w is a power	$ \sim 1+ \mathit{Crit}(w) $
2		$\sim 1+rac{ \mathit{Crit}(w) }{n}$

白 と く ヨ と く ヨ と …

$\pi(w)$	Description	$\mathbb{E}\left[\begin{smallmatrix}\# \text{ fixed points}\\ \text{ of } \alpha_{S_n}(w)\end{smallmatrix}\right]$
0	w = 1	n
1	w is a power	$\sim 1 + \mathit{Crit}(w) $
2		$\sim 1 + rac{ Crit(w) }{n}$
:		
k		$\sim 1+rac{ \mathit{Crit}(w) }{n^{k-1}}$

白 と く ヨ と く ヨ と …

$\pi(w)$	Description	$\mathbb{E}\left[\begin{smallmatrix}\# \text{ fixed points}\\ \text{ of } \alpha_{S_n}(w)\end{smallmatrix}\right]$
0	w = 1	п
1	w is a power	$\sim 1 + \mathit{Crit}(w) $
2		$\sim 1+rac{ \mathit{Crit}(w) }{n}$
:		
k		$\sim 1+rac{ \mathit{Crit}(w) }{n^{k-1}}$
∞	w is primitive	1

★ E ► < E ►</p>

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. w is uniform $\implies \pi(w) = \infty$

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. w is uniform $\implies \pi(w) = \infty \implies w$ is primitive

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. w is uniform $\implies \pi(w) = \infty \implies w$ is primitive ($\implies \text{Thm 2}$)

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. *w* is uniform $\implies \pi(w) = \infty \implies$ *w* is primitive (\implies Thm 2) 2. { $w_1, ..., w_r$ } is uniform \iff { $w_1, ..., w_r$ } is primitive

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. *w* is uniform $\implies \pi(w) = \infty \implies$ *w* is primitive (\implies Thm 2) 2. { $w_1, ..., w_r$ } is uniform \iff { $w_1, ..., w_r$ } is primitive Equivalently, let $H \leq \mathbf{F}_k$

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. *w* is uniform $\implies \pi(w) = \infty \implies$ *w* is primitive (\implies Thm 2) 2. {*w*₁, ..., *w*_r} is uniform \iff {*w*₁, ..., *w*_r} is primitive Equivalently, let $H \leq \mathbf{F}_k$ $\alpha_G|_H \sim U(\text{Hom}(H, G))$ for \forall finite $G \iff$

個 ト く ヨ ト く ヨ ト 二 ヨ

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences:

1. *w* is uniform $\implies \pi(w) = \infty \implies$ *w* is primitive (\implies Thm 2) 2. {*w*₁, .., *w*_r} is uniform \iff {*w*₁, .., *w*_r} is primitive Equivalently, let $H \leq \mathbf{F}_k$ $\alpha_G|_H \sim U(\text{Hom}(H, G))$ for \forall finite $G \iff$ *H* is a free factor of \mathbf{F}_k

Theorem (3)

$$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$$

Consequences (cont.):

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{\mathcal{S}_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont.):

3. 2 new criteria (& algos) to detect primitivity (& free factors)

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{\mathcal{S}_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont. - profinite free group):

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont. - profinite free group): Let $\widehat{\mathbf{F}_k}$ be the profinite completion of \mathbf{F}_k ,

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont. - profinite free group): Let $\widehat{\mathbf{F}}_k$ be the profinite completion of \mathbf{F}_k , \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}}_k$,

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont. - profinite free group): Let $\widehat{\mathbf{F}}_k$ be the profinite completion of \mathbf{F}_k , \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}}_k$, P - the set of primitive elements of \mathbf{F}_k , then

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont. - profinite free group): Let $\widehat{\mathbf{F}}_k$ be the profinite completion of \mathbf{F}_k , \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}}_k$, P - the set of primitive elements of \mathbf{F}_k , then 4. $P = \widehat{P} \cap \mathbf{F}_k$

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_n}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont. - profinite free group): Let $\widehat{\mathbf{F}}_k$ be the profinite completion of \mathbf{F}_k , \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}}_k$, P - the set of primitive elements of \mathbf{F}_k , then

4. $P = \widehat{P} \cap \mathbf{F}_k$

5. *P* is closed in the profinite topology.

Theorem (3)

$$\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$$

Consequences (cont.):

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont.):

6. $\forall w$ and large enough n

$$\mathbb{E}\big|\mathrm{fix}\big(\alpha_{\mathcal{S}_n}(w)\big)\big| \geq 1$$

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont.):

6. $\forall w$ and large enough n

$$\mathbb{E}\big|\mathrm{fix}\big(\alpha_{\mathcal{S}_n}(w)\big)\big| \geq 1$$

7. Expansion properties of random graphs:

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont.):

6. $\forall w$ and large enough n

$$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{\mathcal{S}_{n}}(w)\right)\right|\geq 1$$

- 7. Expansion properties of random graphs:
 - new results

Theorem (3) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| = 1 + \frac{|Crit(w)|}{n^{\pi(w)-1}} + O\left(\frac{1}{n^{\pi(w)}}\right)$

Consequences (cont.):

6. $\forall w$ and large enough n

$$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{\mathcal{S}_{n}}(w)\right)\right|\geq 1$$

7. Expansion properties of random graphs:

- new results
- new proofs to old results

Ingredients of the Proof

Doron Puder Uniform Words are Primitive

▲圖> ▲屋> ▲屋>
Goal: Analyze $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$

白 と く ヨ と く ヨ と …

Goal: Analyze $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups

伺 ト イヨト イヨト

Goal: Analyze $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$ **Ingr. 1: Generalize to subgroups** $H \leq J$ f.g. free groups.

通 と く ほ と く ほ と

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ **Ingr. 1: Generalize to subgroups** $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n$

通 と く ほ と く ほ と …

Goal: Analyze $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$ **Ingr. 1: Generalize to subgroups** $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \sim U(\operatorname{Hom}(J,S_n))$

伺下 イヨト イヨト

Goal: Analyze $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J, S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J, S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\mathbb{E}\Big| \stackrel{\text{comm}}{\text{fix}} \left(\alpha_{J,S_n}(H) \right) \Big|$$

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J, S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J,S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\Phi_{H,J}(n) \stackrel{\text{def}}{=} \mathbb{E} \Big| \stackrel{\text{comm}}{\text{fix}} (\alpha_{J,S_n}(H)) \Big|$$

$$\mathbb{E}\left|\operatorname{fix}(\alpha_{S_n}(w))\right|$$

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J,S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\Phi_{\langle w \rangle, \mathbf{F}_k}(n) = \mathbb{E} \big| \mathrm{fix} \big(\alpha_{\mathcal{S}_n}(w) \big) \big|$$

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J,S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\Phi_{\langle w \rangle, \mathbf{F}_{k}}(n) = \mathbb{E} \big| \mathrm{fix} \big(\alpha_{\mathcal{S}_{n}}(w) \big) \big| \big(= 1 \overset{Thm \ 3}{\Leftrightarrow}^{3}$$

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J,S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\Phi_{\langle w \rangle, \mathbf{F}_{k}}(n) = \mathbb{E} \big| \operatorname{fix} \big(\alpha_{S_{n}}(w) \big) \big| \big(= 1 \overset{Thm \ 3}{\Leftrightarrow} w \text{ is prim} \big)$$

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J, S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\Phi_{H,J}(n) \stackrel{\text{def}}{=} \mathbb{E} \Big| \stackrel{\text{comm}}{\text{fix}} (\alpha_{J,S_n}(H)) \Big| \Big(= \frac{1}{n^{rk(H)-1}} \Leftrightarrow$$

$$\Phi_{\langle w \rangle, \mathbf{F}_{k}}(n) = \mathbb{E} \big| \mathrm{fix} \big(\alpha_{S_{n}}(w) \big) \big| \big(= 1 \overset{Thm}{\Leftrightarrow} {}^{3} w \text{ is prim} \big)$$

Goal: Analyze $\mathbb{E} | \operatorname{fix} (\alpha_{S_n}(w)) |$ Ingr. 1: Generalize to subgroups $H \leq J$ f.g. free groups. $\alpha_{J,S_n} : J \to S_n \qquad \sim U(\operatorname{Hom}(J,S_n))$ Q: What's the distr. of the random gp $\alpha_{J,S_n}(H)$?

$$\Phi_{H,J}(n) \stackrel{\text{def}}{=} \mathbb{E} \Big| \stackrel{\text{comm}}{\text{fix}} \left(\alpha_{J,S_n}(H) \right) \Big| \Big(= \frac{1}{n^{rk(H)-1}} \Leftrightarrow H \leq_{\text{ff}} J \Big)$$

$$\Phi_{\langle w \rangle, \mathbf{F}_{k}}(n) = \mathbb{E} \big| \mathrm{fix} \big(\alpha_{S_{n}}(w) \big) \big| \big(= 1 \overset{Thm}{\Leftrightarrow} {}^{3} w \text{ is prim} \big)$$

Doron Puder Uniform Words are Primitive

・ 母 と ・ ヨ と ・ ヨ と

æ

Ingr. 2: Use

a **locally finite poset** \leq on $\{H \leq_{fg} \mathbf{F}_k\}$.

Ingr. 2: Use
a **locally finite poset**
$$\leq$$
 on $\{H \leq_{fg} \mathbf{F}_k\}$.
i.e.

 $H \preceq J \Longrightarrow$

Ingr. 2: Use
a **locally finite poset**
$$\leq$$
 on $\{H \leq_{fg} \mathbf{F}_k\}$.
i.e.

$$H \preceq J \Longrightarrow [H, J]_{\preceq}$$

・ 回 と ・ ヨ と ・ ヨ と

æ

Ingr. 2: Use
a **locally finite poset**
$$\leq$$
 on $\{H \leq_{fg} \mathbf{F}_k\}$
i.e.

$$H \preceq J \Longrightarrow$$
$$[H, J]_{\preceq} = \{ M \mid H \preceq M \preceq J \}$$

▲圖> ▲屋> ▲屋>

æ

Ingr. 2: Use
a **locally finite poset**
$$\leq$$
 on $\{H \leq_{fg} \mathbf{F}_k\}$.
i.e.

$H \preceq J \Longrightarrow$ $[H, J]_{\preceq} = \left\{ M \mid H \preceq M \preceq J \right\} \text{ is finite}$

· < @ > < 문 > < 문 > · · 문

Ingr. 2: Use Stallings Core Graphs to obtain a **locally finite poset** \leq on $\{H \leq_{fg} \mathbf{F}_k\}$. i.e.

$\begin{array}{c} H \preceq J \Longrightarrow \\ [H,J]_{\preceq} = \left\{ M \, \big| \, H \preceq M \preceq J \right\} \, \text{is finite} \end{array}$

伺い イヨン イヨン ニヨ

Core Graphs: graphs representing subgroups of F_k

★ 문 ► ★ 문 ►

Core Graphs: graphs representing subgroups of F_k **Examples:**

★ 문 ► ★ 문 ►

Core Graphs: graphs representing subgroups of **F**_k **Examples:**

F₂:

回 と く ヨ と く ヨ と …

Core Graphs: graphs representing subgroups of **F**_k **Examples:**

・回 ・ ・ ヨ ・ ・ ヨ ・

Core Graphs: graphs representing subgroups of **F**_k **Examples:**

Some properties:

副 🕨 🗶 🖻 🕨 🖉 🕨

æ

Some properties:

$$\bullet \quad \left\{ H \leq \mathbf{F}(X) \right\} \longleftrightarrow \left\{ \begin{array}{c} X \text{-labeled} \\ \text{Core Graphs} \end{array} \right\}$$

副 🕨 🗶 🖻 🕨 🖉 🕨

æ

Doron Puder Uniform Words are Primitive

同 と く ヨ と く ヨ と

Some properties: • $\{H \leq \mathbf{F}(X)\} \longleftrightarrow \begin{cases} X \text{-labeled} \\ \text{Core Graphs} \end{cases}$ $H \longmapsto \Gamma(H)$ $\pi_1^{\text{labeled}}(\Gamma) \longleftarrow \Gamma$

Doron Puder Uniform Words are Primitive

同 と く ヨ と く ヨ と …

Some properties: $\{H \leq \mathbf{F}(X)\} \longleftrightarrow \begin{cases} X \text{-labeled} \\ \text{Core Graphs} \end{cases}$ $H \longmapsto \Gamma(H)$ $\pi_1^{\text{labeled}}(\Gamma) \longleftrightarrow \Gamma$ $\{H \leq_{f.g.} \mathbf{F}(X)\} \longleftrightarrow \begin{cases} X \text{-labeled finite} \\ \text{Core Graphs} \end{cases}$

Some properties: $\bullet \quad \left\{ H \leq \mathbf{F}(X) \right\} \longleftrightarrow \left\{ \begin{array}{c} X \text{-labeled} \\ \text{Core Graphs} \end{array} \right\}$ $H \longrightarrow \Gamma(H)$ $\pi_1^{labeled}(\Gamma) \longleftrightarrow \Gamma$ ▶ { $H \leq_{f.g.} \mathbf{F}(X)$ } \longleftrightarrow {X-labeled finite Core Graphs} • $rk(H) = e_{\Gamma(H)} - v_{\Gamma(H)} + 1$

伺 ト イヨ ト イヨ ト ニヨ

• $H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$

Doron Puder Uniform Words are Primitive

<ロ> (四) (四) (三) (三) (三)

• $H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ E.g. $\langle a^2, ba^2b^{-1} \rangle \leq \langle a^2, ab, b^2 \rangle$, thus:

(《圖》 《문》 《문》 - 문

• $H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ E.g. $\langle a^2, ba^2b^{-1} \rangle \leq \langle a^2, ab, b^2 \rangle$, thus:

個 と く ヨ と く ヨ と …

æ

The \leq relation

$H \leq J \iff \exists \operatorname{morphism} \Gamma(H) \to \Gamma(J)$
The \leq relation

$H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ Definition We say that H covers J, and denote $H \preceq J$, if

同 と く ヨ と く ヨ と

The \leq relation

$H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ Definition We say that H covers J, and denote $H \leq J$, if $H \leq J$

Doron Puder Uniform Words are Primitive

同 と く ヨ と く ヨ と …

 $H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ Definition

We say that H covers J, and denote $H \leq J$, if

- $H \leq J$,and
- The morphism $\Gamma(H) \rightarrow \Gamma(J)$ is surjective

白 と く ヨ と く ヨ と …

 $H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ Definition We say that H covers J, and denote $H \prec J$, if

• $H \leq J$,and

• The morphism $\Gamma(H) \rightarrow \Gamma(J)$ is surjective

Observation

 $(\{H \leq_{fg} \mathbf{F}_k\}, \preceq)$ is a locally finite poset.

個 ト く ヨ ト く ヨ ト 二 ヨ

 $H \leq J \iff \exists \text{ morphism } \Gamma(H) \rightarrow \Gamma(J)$ Definition We say that H covers J, and denote $H \preceq J$, if

► H < J ,and</p>

• The morphism $\Gamma(H) \rightarrow \Gamma(J)$ is surjective

Observation

 $({H \leq_{fg} \mathbf{F}_k}, \preceq)$ is a locally finite poset. *I.e.* $H \preceq J \Longrightarrow [H, J]_{\prec}$ is finite

個 ト く ヨ ト く ヨ ト 二 ヨ

The Order \leq

E.g.
$$H = \langle aba^{-1}b^{-1} \rangle$$
.

<ロ> (四) (四) (三) (三) (三) (三)

The Order \leq

E.g. $H = \langle aba^{-1}b^{-1} \rangle$. There are 7 *J*'s with $H \leq J$:

The Order \leq

E.g. $H = \langle aba^{-1}b^{-1} \rangle$. There are 7 *J*'s with $H \leq J$:

Doron Puder Uniform Words are Primitive

・ 母 と ・ ヨ と ・ ヨ と

Ingr. 3: Möbius derivations of Φ

白 ト く ヨ ト く ヨ ト

Ingr. 3: Möbius derivations of Φ Define *R*, the right Möbius derivation of Φ , as

Ingr. 3: Möbius derivations of Φ Define *R*, the right Möbius derivation of Φ , as

$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N}$$

$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N}$$

Claim: *R* is supported on algebraic extensions.

$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N}$$

Claim: *R* is supported on algebraic extensions. $H \leq_{alg} N$

$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N}$$

Claim: *R* is supported on algebraic extensions. $H \leq_{alg} N$ means $\not\exists L$

$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N}$$

Claim: *R* is supported on algebraic extensions. $H \leq_{alg} N$ means $\not\exists L$ s.t. $H \leq L \lneq_{ff} N$

$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N}$$

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \preceq} R_{H,N}$$

Claim: Let $H \preceq N$.

(4回) (1日) (日)

 $\Phi_{H,J} = \sum_{N \in [H,J] \preceq} R_{H,N}$ Claim: Let $H \preceq N$. If $H \not\leq_{alg} N$

母 と く ヨ と く ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \not\leq_{alg} N$ then $R_{H,N} \equiv 0$.

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof:

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \preceq} R_{H,N}$$

Claim: Let $H \preceq N$. If $H \not\leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \not\leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \not\leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{def}{=}$$

▲圖▶ ▲屋▶ ▲屋▶

3

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{def}{=} \Phi_{H,N} - \sum_{M \in [H,N)_{\preceq}} R_{H,M}$$

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \leq_{ff} N$.

$$R_{H,N} \stackrel{def}{=} \Phi_{H,N} - \sum_{M \in [H,N)_{\preceq}} R_{H,M}$$
$$= \Phi_{H,L} -$$

▲圖▶ ▲屋▶ ▲屋▶

3

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \leq_{ff} N$.

$$R_{H,N} \stackrel{def}{=} \Phi_{H,N} - \sum_{M \in [H,N)_{\preceq}} R_{H,M}$$
$$= \Phi_{H,L} - \sum_{M \in [H,L)} R_{H,M}$$

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{\text{def}}{=} \Phi_{H,N} - \sum_{M \in [H,N]_{\preceq}} R_{H,M}$$
$$= \Phi_{H,L} - \sum_{M \in [H,L]} R_{H,M} - \sum_{M \in [H,N) \setminus [H,L]} R_{H,M}$$

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{\text{def}}{=} \Phi_{H,N} - \sum_{\substack{M \in [H,N)_{\preceq} \\ M \in [H,L)}} R_{H,M}$$
$$= \Phi_{H,L} - \sum_{\substack{M \in [H,L) \\ 0}} R_{H,M} - \sum_{\substack{M \in [H,N) \setminus [H,L] \\ 0}} R_{H,M}$$

・ 母 と ・ ヨ と ・ ヨ と

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{\text{def}}{=} \Phi_{H,N} - \sum_{\substack{M \in [H,N)_{\preceq}}} R_{H,M}$$
$$= \Phi_{H,L} - \sum_{\substack{M \in [H,L)\\0}} R_{H,M} - \sum_{\substack{M \in [H,N) \setminus [H,L]\\0}} R_{H,M}$$
$$H \leq M \cap L \leq M$$

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{\text{def}}{=} \Phi_{H,N} - \sum_{\substack{M \in [H,N)_{\preceq}}} R_{H,M}$$
$$= \Phi_{H,L} - \sum_{\substack{M \in [H,L)\\0}} R_{H,M} - \sum_{\substack{M \in [H,N) \setminus [H,L]\\0}} R_{H,M}$$
$$H \leq M \cap L \leq_{\text{ff}} M$$

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \leq_{ff} N$.

$$R_{H,N} \stackrel{\text{def}}{=} \Phi_{H,N} - \sum_{\substack{M \in [H,N)_{\preceq}}} R_{H,M}$$
$$= \Phi_{H,L} - \sum_{\substack{M \in [H,L)\\0}} R_{H,M} - \sum_{\substack{M \in [H,N) \setminus [H,L]\\0}} R_{H,M} - \sum_{\substack{M \in [H,N) \setminus [H,L]\\0}} R_{H,M}$$

$$\Phi_{H,J} = \sum_{N \in [H,J] \leq} R_{H,N}$$

Claim: Let $H \leq N$. If $H \leq_{alg} N$ then $R_{H,N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \lneq_{ff} N$.

$$R_{H,N} \stackrel{\text{def}}{=} \Phi_{H,N} - \sum_{\substack{M \in [H,N)_{\preceq}}} R_{H,M}$$

$$= \Phi_{H,L} - \sum_{\substack{M \in [H,L)\\ 0}} R_{H,M} - \sum_{\substack{M \in [H,N) \setminus [H,L]\\ 0}} R_{H,M}$$

$$= 0 \qquad \qquad H \leq M \cap L \leq_{\text{ff}} M$$

Doron Puder Uniform Words are Primitive

・ 母 と ・ ヨ と ・ ヨ と

So,
$$\Phi_{H,J} = \sum_{N \in [H,J]_{\leq}} R_{H,N}$$

・ 母 と ・ ヨ と ・ ヨ と

So,
$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N} = \sum_{N: H \leq_{alg} N \leq J} R_{H,N}$$

・ 母 と ・ ヨ と ・ ヨ と
So,
$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N} = \sum_{N: H \leq_{alg} N \leq J} R_{H,N}$$

The hard part:

▲圖▶ ▲屋▶ ▲屋▶

So,
$$\Phi_{H,J} = \sum_{N \in [H,J]_{\leq}} R_{H,N} = \sum_{N: H \leq_{alg} N \leq J} R_{H,N}$$

The hard part:

Proposition

If $H \leq_{alg} N$ then

同 と く ヨ と く ヨ と

So,
$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N} = \sum_{N: H \leq_{alg} N \leq J} R_{H,N}$$

The hard part:

Proposition

If
$$H \leq_{\mathsf{alg}} N$$
 then $\mathsf{R}_{H,N} = rac{1}{n^{rk(N)-1}} + Oig(rac{1}{n^{rk(N)}}ig)$

白 ト く ヨ ト く ヨ ト

So,
$$\Phi_{H,J} = \sum_{N \in [H,J]_{\preceq}} R_{H,N} = \sum_{N: H \leq_{alg} N \leq J} R_{H,N}$$

The hard part:

Proposition

If
$$H \leq_{\mathsf{alg}} N$$
 then $\mathsf{R}_{H,N} = rac{1}{n^{rk(N)-1}} + Oig(rac{1}{n^{rk(N)}}ig)$

(문) (문)

Doron Puder Uniform Words are Primitive

・ 母 と ・ ヨ と ・ ヨ と

Ingr. 4: Random Coverings of Core Graphs

Doron Puder Uniform Words are Primitive

白 と く ヨ と く ヨ と …

Ingr. 4: Random Coverings of Core Graphs

Geom. interpretation of $\Phi_{H,J} = \mathbb{E} \Big| \int_{\mathrm{fix}}^{\mathrm{comm}} (\alpha_{J,S_n}(H)) \Big|$

Ingr. 4: Random Coverings of Core Graphs

Geom. interpretation of $\Phi_{H,J} = \mathbb{E} \Big| \int_{\mathrm{fix}}^{\mathrm{comm}} (\alpha_{J,S_n}(H)) \Big|$

 $\operatorname{Hom}(J, S_n)$

Doron Puder Uniform Words are Primitive

$$\operatorname{Hom}(J, S_n) \stackrel{\longrightarrow}{\longleftrightarrow} \begin{array}{c} J - \operatorname{set} \\ \operatorname{structures} \\ \operatorname{on}\{1..n\} \end{array}$$

$$\operatorname{Hom}(J, S_n) \stackrel{\longleftrightarrow}{\longleftrightarrow} \begin{array}{c} J - \operatorname{set} & n - \operatorname{coverings} \\ \operatorname{structures} \stackrel{\leftarrow}{\longleftrightarrow} & \operatorname{of} \Gamma(J) \text{ with} \\ \operatorname{on}\{1..n\} & p^{-1}(\otimes) = \{1..n\} \end{array}$$

Open Problems

Doron Puder Uniform Words are Primitive

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

 Same questions for other Aut(F_k)-orbits of words (subgroups)

母 と く ヨ と く ヨ と

- Same questions for other Aut(F_k)-orbits of words (subgroups)
- Same questions w.r.t. other types of groups (other finite groups/U(2)/ ...)

- Same questions for other Aut(F_k)-orbits of words (subgroups)
- Same questions w.r.t. other types of groups (other finite groups/U(2)/ ...)
- Understand completely $\mathbb{E} | \operatorname{fix}(\alpha_{S_n}(w)) |$

Thank You!

Doron Puder Uniform Words are Primitive

・ロン ・雪 と ・ ヨ と ・ ヨ と