Uniform Words are Primitive

Doron Puder

Department of Mathematics, Hebrew University
doronpuder@gmail.com
September 13, 2012

Outline

Doron Puder

Outline

- Uniform words, Primitive words

Outline

- Uniform words, Primitive words
- The main results + examples

Outline

- Uniform words, Primitive words
- The main results + examples
- Consequences of the main theorem

Outline

- Uniform words, Primitive words
- The main results + examples
- Consequences of the main theorem
- Some ingredients of the proof

Uniform Words

Question:

- G - some finite group

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of g^{2}

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad g h g^{-1} h^{-1}$

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1}$

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} \mathrm{~h}^{-1} \quad \mathrm{ghg} h^{2}$

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad g h g h^{-2}$

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad \mathrm{ghgh}^{-2}$
- More concretely: is it uniform? (\forall finite G)

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad \mathrm{ghgh}^{-2}$
- More concretely: is it uniform? (\forall finite G) X

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad \mathrm{ghgh}^{-2}$
- More concretely: is it uniform? (\forall finite G) $X \quad X$

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad \mathrm{ghgh}^{-2}$
- More concretely: is it uniform? (\forall finite G)

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad \mathrm{ghgh}^{-2}$
- More concretely: is it uniform? (\forall finite G)

V

Uniform Words

Question:

- G - some finite group
- $g, h, k \sim U(G)$ (=uniform, iid)
- What is the distribution of
$g^{2} \quad \mathrm{ghg}^{-1} h^{-1} \quad \mathrm{kghg}^{-1} h^{-1} \quad \mathrm{ghgh}^{2} \quad \mathrm{ghgh}^{-2}$
- More concretely: is it uniform? (\forall finite G)

V

Uniform Words

- Let $w \in \mathbf{F}_{k}$,

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$ E.g. $w=a b a b^{-2}$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$ E.g. $w=a b a b^{-2} \quad: \quad(g, h) \longmapsto$ ghgh $^{-2}$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$ E.g. $w=a b a b^{-2} \quad: \quad(g, h) \longmapsto$ ghgh $^{-2}$
- Question:

$$
\left(g_{1}, . ., g_{k}\right) \sim U\left(G^{k}\right)
$$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$

$$
\text { E.g. } w=a b a b^{-2} \quad: \quad(g, h) \quad \longmapsto g h g h^{-2}
$$

- Question:

$$
\left(g_{1}, . ., g_{k}\right) \sim U\left(G^{k}\right) \stackrel{?}{\Rightarrow} w\left(g_{1}, . ., g_{k}\right) \sim U(G)
$$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$

$$
\text { E.g. } w=a b a b^{-2} \quad: \quad(g, h) \quad \longmapsto \text { ghgh }^{-2}
$$

- Question:
$\left(g_{1}, . ., g_{k}\right) \sim U\left(G^{k}\right) \stackrel{?}{\Rightarrow} w\left(g_{1}, . ., g_{k}\right) \sim U(G)$
- Equivalently, as $G^{k} \cong \operatorname{Hom}\left(\mathbf{F}_{k}, G\right)$,

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$
E.g. $w=a b a b^{-2}$
$(g, h) \longmapsto g h g h^{-2}$
- Question:
$\left(g_{1}, . ., g_{k}\right) \sim U\left(G^{k}\right) \stackrel{?}{\Rightarrow} w\left(g_{1}, . ., g_{k}\right) \sim U(G)$
- Equivalently, as $G^{k} \cong \operatorname{Hom}\left(F_{k}, G\right)$,
$\alpha_{G} \sim U\left(\operatorname{Hom}\left(\mathbf{F}_{k}, G\right)\right)$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$
E.g. $w=a b a b^{-2}$
$(g, h) \longmapsto g h g h^{-2}$
- Question:
$\left(g_{1}, . ., g_{k}\right) \sim U\left(G^{k}\right) \stackrel{?}{\Rightarrow} w\left(g_{1}, . ., g_{k}\right) \sim U(G)$
- Equivalently, as $G^{k} \cong \operatorname{Hom}\left(F_{k}, G\right)$,
$\alpha_{G} \sim U\left(\operatorname{Hom}\left(\mathbf{F}_{k}, G\right)\right) \stackrel{?}{\Longrightarrow} \alpha_{G}(w) \sim U(G)$

Uniform Words

- Let $w \in \mathbf{F}_{k}, G$ some finite group
- Consider the map $w: \underbrace{G \times G \times \cdots \times G}_{k} \longrightarrow G$

$$
\text { E.g. } w=\text { abab }^{-2} \quad: \quad(g, h) \quad \longmapsto g^{2} g h^{-2}
$$

- Question:
$\left(g_{1}, . ., g_{k}\right) \sim U\left(G^{k}\right) \stackrel{?}{\Rightarrow} w\left(g_{1}, . ., g_{k}\right) \sim U(G)$
- Equivalently, as $G^{k} \cong \operatorname{Hom}\left(F_{k}, G\right)$,
$\alpha_{G} \sim U\left(\operatorname{Hom}\left(\mathbf{F}_{k}, G\right)\right) \stackrel{?}{\Longrightarrow} \alpha_{G}(w) \sim U(G)$
Definition
$w \in \mathbf{F}_{k}$ is called uniform if \forall finite group G, $\alpha_{G}(w) \sim U(G)$.

Primitive words

- A basis of a free group is a free generating set

Primitive words

- A basis of a free group is a free generating set E.g. $\left\langle a b, a b a b^{2}\right\rangle=\mathbf{F}_{2}$

Primitive words

- A basis of a free group is a free generating set E.g. $\left\langle a b, a b a b^{2}\right\rangle=\mathbf{F}_{2}$
- $w \in \mathbf{F}_{k}$ is called primitive if it belongs to some basis.

Primitive words

- A basis of a free group is a free generating set E.g. $\left\langle a b, a b a b^{2}\right\rangle=\mathbf{F}_{2}$
- $w \in \mathbf{F}_{k}$ is called primitive if it belongs to some basis.
E.g. $a, a b, a b a b^{2}$

Primitive words

- A basis of a free group is a free generating set E.g. $\left\langle a b, a b a b^{2}\right\rangle=\mathbf{F}_{2}$
- $w \in \mathbf{F}_{k}$ is called primitive if it belongs to some basis.
E.g. $a, a b, a b a b^{2}$
- Primitive words are rare.

Uniform Words Vs. Primitive words

$w \in \mathbf{F}_{k}$ is uniform if \forall finite $G, \alpha_{G}(w) \sim U(G)$.

Uniform Words Vs. Primitive words

$w \in \mathbf{F}_{k}$ is uniform if \forall finite $G, \alpha_{G}(w) \sim U(G)$. $w \in \mathbf{F}_{k}$ is primitive if it belongs to some basis.

Uniform Words Vs. Primitive words

$w \in \mathbf{F}_{k}$ is uniform if \forall finite $G, \alpha_{G}(w) \sim U(G)$.
$w \in \mathbf{F}_{k}$ is primitive if it belongs to some basis.

- $\alpha_{G} \in \operatorname{Hom}\left(\mathbf{F}_{k}, G\right)$ is uniquely determined by arbitrary images of a basis. Thus,

Uniform Words Vs. Primitive words

$w \in \mathbf{F}_{k}$ is uniform if \forall finite $G, \alpha_{G}(w) \sim U(G)$.
$w \in \mathbf{F}_{k}$ is primitive if it belongs to some basis.

- $\alpha_{G} \in \operatorname{Hom}\left(\mathbf{F}_{k}, G\right)$ is uniquely determined by arbitrary images of a basis. Thus,

Observation
w is primitive $\Longrightarrow w$ is uniform

Uniform Words Vs. Primitive words

$w \in \mathbf{F}_{k}$ is uniform if \forall finite $G, \alpha_{G}(w) \sim U(G)$.
$w \in \mathbf{F}_{k}$ is primitive if it belongs to some basis.

- $\alpha_{G} \in \operatorname{Hom}\left(\mathbf{F}_{k}, G\right)$ is uniquely determined by arbitrary images of a basis. Thus,

Observation
w is primitive $\Longrightarrow w$ is uniform
E.g. for $w=a b a b^{2}, \quad \alpha_{G}(w) \sim U(G)$

Uniform Words Vs. Primitive words

Observation
w is primitive $\Longrightarrow w$ is uniform

Uniform Words Vs. Primitive words

Observation
w is primitive $\Longrightarrow w$ is uniform
Conjecture (Gelander, Larsen, Lubotzky,
Shalev, Linial-P, Amit-Vishne, ...)
w is primitive $\Longleftarrow w$ is uniform

Uniform Words Vs. Primitive words

Observation
w is primitive $\Longrightarrow w$ is uniform
Conjecture (Gelander, Larsen, Lubotzky,
Shalev, Linial-P, Amit-Vishne, ...)
w is primitive $\Longleftarrow w$ is uniform

- \exists many similar and extended open problems

The Main Results

Theorem 1 (2011)
The conjecture holds for \mathbf{F}_{2}.

The Main Results

Theorem 1 (2011)
The conjecture holds for \mathbf{F}_{2}.

- Key ingredient: a new graph-theoretic algorithm to detect primitivity (\& free factors)

The Main Results

Theorem 1 (2011)
The conjecture holds for \mathbf{F}_{2}.

- Key ingredient: a new graph-theoretic algorithm to detect primitivity (\& free factors)

Theorem 2 (P-Parzanchevski)
The conjecture holds for $\mathbf{F}_{k} \forall k$.

The Main Results

Theorem 1 (2011)
The conjecture holds for \mathbf{F}_{2}.

- Key ingredient: a new graph-theoretic algorithm to detect primitivity (\& free factors)

Theorem 2 (P-Parzanchevski)
The conjecture holds for $\mathbf{F}_{k} \forall k$.

- The proof involves: Stallings core graphs, random covering spaces, Möbius inversions, algebraic extensions of free groups,...

The Main Results

w is primitive
Observation
$$
\alpha_{G}(w) \sim U(G) \quad \forall \text { finite } G
$$

The Main Results

w is primitive

The Main Results

w is primitive \downarrow Observation

$$
\alpha_{G}(w) \sim U(G) \quad \forall \text { finite } G
$$

$$
\alpha_{S_{n}}(w) \sim U\left(S_{n}\right) \quad \forall n
$$

$$
\Downarrow
$$

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1 \quad \forall n
$$

The Main Results

Fixed points in S_{n}

Fixed points in S_{n}

In 94', Nica

- introduced a simple technique to calculate $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Fixed points in S_{n}

In 94', Nica

- introduced a simple technique to calculate $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$
- showed it is a rational expression in n

Fixed points in S_{n}

In 94', Nica

- introduced a simple technique to calculate

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|
$$

- showed it is a rational expression in n

$$
\text { E.g. } w=a^{2} b^{2} c^{2} \text { : }
$$

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=\frac{n^{2}-2 n+2}{(n-1)^{2}}
$$

Fixed points in S_{n}

We write Laurent series: $\quad w=a^{2} b^{2} c^{2}$

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=\frac{n^{2}-2 n+2}{(n-1)^{2}}
$$

Fixed points in S_{n}

We write Laurent series: $\quad w=a^{2} b^{2} c^{2}$

$$
\begin{array}{ll}
& \mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=\frac{n^{2}-2 n+2}{(n-1)^{2}}= \\
=1 & +\quad \frac{1}{n^{2}}+O\left(\frac{1}{n^{3}}\right)
\end{array}
$$

Fixed points in S_{n}

We write Laurent series: $\quad w=a^{2} b^{2} c^{2}$

$$
\begin{array}{ll}
& \mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=\frac{n^{2}-2 n+2}{(n-1)^{2}}= \\
=1 & +\quad \frac{1}{n^{2}}
\end{array}+O\left(\frac{1}{n^{3}}\right) .
$$

\uparrow
expectation for
uniform permutation

Fixed points in S_{n}

We write Laurent series: $\quad w=a^{2} b^{2} c^{2}$

$$
\begin{array}{cc}
& \mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=\frac{n^{2}-2 n+2}{(n-1)^{2}}= \\
\left.=\begin{array}{ccc}
& + & \frac{1}{n^{2}} \\
\uparrow & + &
\end{array}\right)
\end{array}
$$

expectation for order of magnitude
uniform permutation of deviation

Fixed points in S_{n}

We write Laurent series: $\quad w=a^{2} b^{2} c^{2}$

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=\frac{n^{2}-2 n+2}{(n-1)^{2}}=
$$

\uparrow
expectation for order of magnitude
uniform permutation of deviation

3: the primitivity rank of w

Primitivity Rank: a new classification of words

Primitivity Rank: a new classification of words

Definition The primitivity rank of w is:

Primitivity Rank: a new classification of words

Definition The primitivity rank of w is:

$$
\pi(w)=\{\quad \mid \quad\}
$$

Primitivity Rank: a new classification of words

Definition The primitivity rank of w is:

$$
\pi(w)=\left\{\quad J \leq \mathbf{F}_{k}\right\}
$$

Primitivity Rank: a new classification of words

Definition

 The primitivity rank of w is:$$
\pi(w)=\left\{\quad \mid \quad w \in J \leq \mathbf{F}_{k}\right\}
$$

Primitivity Rank: a new classification of words

Definition

 The primitivity rank of w is:$$
\pi(w)=\left\{\quad \mid \quad w \in J \leq \mathbf{F}_{k} \quad \text { s.t. }\right\}
$$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\left\{\begin{array}{l|l}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right\}
$$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\left\{r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.\right\}
$$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

If no such J exists, $\pi(w)=\infty$.

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

If no such J exists, $\pi(w)=\infty$.

- w primitive in \mathbf{F}_{k}

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

If no such J exists, $\pi(w)=\infty$.

- w primitive in \mathbf{F}_{k}
$\Longrightarrow w$ primitive in J for every J containing w

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

If no such J exists, $\pi(w)=\infty$.

- w primitive in \mathbf{F}_{k}
$\Longrightarrow w$ primitive in J for every J containing w $\Longrightarrow \pi(w)=\infty$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:
$\pi(w)=\min \left\{r k(J) \left\lvert\, \begin{array}{c}w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\ w \text { is not primitive in } J\end{array}\right.\right\}$
If no such J exists, $\pi(w)=\infty$.

- w primitive in \mathbf{F}_{k}
$\Longrightarrow w$ primitive in J for every J containing w $\Longrightarrow \pi(w)=\infty$
- w not primitive in $\mathbf{F}_{k} \Longrightarrow$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

If no such J exists, $\pi(w)=\infty$.

- w primitive in \mathbf{F}_{k}
$\Longrightarrow w$ primitive in J for every J containing w $\Longrightarrow \pi(w)=\infty$
- w not primitive in $\mathbf{F}_{k} \Longrightarrow \pi(w) \leq k$

Primitivity Rank: a new classification of words

Definition

The primitivity rank of w is:

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) \left\lvert\, \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \quad \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right.
\end{array}\right\}
$$

If no such J exists, $\pi(w)=\infty$.

- w primitive in \mathbf{F}_{k}
$\Longrightarrow w$ primitive in J for every J containing w $\Longrightarrow \pi(w)=\infty$
- w not primitive in $\mathbf{F}_{k} \Longrightarrow \pi(w) \leq k$
- Thus, $\pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\}$

Primitivity Rank: a new classification of words

$$
\pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\}
$$

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\}
\end{aligned}
$$

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\}
\end{aligned}
$$

$$
\pi(w)=\infty
$$

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\}
\end{aligned}
$$

$\pi(w)=\infty$
w is primitive

Primitivity Rank: a new classification of words

$$
\left.\begin{array}{l}
\pi(w)=\min \{r k(J) \\
\pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \text { is not primitive in } J
\end{array}\right\}
$$

$$
\pi(w)=0
$$

$$
\Longleftrightarrow
$$

$$
\pi(w)=\infty
$$

w is primitive

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|c}
r k(J) & w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \\
& \pi(w)=0 \quad \Longleftrightarrow
\end{aligned}
$$

$$
\pi(w)=\infty
$$

w is primitive

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \\
& \pi(w)=0 \\
& \Longleftrightarrow \\
& w=1 \\
& \pi(w)=1 \\
& \Longleftrightarrow \\
& \pi(w)=\infty \\
& \Longleftrightarrow \\
& w \text { is primitive }
\end{aligned}
$$

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \\
& \pi(w)=0 \\
& \Longleftrightarrow \\
& w=1 \\
& \pi(w)=1 \\
& \Longleftrightarrow \\
& w \text { is a power } \\
& \pi(w)=\infty \\
& \Longleftrightarrow \\
& w \text { is primitive }
\end{aligned}
$$

Primitivity Rank: a new classification of words

$$
\begin{aligned}
& \pi(w)=\min \left\{\begin{array}{l|l}
r k(J) & \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}
\end{array}\right\} \\
& \pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \\
& \pi(w)=0 \quad \Longleftrightarrow \quad w=1 \\
& \pi(w)=1 \quad \Longleftrightarrow \quad w \text { is a power } \\
& \text { E.g. } \pi([a, b])=\pi\left(a^{2} b^{2}\right)=2 \\
& \pi(w)=\infty \\
& w \text { is primitive }
\end{aligned}
$$

Primitivity Rank: a new classification of words

$$
\begin{gathered}
\pi(w)=\min \left\{\begin{array}{c|c}
r k(J) & w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right\} \\
\pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \\
\pi(w)=0 \\
\pi(w)=1 \\
\Longleftrightarrow \\
\begin{array}{c}
\text { E.g. } \pi([a, b])=\pi\left(a^{2} b^{2}\right)=2
\end{array} \\
\pi\left(w_{1} w_{2}\right)=\pi\left(w_{1}\right)+\pi\left(w_{2}\right) \text { for words with disjoint letters } \\
\\
\begin{array}{c}
w \\
\pi(w)=\infty
\end{array} \begin{array}{c}
w=1
\end{array} \\
\\
\vdots
\end{gathered}
$$

Primitivity Rank: a new classification of words

$$
\begin{gathered}
\pi(w)=\min \{r k(J) \\
\left.\pi(w) \in\{0,1,2, \ldots, k\} \cup\{\infty\} \begin{array}{c}
w \in J \leq \mathbf{F}_{k} \text { s.t. } \\
w \text { is not primitive in } J
\end{array}\right\} \\
\pi(w)=0 \quad \Longleftrightarrow \\
\pi(w)=1 \quad \Longleftrightarrow \\
\text { E.g. } \pi([a, b])=\pi\left(a^{2} b^{2}\right)=2 \\
\pi\left(w_{1} w_{2}\right)=\pi\left(w_{1}\right)+\pi\left(w_{2}\right) \text { for words with disjoint letters } \\
\text { E.g. } \pi\left(x_{1}^{2} x_{2}^{2} \ldots x_{d}^{2}\right)=d \\
\vdots \\
\pi(w)=\infty \quad \Longleftrightarrow \quad w=1
\end{gathered}
$$

Fixed points in S_{n} - The Key Result

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski) fix $\left(\alpha_{S_{n}}(w)\right)$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{}{n^{\pi(m)-1}}$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)
$\mathbb{E}\left|\mathrm{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi}(\omega)}\right)$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)

Crit (w) - the set of "critical" subgroups of \mathbf{F}_{k} :

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski) $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\mid \text { Crit }(w) \mid}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Crit(w) - the set of "critical" subgroups of \mathbf{F}_{k} :

$$
\operatorname{Crit}(w)=\left\{J \leq \mathbf{F}_{k} \mid\right.
$$

$$
\}
$$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\mid \text { Crit }(w) \mid}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$
Crit(w) - the set of "critical" subgroups of \mathbf{F}_{k} :

$$
\operatorname{Crit}(w)=\left\{J \leq \mathbf{F}_{k} \mid \quad w \in J \quad\right\}
$$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\mid \text { Crit }(w) \mid}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$
Crit(w) - the set of "critical" subgroups of \mathbf{F}_{k} :

$$
\operatorname{Crit}(w)=\left\{J \leq \mathbf{F}_{k} \mid w \text { is not primitive in } J\right\}
$$

Fixed points in S_{n} - The Key Result

Theorem 3 (P-Parzanchevski)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\mid \text { Crit }(w) \mid}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$
Crit(w) - the set of "critical" subgroups of \mathbf{F}_{k} :

$$
\operatorname{Crit}(w)=\left\{J \leq \mathbf{F}_{k} \left\lvert\, \begin{array}{c}
w \text { is not } \begin{array}{c}
w \in J \text { primitive in } \\
\text { rk(} J \text { in } \\
\text { an }(w)
\end{array}
\end{array}\right.\right\}
$$

Examples

Theorem (3)
 $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Examples

Theorem (3)
 $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 1: $w=a^{2} b^{2} c^{2}$

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$
Example 1:
$w=a^{2} b^{2} c^{2}$
$\pi(w)=3$,

Examples

Theorem (3)
 $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 1:

$$
\begin{aligned}
& w=a^{2} b^{2} c^{2} \\
& \pi(w)=3, \quad \operatorname{Crit}(w)=\left\{\mathbf{F}_{3}\right\}
\end{aligned}
$$

Examples

Theorem (3)

Example 1:
$w=a^{2} b^{2} c^{2}$
$\pi(w)=3, \quad \operatorname{Crit}(w)=\left\{\mathbf{F}_{3}\right\}$
Thus,

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{1}{n^{2}}+O\left(\frac{1}{n^{3}}\right)
$$

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{|C r i t(w)|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha \alpha_{n}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)$
Example 2:
$w=u^{d}$,

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha \alpha_{n}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)$
Example 2:
$w=u^{d},(d \geq 2, u$ non-power $)$

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha \alpha_{n}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)$
Example 2:
$w=u^{d},(d \geq 2, u$ non-power $)$
$\pi(w)=1$,

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha \alpha_{n}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)$
Example 2:
$w=u^{d},(d \geq 2, u$ non-power $)$
$\pi(w)=1, \operatorname{Crit}(w)=$

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{|C r i t(w)|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2:

$w=u^{d},(d \geq 2, u$ non-power $)$
$\pi(w)=1, \operatorname{Crit}(w)=\left\{\left\langle u^{m}\right\rangle|m| d, 1 \leq m<d\right\}$

Examples

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$

Example 2:

$w=u^{d},(d \geq 2, u$ non-power $)$
$\pi(w)=1, \operatorname{Crit}(w)=\left\{\left\langle u^{m}\right\rangle|m| d, 1 \leq m<d\right\}$
Thus, if $\delta(d)=\#$ of divisors of d

Examples

Theorem (3)
$\mathbb{E}\left|\mathrm{fix}\left(\alpha \alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|r i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(w)}}\right)$
Example 2:
$w=u^{d},(d \geq 2, u$ non-power $)$
$\pi(w)=1, \operatorname{Crit}(w)=\left\{\left\langle u^{m}\right\rangle|m| d, 1 \leq m<d\right\}$
Thus, if $\delta(d)=\#$ of divisors of d
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\delta(d)-1}{n^{0}}+O\left(\frac{1}{n}\right)$

Examples

Theorem (3)
$\mathbb{E}\left|\mathrm{fix}\left(\alpha \alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|r i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(w)}}\right)$
Example 2:
$w=u^{d},(d \geq 2, u$ non-power $)$
$\pi(w)=1, \operatorname{Crit}(w)=\left\{\left\langle u^{m}\right\rangle|m| d, 1 \leq m<d\right\}$
Thus, if $\delta(d)=\#$ of divisors of d
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\delta(d)-1}{n^{0}}+O\left(\frac{1}{n}\right)=\delta(d)+O\left(\frac{1}{n}\right)$

Primitivity Rank: a new classification of words

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{c}\# \text { fixed points } \\ \text { of } \alpha \alpha_{n}(w)\end{array}\right]$

Primitivity Rank: a new classification of words

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{c}\# \text { fixed points } \\ \text { of } \alpha_{S_{n}}(w)\end{array}\right]$
0	$w=1$	n

Primitivity Rank: a new classification of words

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{c}\# \text { fixed points } \\ \text { of } \alpha_{S_{n}}(w)\end{array}\right]$
0	$w=1$	n
1	w is a power	$\sim 1+\|\operatorname{Crit}(w)\|$

Primitivity Rank: a new classification of words

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{c}\# \text { fixed points } \\ \text { of } \alpha s_{n}(w)\end{array}\right]$
0	$w=1$	n
1	w is a power	$\sim 1+\|\operatorname{Crit}(w)\|$
2		$\sim 1+\frac{\|\operatorname{Crit}(w)\|}{n}$

Primitivity Rank: a new classification of words

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{l}\# \text { fixed points } \\ \text { of } \alpha s_{n}(w)\end{array}\right]$
0	$w=1$	n
1	w is a power	$\sim 1+\|\operatorname{Crit}(w)\|$
2		$\sim 1+\frac{\|\operatorname{Crit}(w)\|}{n}$
\vdots		
k		$\sim 1+\frac{\mid \operatorname{Crit(w)\|}}{n^{k-1}}$

Primitivity Rank: a new classification of words

$\pi(w)$	Description	$\mathbb{E}\left[\begin{array}{c}\# \text { fixed points } \\ \text { of } \alpha \alpha_{S_{n}}(w)\end{array}\right]$
0	$w=1$	n
1	w is a power	$\sim 1+\|\operatorname{Crit}(w)\|$
2		$\sim 1+\frac{\|\operatorname{Crit}(w)\|}{n}$
\vdots		
k		$\sim 1+\frac{\|\operatorname{Crit}(w)\|}{n^{k-1}}$
∞	w is primitive	1

Consequences of the main theorem

$$
\begin{aligned}
& \text { Theorem (3) } \\
& \mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)
\end{aligned}
$$

Consequences of the main theorem

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha \alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(t w}}\right)$
Consequences:

Consequences of the main theorem

Theorem (3)

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty$

Consequences of the main theorem

Theorem (3)

$$
\mathbb{E}\left|\operatorname{ix}\left(\alpha \alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{n^{(t)}(w)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)
$$

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty \quad \Longrightarrow$ w is primitive

Consequences of the main theorem

Theorem (3)

$$
\mathbb{E}\left|\operatorname{ix}\left(\alpha \alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|c i t(w)|}{n^{(t)}(w)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)
$$

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty \quad \Longrightarrow$ w is primitive $(\Longrightarrow$ Thm 2)

Consequences of the main theorem

Theorem (3)

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha S_{n}(w)\right)\right|=1+\frac{\left\lvert\, \frac{\mid \text { rititw }}{n^{T}(w)-1}\right.}{}+O\left(\frac{1}{n^{(w)}}\right)
$$

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty \quad \Longrightarrow$ w is primitive $(\Longrightarrow$ Thm 2)
2. $\left\{w_{1}, . ., w_{r}\right\}$ is uniform

$\left\{w_{1}, . ., w_{r}\right\}$ is primitive

Consequences of the main theorem

Theorem (3)

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty \quad \Longrightarrow$ w is primitive $(\Longrightarrow$ Ohm 2)
2. $\left\{w_{1}, . ., w_{r}\right\}$ is uniform

$\left\{w_{1}, . ., w_{r}\right\}$ is primitive Equivalently, let $H \leq \mathbf{F}_{k}$

Consequences of the main theorem

Theorem (3)

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty \quad \Longrightarrow$ w is primitive $(\Longrightarrow$ Thm 2)
2. $\left\{w_{1}, . ., w_{r}\right\}$ is uniform

$\left\{w_{1}, . ., w_{r}\right\}$ is primitive
Equivalently, let $H \leq F_{k}$
$\left.\alpha_{G}\right|_{H} \sim U(\operatorname{Hom}(H, G))$ for \forall finite G

Consequences of the main theorem

Theorem (3)

Consequences:

1. w is uniform $\Longrightarrow \pi(w)=\infty \quad \Longrightarrow$ w is primitive $(\Longrightarrow$ Thm 2)
2. $\left\{w_{1}, . ., w_{r}\right\}$ is uniform

$\left\{w_{1}, . ., w_{r}\right\}$ is primitive
Equivalently, let $H \leq \mathbf{F}_{k}$
$\left.\alpha_{G}\right|_{H} \sim U(\operatorname{Hom}(H, G))$ for \forall finite $G \Longleftrightarrow$ H is a free factor of \mathbf{F}_{k}

Consequences of the main theorem

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|r i t(w)|}{n^{(T(w)-1}}+O\left(\frac{1}{n^{n}(w)}\right)\right.}{}$
Consequences (cont.):

Consequences of the main theorem

Theorem (3)

Consequences (cont.):
3. 2 new criteria (\& algos) to detect primitivity (\& free factors)

Consequences of the main theorem

Theorem (3)

Consequences (cont. - profinite free group):

Consequences of the main theorem

Theorem (3)

Consequences (cont. - profinite free group):
Let $\widehat{\mathbf{F}_{k}}$ be the profinite completion of \mathbf{F}_{k},

Consequences of the main theorem

Theorem (3)

Consequences (cont. - profinite free group):
Let $\widehat{\mathbf{F}_{k}}$ be the profinite completion of \mathbf{F}_{k}, \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}_{k}}$,

Consequences of the main theorem

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha S_{n}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi}(w)}\right)$
Consequences (cont. - profinite free group):
Let $\widehat{\mathbf{F}_{k}}$ be the profinite completion of \mathbf{F}_{k}, \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}_{k}}$, P - the set of primitive elements of \mathbf{F}_{k}, then

Consequences of the main theorem

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha S_{n}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi}(w)}\right)$
Consequences (cont. - profinite free group):
Let $\widehat{\mathbf{F}_{k}}$ be the profinite completion of \mathbf{F}_{k}, \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}_{k}}$, P - the set of primitive elements of \mathbf{F}_{k}, then

$$
\text { 4. } P=\widehat{P} \cap \mathbf{F}_{k}
$$

Consequences of the main theorem

Theorem (3)
$\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left|C_{r i t}(w)\right|}{n^{\pi(w)-1}}+O\left(\frac{1}{n^{\pi(w)}}\right)$
Consequences (cont. - profinite free group):
Let $\widehat{\mathbf{F}_{k}}$ be the profinite completion of \mathbf{F}_{k}, \widehat{P} - the set of primitive elements of $\widehat{\mathbf{F}_{k}}$, P - the set of primitive elements of \mathbf{F}_{k}, then 4. $P=\widehat{P} \cap \mathbf{F}_{k}$
5. P is closed in the profinite topology.

Consequences of the main theorem

Theorem (3)
$\mathbb{E}\left|\mathrm{fix}\left(\alpha_{S_{n}}(w)\right)\right|=1+\frac{\left\lvert\, \frac{|r i t(w)|}{\left.n^{(t w}\right)-1}\right.}{}+O\left(\frac{1}{n^{(m)}}\right)$
Consequences (cont.):

Consequences of the main theorem

Theorem (3)

Consequences (cont.):
6. $\forall w$ and large enough n

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| \geq 1
$$

Consequences of the main theorem

Theorem (3)

Consequences (cont.):
6. $\forall w$ and large enough n

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| \geq 1
$$

7. Expansion properties of random graphs:

Consequences of the main theorem

Theorem (3)

Consequences (cont.):
6. $\forall w$ and large enough n

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| \geq 1
$$

7. Expansion properties of random graphs:

- new results

Consequences of the main theorem

Theorem (3)

Consequences (cont.):
6. $\forall w$ and large enough n

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right| \geq 1
$$

7. Expansion properties of random graphs:

- new results
- new proofs to old results

Ingredients of the Proof

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups
$H \leq J$ f.g. free groups.

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups
$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n}$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups
$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups
$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random $\operatorname{gp} \alpha_{J, S_{n}}(H)$?

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups
$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\mathbb{E}\left|\stackrel{\mathrm{fix}}{\mathrm{comm}}\left(\alpha_{J, S_{n}}(H)\right)\right|
$$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?
$\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|{ }_{\mathrm{fix}}^{\text {comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|\stackrel{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|
$$

$$
\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|
$$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|\stackrel{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|
$$

$$
\Phi_{\langle w\rangle, \mathbf{F}_{k}}(n)=\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|
$$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|\stackrel{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|
$$

$$
\Phi_{\langle w\rangle, \mathbf{F}_{k}}(n)=\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|(=1 \stackrel{\text { Thm }}{\Leftrightarrow} 3
$$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|\stackrel{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|
$$

$$
\Phi_{\langle w\rangle, \mathbf{F}_{k}}(n)=\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|(=1 \stackrel{T h m}{\Leftrightarrow} 3 \text { is prim })
$$

Ingredients of the Proof

Goal: Analyze $\mathbb{E} \mid \operatorname{fix}\left(\alpha_{S_{n}}(w)\right)$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|\stackrel{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|\left(=\frac{1}{n^{r k(H)-1}} \Leftrightarrow\right.
$$

$$
\Phi_{\langle w\rangle, \mathbf{F}_{k}}(n)=\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|\left(=1 \stackrel{T h m}{\Leftrightarrow}^{\text {Th }} w \text { is prim }\right)
$$

Ingredients of the Proof

Goal: Analyze $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Ingr. 1: Generalize to subgroups

$H \leq J$ f.g. free groups.
$\alpha_{J, S_{n}}: J \rightarrow S_{n} \quad \sim U\left(\operatorname{Hom}\left(J, S_{n}\right)\right)$
Q: What's the distr. of the random gp $\alpha_{J, S_{n}}(H)$?

$$
\Phi_{H, J}(n) \stackrel{\text { def }}{=} \mathbb{E}\left|\stackrel{\text { comm }}{\text { fix }}\left(\alpha_{J, S_{n}}(H)\right)\right|\left(=\frac{1}{n^{r k(H)-1}} \Leftrightarrow H \leq_{f f} J\right)
$$

$$
\Phi_{\langle w\rangle, \mathbf{F}_{k}}(n)=\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|\left(=1 \stackrel{\text { Thm }}{\Leftrightarrow}{ }^{3} w \text { is prim }\right)
$$

Ingredients of the Proof (cont.)

Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset \preceq on $\left\{H \leq_{f g} \mathbf{F}_{k}\right\}$.

Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset \preceq on $\left\{H \leq_{f g} \mathbf{F}_{k}\right\}$.
i.e.
$H \preceq J \Longrightarrow$

Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset \preceq on $\left\{H \leq_{f g} \mathbf{F}_{k}\right\}$. i.e.
$H \preceq J \Longrightarrow$
$[H, J]_{\preceq}$

Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset \preceq on $\left\{H \leq_{f g} \mathbf{F}_{k}\right\}$. i.e.
$H \preceq J \Longrightarrow$

$$
[H, J]_{\preceq}=\{M \mid H \preceq M \preceq J\}
$$

Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset \preceq on $\left\{H \leq_{f g} \mathbf{F}_{k}\right\}$.
i.e.
$H \preceq J \Longrightarrow$

$$
[H, J]_{\preceq}=\{M \mid H \preceq M \preceq J\} \text { is finite }
$$

Ingredients of the Proof (cont.)

Ingr. 2: Use Stallings Core Graphs to obtain
a locally finite poset \preceq on $\left\{H \leq_{f g} \mathbf{F}_{k}\right\}$.
i.e.

$$
H \preceq J \Longrightarrow
$$

$$
[H, J]_{\preceq}=\{M \mid H \preceq M \preceq J\} \text { is finite }
$$

Core Graphs

Core Graphs: graphs representing subgroups of \mathbf{F}_{k}

Core Graphs

Core Graphs: graphs representing subgroups of \mathbf{F}_{k} Examples:

Core Graphs

Core Graphs: graphs representing subgroups of \mathbf{F}_{k} Examples:

F_{2} :

Core Graphs

Core Graphs: graphs representing subgroups of \mathbf{F}_{k} Examples:

F_{2} :

$\left\langle a^{2}, b a^{2} b^{-1}\right\rangle:$

Core Graphs

Core Graphs: graphs representing subgroups of \mathbf{F}_{k} Examples:

F_{2} :

$\left\langle a^{2}, b a^{2} b^{-1}\right\rangle:$

$\left\langle a^{2}, a b, b^{2}\right\rangle:$

Core Graphs

Some properties:

Core Graphs

Some properties:

$$
\{H \leq \mathbf{F}(X)\} \longleftrightarrow\left\{\begin{array}{c}
X \text {-labeled } \\
\text { Core Graphs }
\end{array}\right\}
$$

Core Graphs

Some properties:

$$
\begin{aligned}
\{H \leq \mathbf{F}(X)\} & \longleftrightarrow\left\{\begin{array}{c}
X \text {-labeled } \\
\text { Core Graphs }
\end{array}\right\} \\
H & \longmapsto
\end{aligned} \begin{aligned}
\Gamma(H)
\end{aligned}
$$

Core Graphs

Some properties:

$$
\begin{aligned}
\{H \leq \mathbf{F}(X)\} & \longleftrightarrow\left\{\begin{array}{c}
X \text {-labeled } \\
\text { Core Graphs }
\end{array}\right\} \\
H & \longmapsto
\end{aligned} \begin{array}{|}
\Gamma(H)
\end{array}
$$

Core Graphs

Some properties:

$$
\begin{aligned}
& \text { - }\{H \leq \mathbf{F}(X)\} \longleftrightarrow\left\{\begin{array}{c}
X \text {-labeled } \\
\text { Core Graphs }
\end{array}\right\} \\
& H \quad \longmapsto \quad \Gamma(H) \\
& \pi_{1}^{\text {blobed }}(\Gamma) \longleftrightarrow \quad \Gamma \\
& -\{H \leq f . g, \mathbf{F}(X)\} \longleftrightarrow\left\{\begin{array}{c}
X \text {-labeled finite } \\
\text { Core Graphs }
\end{array}\right\}
\end{aligned}
$$

Core Graphs

Some properties:

$$
\begin{gathered}
\qquad \begin{array}{c}
\{H \leq \mathbf{F}(X)\} \\
H \\
\pi_{1}^{\text {tabeled }}(\Gamma) \\
\longleftrightarrow \\
\left.\longleftrightarrow \begin{array}{c}
X \text {-labeled } \\
\text { Core Graphs }
\end{array}\right\} \\
\Gamma(H) \\
\Gamma
\end{array} \\
\qquad\left\{H \leq_{\text {f.g. }} \mathbf{F}(X)\right\} \longleftrightarrow\left\{\begin{array}{c}
X \text {-labeled finite } \\
\text { Core Graphs }
\end{array}\right\} \\
\bullet r k(H)=e_{\Gamma(H)}-v_{\Gamma(H)}+1
\end{gathered}
$$

Core Graphs

- $H \leq J \quad \Longleftrightarrow \quad \exists$ morphism $\Gamma(H) \rightarrow \Gamma(J)$

Core Graphs

- $H \leq J \quad \Longleftrightarrow \quad \exists$ morphism $\Gamma(H) \rightarrow \Gamma(J)$
E.g. $\left\langle a^{2}, b a^{2} b^{-1}\right\rangle \leq\left\langle a^{2}, a b, b^{2}\right\rangle$, thus:

Core Graphs

- $H \leq J \quad \Longleftrightarrow \quad \exists$ morphism $\Gamma(H) \rightarrow \Gamma(J)$
E.g. $\left\langle a^{2}, b a^{2} b^{-1}\right\rangle \leq\left\langle a^{2}, a b, b^{2}\right\rangle$, thus:

The \preceq relation

$$
H \leq J \Longleftrightarrow
$$

\exists morphism $\Gamma(H) \rightarrow \Gamma(J)$

The \preceq relation

$H \leq J \Longleftrightarrow$
 \exists morphism $\Gamma(H) \rightarrow \Gamma(J)$
 Definition We say that H covers J, and denote $H \preceq J$, if

The \preceq relation

$H \leq J \Longleftrightarrow$

\exists morphism $\Gamma(H) \rightarrow \Gamma(J)$

Definition

 We say that H covers J, and denote $H \preceq J$, if- $H \leq J$

The \preceq relation

$H \leq J \Longleftrightarrow \quad \exists$ morphism $\Gamma(H) \rightarrow \Gamma(J)$

Definition

We say that H covers J, and denote $H \preceq J$, if

- H $\leq J$, and
- The morphism $\Gamma(H) \rightarrow \Gamma(J)$ is surjective

The \preceq relation

$H \leq J \Longleftrightarrow \quad \exists$ morphism $\Gamma(H) \rightarrow \Gamma(J)$
Definition
We say that H covers J, and denote $H \preceq J$, if

- $H \leq J$, and
- The morphism $\Gamma(H) \rightarrow \Gamma(J)$ is surjective

Observation
($\left\{H \leq_{f g} \mathbf{F}_{k}\right\}, \preceq$) is a locally finite poset.

The \preceq relation

$H \leq J \Longleftrightarrow \quad \exists$ morphism $\Gamma(H) \rightarrow \Gamma(J)$
Definition
We say that H covers J, and denote $H \preceq J$, if

- $H \leq J$, and
- The morphism $\Gamma(H) \rightarrow \Gamma(J)$ is surjective

Observation
($\left\{H \leq_{f g} \mathbf{F}_{k}\right\}, \preceq$) is a locally finite poset.
I.e. $H \preceq J \Longrightarrow[H, J]_{\preceq}$ is finite

The Order \preceq

E.g. $H=\left\langle a b a^{-1} b^{-1}\right\rangle$.

The Order \preceq

E.g. $H=\left\langle a b a^{-1} b^{-1}\right\rangle$. There are $7 J$'s with $H \preceq J$:

The Order \preceq

E.g. $H=\left\langle a b a^{-1} b^{-1}\right\rangle$. There are 7 J's with $H \preceq J$:

Ingredients of the Proof (cont.)

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ
Define R, the right Möbius derivation of Φ, as

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ
Define R, the right Möbius derivation of Φ, as

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ
Define R, the right Möbius derivation of Φ, as

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: R is supported on algebraic extensions.

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ
Define R, the right Möbius derivation of Φ, as

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: R is supported on algebraic extensions. $H \leq \leq_{\text {alg }} N$

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ
Define R, the right Möbius derivation of Φ, as

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: R is supported on algebraic extensions. $H \leq$ alg N means $\nexists L$

Ingredients of the Proof (cont.)

Ingr. 3: Möbius derivations of Φ

Define R, the right Möbius derivation of Φ, as

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: R is supported on algebraic extensions. $H \leq{ }_{\text {alg }} N$ means $\nexists L$ s.t. $H \leq L \nRightarrow f f$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: Let $H \preceq N$.

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not$ _alg N

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{\Sigma}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{\prime}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$. Proof:

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{a l g} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.
$R_{H, N} \stackrel{\text { def }}{=}$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
R_{H, N} \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M}
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\Phi_{H, L}-
\end{aligned}
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}
\end{aligned}
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$. Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}-\sum_{M \in[H, N) \backslash[H, L]} R_{H, M}
\end{aligned}
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\underbrace{\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}-\sum_{M \in[H, N) \backslash[H, L]} R_{H, M}}
\end{aligned}
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N) \preceq} R_{H, M} \\
& =\underbrace{\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}}_{0}-\sum_{M \in[H, N) \backslash[H, L]} R_{H, M}
\end{aligned}
$$

$$
H \leq M \cap L \nsupseteq M
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\underbrace{\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}}_{0}-\sum_{M \in[H, N) \backslash[H, L]} R_{H, M}
\end{aligned}
$$

$$
H \leq M \cap L \not \varliminf_{f f} M
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$.
Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\underbrace{\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}}_{0}-\sum_{M \in[H, N) \backslash[H, L]} \underbrace{R_{H, M}}_{0}
\end{aligned}
$$

$$
H \leq M \cap L \not \varliminf_{f f} M
$$

Ingredients of the Proof (cont.)

$$
\Phi_{H, J}=\sum_{N \in[H, J]_{\underline{1}}} R_{H, N}
$$

Claim: Let $H \preceq N$. If $H \not Z_{\text {alg }} N$ then $R_{H, N} \equiv 0$.
Proof: By induction on $|[H, J]|$. Assume $H \leq L \supsetneqq$ ff N.

$$
\begin{aligned}
R_{H, N} & \stackrel{\text { def }}{=} \Phi_{H, N}-\sum_{M \in[H, N)_{\preceq}} R_{H, M} \\
& =\underbrace{\Phi_{H, L}-\sum_{M \in[H, L)} R_{H, M}}_{0}-\sum_{M \in[H, N) \backslash[H, L]} \underbrace{R_{H, M}}_{0} \\
& =0 \quad H \leq M \cap L \nsupseteq M
\end{aligned}
$$

Ingredients of the Proof (cont.)

Ingredients of the Proof (cont.)

So, $\quad \Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}$

Ingredients of the Proof (cont.)

So, $\quad \Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}=\sum_{N: H \leq a l g N \leq J} R_{H, N}$

Ingredients of the Proof (cont.)

So, $\quad \Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}=\sum_{N: H \leq \operatorname{agg} N \leq J} R_{H, N}$
The hard part:

Ingredients of the Proof (cont.)

So, $\quad \Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}=\sum_{N: H \leq a g N \leq J} R_{H, N}$
The hard part:
Proposition
If $H \leq_{a l g} N$ then

Ingredients of the Proof (cont.)

So, $\quad \Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}=\sum_{N: H \leq a \lg N \leq J} R_{H, N}$
The hard part:
Proposition
If $H \leq_{a l g} N$ then $R_{H, N}=\frac{1}{n^{r k(N)-1}}+O\left(\frac{1}{n^{r k(N)}}\right)$

Ingredients of the Proof (cont.)

So, $\quad \Phi_{H, J}=\sum_{N \in[H, J]_{\preceq}} R_{H, N}=\sum_{N: H \leq a g N \leq J} R_{H, N}$
The hard part:
Proposition
If $H \leq_{a l g} N$ then $R_{H, N}=\frac{1}{n^{r k(N)-1}}+O\left(\frac{1}{n^{r k(N)}}\right)$

Ingredients of the Proof (cont.)

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs
Geom. interpretation of $\Phi_{H, J}=\mathbb{E}\left|\underset{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|$

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs
Geom. interpretation of $\Phi_{H, J}=\mathbb{E}\left|{ }_{\text {fix }}^{\text {comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|$
$\operatorname{Hom}\left(J, S_{n}\right)$

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs
Geom. interpretation of $\Phi_{H, J}=\mathbb{E}\left|{ }_{\text {fix }}^{\text {comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|$

$$
\operatorname{Hom}\left(J, S_{n}\right) \longleftrightarrow \begin{gathered}
J-\text { set } \\
\text { structures } \\
\text { on }\{1 . . n\}
\end{gathered}
$$

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs
Geom. interpretation of $\Phi_{H, J}=\left.\mathbb{E}\right|^{\stackrel{c}{\text { fix }}}\left(\alpha_{J, S_{n}}(H)\right) \mid$

$$
\operatorname{Hom}\left(J, S_{n}\right) \longleftrightarrow \begin{gathered}
J-\text { set } \\
\text { structures } \\
\text { on }\{1 . . n\}
\end{gathered} \longleftrightarrow \begin{gathered}
n-\text { coverings } \\
\text { of } \Gamma(J) \text { with } \\
p^{-1}(\otimes)=\{1 . . n\}
\end{gathered}
$$

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs
Geom. interpretation of $\Phi_{H, J}=\mathbb{E}\left|\underset{\text { fix }}{\text { comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|$
random

$$
J-\text { set }
$$

$$
\text { on }\{1 . . n\}
$$

random
n - coverings
$\operatorname{Hom}\left(J, S_{n}\right)$

of $\Gamma(J)$ with
$p^{-1}(\otimes)=\{1 . . n\}$

Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs
Geom. interpretation of $\Phi_{H, J}=\mathbb{E}\left|{ }_{\text {fix }}^{\text {comm }}\left(\alpha_{J, S_{n}}(H)\right)\right|$
random
random
$\operatorname{Hom}\left(J, S_{n}\right)$

$$
J-\text { set }
$$ structures

$$
\text { on }\{1 . . n\} \quad p^{-1}(\otimes)=\{1 . . n\}
$$

random
n - coverings
of $\Gamma(J)$ with

Lemma: $\Phi_{H, J}(n)=\mathbb{E} \mid$ lifts of

$$
\begin{aligned}
& \widehat{\Gamma(J)} \mid \\
& \Gamma(H) \longrightarrow \Gamma(J)
\end{aligned}
$$

Open Problems

Open Problems

- Same questions for other $\operatorname{Aut}\left(\mathbf{F}_{k}\right)$-orbits of words (subgroups)

Open Problems

- Same questions for other $\operatorname{Aut}\left(\mathbf{F}_{k}\right)$-orbits of words (subgroups)
- Same questions w.r.t. other types of groups (other finite groups/ $U(2) /$...)

Open Problems

- Same questions for other $\operatorname{Aut}\left(\mathbf{F}_{k}\right)$-orbits of words (subgroups)
- Same questions w.r.t. other types of groups (other finite groups/ $U(2) / \quad .$.)
- Understand completely $\mathbb{E}\left|\operatorname{fix}\left(\alpha_{S_{n}}(w)\right)\right|$

Thank You!

