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> g, h, k ~ U(G) (=uniform, iid)
» What is the distribution of
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» Let w € Fy, G some finite group
» Consider themapw : G x Gx---xG—G

-~

Eg. w=abab? (g, hg — ghgh™2
» Question:

(81, &) ~ U(G*) = w(ai, ., &) ~ U(G)
» Equivalently, as G* = Hom(Fy, G),

ag ~ U(Hom(Fy, G)) == ag(w) ~ U(G)

Definition
w € Fy is called uniform ifV finite group G,
ag(w) ~ U(G).
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» A basis of a free group is a free generating set
E.g. (ab,abab’) = F,

» w € Fy is called primitive if it belongs to
some basis.
E.g. a, ab, abab?

» Primitive words are rare.
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w € Fy is uniform if V finite G, ag(w) ~ U(G).
w € Fy is primitive if it belongs to some basis.

» a¢ € Hom(Fy, G) is uniquely determined by
arbitrary images of a basis. Thus,

Observation
w is primitive = w is uniform

E.g. for w=abab?, ag(w)~ U(G)
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Observation
w is primitive => w is uniform

Conjecture (Gelander, Larsen, Lubotzky,
Shalev, Linial-P, Amit-Vishne, ...)

w Is primitive <= w is uniform

» J many similar and extended open problems
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The Main Results

Theorem 1 (2011)
The conjecture holds for F,.

» Key ingredient: a new graph-theoretic
algorithm to detect primitivity (& free factors)

Theorem 2 (P-Parzanchevski)
The conjecture holds for Fy Vk.

» The proof involves: Stallings core graphs,
random covering spaces, Mobius inversions,
algebraic extensions of free groups,...
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w is primitive

Observation

ag(w) ~ U(G) V finite G

as,(w) ~

U(s,) vn

E|fix(as,(w))| =1 Vn
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The Main Results

w is primitive
Observation
ag(w) ~ U(G) V finite G
Thm 3

Ozsn(W) ~ U(Sn) Vn

E|fix(as,(w))| =1 Vn

L J
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Fixed points in S,

In 94°, Nica
» introduced a simple technique to calculate
E!ﬁx(asn(w))‘
» showed it is a rational expression in n
Eg w=a’b*c%

n? —2n+2
(n—1)2

E|fix(as,(w))| =




Fixed points in S,

We write Laurent series: w = a?b%c?

n? —2n+2

]E‘ﬁx(ozgn(w))‘ = (n—1)2
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Fixed points in S,

We write Laurent series: w = a’b?c?
n? —2n+2
E‘ﬁX(O&Sn(W))‘ — (n — 1)2 —
1 1
= 1 + - O(ﬁ)
) )

expectation for  order of magnitude

uniform permutation of deviation

3. the primitivity rank of w
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Primitivity Rank: a new classification of words

Definition
The primitivity rank of w is:
eJ<F .t.
m(w) = min rk(J)‘ W - ,k,,s ,
w is not primitive in J

If no such J exists, m(w) = 0.
» w primitive in Fy
—> w primitive in J for every J containing w

— m(w) = o0
» w not primitive in F, —
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Definition
The primitivity rank of w is:
eJ<F .t.
m(w) = min rk(J)‘ W - ,k,,s ,
w is not primitive in J

If no such J exists, m(w) = 0.
» w primitive in Fy
—> w primitive in J for every J containing w
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Primitivity Rank: a new classification of words

Definition
The primitivity rank of w is:
eJ<F .t.
m(w) = min rk(J)‘ W - ,k,,s ,
w is not primitive in J

If no such J exists, m(w) = 0.

» w primitive in Fy
—> w primitive in J for every J containing w
— m(w) = o0

» w not primitive in Fy = m(w) < k

» Thus, 7(w) € {0,1,2,..., k} U{oc}
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Primitivity Rank: a new classification of words

7(w) = min {rk(J)

m(w) € {0,1,2,..., k} U {oo}

we J<Fgs.t. }

w is not primitive in J

(w)=0 <= w=1
1l = W is a power
E.g. 7([a, b]) = 7(a*b?) =2

m(wiwy) = m(wy) + m(wy) for words with disjoint letters

T(w) =00 <= w is primitive
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Primitivity Rank: a new classification of words

7(w) = min {rk(J)

m(w) € {0,1,2,..., k} U {oo}

we J<Fgs.t. }

w is not primitive in J

(w)=0 <= w=1
1l = W is a power
E.g. 7([a, b]) = 7(a*b?) =2
m(wiwy) = m(wy) + m(wy) for words with disjoint letters

Eg 7(x¢x3...x3)=d

T(w) =00 <= w is primitive
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Fixed points in S, - The Key Result

Theorem 3 ( P-Parzanchevski )
Elfix(as,(w)| =1 + 555 + O(F)

Crit(w) - the set of “critical” subgroups of Fy:

Crit(w) = {J< F

weJ
w is not prmutlve in J}
rk(J)=mn(w)
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nm(w)

Example 1:
w = a’b’c?

m(w) =3, Crit(w) = {F3}
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Elfix(as,(w))| =1 + S50 + 0(45)

nm(w)

Example 1:

w = a’b’c?

m(w) =3, Crit(w) = {F3}
Thus,

Elfix(os,(w))| =1 + &5 + O()
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Example 2:
w = u?, (d > 2, u non-power)

a(w) =1, Crit(w) ={(u™) ( mld, 1< m < d}
Thus, if §(d) = # of divisors of d
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E|fix(as,(w))| =1+

no n




Theorem (3)
Elfix(as,(w))| =1 + £ 4+ 0(Z)

Example 2:
w = u?, (d > 2, u non-power)

a(w) =1, Crit(w) ={(u me1gm<@
Thus, if §(d) = # of divisors of d

E|fix(as,(w))| =1+




Primitivity Rank: a new classification of words

m(w) | Description E [# fixed points-‘

of as,(w)
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mw(w) | Description | E [
0 \ w=1 \ n

# fixed points
of as,(w)

Doron Puder Uniform Words are Primitive



Primitivity Rank: a new classification of words

7(w) | Description E [# g;czdsn;z?/li/l)aﬂ
0 w = ]_ n

1 w is a power | ~ 1+ |Crit(w)]

Doron Puder Uniform Words are Primitive
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7(w) | Description E [# g;czdsn;z?/li/l)aﬂ
0 w = ]_ n

1 w is a power | ~ 1+ |Crit(w)]
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Primitivity Rank: a new classification of words

7(w) | Description E [# g;«;ds p((;i/r)lts-‘
0 w = 1 n

1 w is a power | ~ 1+ |Crit(w)]
2 ~14+ \Crlt( )|
k 14+ ‘Crllfgzv”
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Primitivity Rank: a new classification of words

7(w) | Description E [# g;«;ds p((;i/r)lts-‘
0 w = 1 n

1 w is a power | ~ 1+ |Crit(w)]
2 ~14+ \Crlt( )|
k 1_|_ ‘Crllfgzv”
00 w is primitive | 1
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1. wis uniform = =n(w)=00 =
w is primitive ( = Thm 2)
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Consequences of the main theorem

Theorem (3)
Elfix(as ()| =1 + 152 + 0(zh)

nm(w)—1 nm(w)

Consequences:

1. wis uniform = =n(w)=00 =
w is primitive ( = Thm 2)
2. {w,..,w,} is uniform <=
{wi, .., w,} is primitive
Equivalently, let H < F
ag|, ~ U(Hom(H, G)) for V finite G <=
H is a free factor of Fy
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Theorem (3)
Elfix(as(w)) | =1 + 182 + 0(zh)

nm(w)—1 nm(w)

Consequences (cont.):

3. 2 new criteria (& algos) to detect primitivity (&
free factors)




Consequences of the main theorem

Theorem (3)
E|fix(as,(w))| =1 + S8l 1 o(1)
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Consequences of the main theorem

Theorem (3)
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Consequences (cont. - profinite free group):
Let F, be the profinite completion of Fy,




Consequences of the main theorem

Theorem (3)
Elfix(as,(w))[ =1 + S5 + O(m)

nr(w

Consequences (cont. - profinite free group):
Let F, be the profinite completion of Fy,
P - the set of primitive elements of Fy,
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Consequences of the main theorem

Theorem (3)
Elfix(as,(w))[ =1 + S5 + O(m)

nr(w

Consequences (cont. - profinite free group):
Let F, be the profinite completion of Fy,

P - the set of primitive elements of Fy,
P - the set of primitive elements of F, then
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Consequences of the main theorem

Theorem (3)
Elfix(as,(w))[ =1 + S5 + O(m)

nr(w

Consequences (cont. - profinite free group):
Let F, be the profinite completion of Fy,

P - the set of primitive elements of Fy,
P - the set of primitive elements of F, then

4. P:ﬁﬂFk
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Consequences of the main theorem

Theorem (3)
Elfix(as,(w))[ =1 + S5 + O(m)

nr(w

Consequences (cont. - profinite free group):
Let I/:; be the profinite completion of Fy,
P - the set of primitive elements of I/=\k
P - the set of primitive elements of F, then
4. P = /15 N Fy
5. P is closed in the profinite topology.
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Consequences of the main theorem

Theorem (3)
E|fix(as,(w))| = 1 + &l o(_L)

n7T

Consequences (cont.):

6. Vw and large enough n

E|fix(as,(w))| > 1

7. Expansion properties of random graphs:

» new results
» new proofs to old results
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Ingredients of the Proof

Goal: Analyze E[fix (s, (w))]
Ingr. 1: Generalize to subgroups
H < J f.g. free groups.
ays,:Jd— S, ~ U(Hom(J, S,))
Q: What's the distr. of the random gp a5 (H)?

e comm 1
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Ingredients of the Proof

Goal: Analyze E[fix (s, (w))]
Ingr. 1: Generalize to subgroups
H < J f.g. free groups.
ays,:Jd— S, ~ U(Hom(J, S,))
Q: What's the distr. of the random gp a5 (H)?

comm 1

®ps(n) B 5" (ass,(H) (= s & H<r )

® ), (n) = Elfix(as,(w)) [ (=1 T3y s prim)
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Ingr. 2: Use
a locally finite poset < on {H <4 F} .
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Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset < on {H <4 F} .
I.e.

H=<J—
[H,Jl<={M|H =M =J}




Ingredients of the Proof (cont.)

Ingr. 2: Use
a locally finite poset < on {H <4 F} .
I.e.

H=J—=
[H,J]< = {M|H =M = J} is finite




Ingredients of the Proof (cont.)

Ingr. 2: Use Stallings Core Graphs to obtain
a locally finite poset < on {H <4 F} .
ie.

H=J—=
[H,J]< = {M|H =M = J} is finite




Core Graphs: graphs representing subgroups of Fj
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Core Graphs: graphs representing subgroups of Fj
Examples:

F2: aC@Db
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Core Graphs: graphs representing subgroups of Fj

Examples:

F2: aC@Db

(8%, ba’b™1): o 7 T b e e
\aﬁ \5/7
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Core Graphs: graphs representing subgroups of Fj

Examples:

(Ca s
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Some properties:

»  {H<FX)} M{

X-labeled
Core Graphs




Some properties:

. {H < F(X)} PN { X-labeled }

Core Graphs

H — r(H)
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. {H < F(X)} PN { X-labeled }

Core Graphs

H — [(H)
,/T:/Labe/ed(r) — r




Some properties:

X-labeled
> H < F(X
tH<F(X)} e {Core Graphs}
H — M(H)
,/T:/Labe/ed(r) VA r

v
——

I
IA

X-labeled finite
Core Graphs

o B0} e {




Some properties:

X-labeled
> H < F(X
tH<F(X)} e {Core Graphs}
H — M(H)
,/T:/Labe/ed(r) VA r

» {H <¢z F(X)} «— {

> rk(H) = er(H) — VF(H) + 1

X-labeled finite
Core Graphs




» H<J <= dmorphism I'(H) — I'(J)




» H<J <= dmorphism '(H) — '(J)
E.g. (2%, ba’b™1) < (a2, ab, b?), thus:
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H<J < 3 morphism '(H) — I'(J)

Definition

We say that H covers J, and denote H < J, if
» H<J ,and

» The morphism T'(H) — ['(J) is surjective

Observation
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The < relation

H<J < 3 morphism '(H) — I'(J)

Definition

We say that H covers J, and denote H < J, if
» H<J ,and

» The morphism T'(H) — ['(J) is surjective

Observation
({H <g Fi}, X) is a locally finite poset.
le. H=J=[H,J]. is finite




The Order <

Eg H={(abalb!).




The Order <

E.g. H= (aba'b'). There are 7 J's with H < J:




The Order <

E.g. H= (aba'b'). There are 7 J's with H < J:

a
®
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Ingredients of the Proof (cont.)

Ingr. 3: Mobius derivations of ¢
Define R, the right Mobius derivation of ®, as

Claim: R is supported on algebraic extensions.
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Define R, the right Mobius derivation of ®, as

Claim: R is supported on algebraic extensions.
H Sa/g N
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Ingredients of the Proof (cont.)

Ingr. 3: Mobius derivations of ¢
Define R, the right Mobius derivation of ®, as

Claim: R is supported on algebraic extensions.
H <,g N means ALst. H<LS# N
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def
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Gy =

Claim: Let H X N. If H £, N then Ry y = 0.

Proof: By induction on |[H, J]|.
Assume H < L S¢ N.
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def
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Claim: Let H X N. If H £, N then Ry y = 0.

Proof: By induction on |[H, J]|.
Assume H < L S¢ N.
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def
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> Ne[H )< RHN
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Gy =

Claim: Let H X N. If H £, N then Ry y = 0.

Proof: By induction on |[H, J]|.
Assume H < L S¢ N.

> Ne[H )< RHN

Ru.n &f by — Z Ru.m

Me[H,N)<
= Sui— > Rum— Y, Rum
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Ingredients of the Proof (cont.)

Py =D N RHN
Claim: Let H X N. If H £, N then Ry y = 0.

Proof: By induction on |[H, J]|.
Assume H < L S¢ N.

Ru.n &f by — Z Ru.m

Me[H,N)<
= Sui— > Rum— Y, Rum
MEe[H,L) Me[H,N)\[H.L] ¢

=0 H< ML S¢ M
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Proposition
If H <,5 N then
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The hard part:

Proposition
If H <ag N then Run = —by=r + O ()

L/(D\R
%
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Ingr. 4: Random Coverings of Core Graphs

comin

Geom. interpretation of & ; = ]E‘ fix (CYJ,S,,(H))‘

random random

random - J — set R n — coverings
Hom(J, S,) structures of I'(J) with
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Ingredients of the Proof (cont.)

Ingr. 4: Random Coverings of Core Graphs

comin

Geom. interpretation of & ; = ]E‘ fix (CYJ,S,,(H))‘

random random
random J — set n — coverings
Hom(J, S,) 7 structures .~ of M(J) with
on{l..n} pi(®)={1..n}

Lemma: & (n) = Ellifts of rJ)|
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Open Problems

» Same questions for other Aut(F)-orbits of
words (subgroups)

» Same questions w.r.t. other types of groups
(other finite groups/U(2)/ ...)
> Understand completely E|fix(as,(w))|




Thank You!
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