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Set-up

G : alocally compact group.

Sub( @) : the space of closed subgroups.

G acts on Sub(G) by conjugation. g - H := gHg~'.

M(G) : space of G-invariant Borel probability measures on Sub(G).

An invariant random subgroup (IRS) is a random subgroup H < G with
law in M(G).
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Examples

e NaG= oy € MG).

@ If N < G has only finitely many conjugates = uniform prob. meas.
on the conjugates of N is in M(G).

@ Letl < G be alattice. 3 a G-invariant prob. meas. A on G/T.
Define ¢ : G/T — Sub(G) by ®(gr) := grg—".
Then &\ := ur € M(G).

@ Let G (X, 1) be a probability-measure-preserving Borel action.
Stab : X — Sub(G), Stab(x) :={g € G: gx = x}.
Stab is G-equivariant = Stab..u € M(G).

(Abert-Glasner-Virag) = every measure in M(G) arises this way.
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M(G) is a simplex

Definition

A convex closed metrizable subset K of a locally convex linear space
is a simplex if each point in K is the barycenter of a unique probability
measure supported on the subset 0K of extreme points of K.
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M(G) is a simplex

Definition
A convex closed metrizable subset K of a locally convex linear space

is a simplex if each point in K is the barycenter of a unique probability
measure supported on the subset 0K of extreme points of K.

If g, o € M(G) and t € [0, 1] then tuq + (1 — e € M(G).
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Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe M(G).

Lewis Bowen (Texas A&M) Invariant Random Subgroups 5/29



Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe M(G).

Remark 1. M(G) is compact in the weak* topology. So it can be
viewed as a compactification of the set of lattice subgroups.

Lewis Bowen (Texas A&M) Invariant Random Subgroups 5/29



Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe M(G).

Remark 1. M(G) is compact in the weak* topology. So it can be
viewed as a compactification of the set of lattice subgroups.

Remark 2. If K is an IRS then K\ G can be thought of as something

like a group. Although it need not be homogeneous, it possesses
“statistical homogeneity”.
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Higher rank simple Lie groups

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank > 2 and K < G is an ergodic IRS
then either K is a lattice a.s. or K = {e}.
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Higher rank simple Lie groups

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank > 2 and K < G is an ergodic IRS
then either K is a lattice a.s. or K = {e}.

Let X = G/K. An X-manifold M is a manifold locally modeled on X
(i.e., M = X/TI for some lattice I < G).
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Higher rank simple Lie groups

Theorem

(Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet)
If G is as above, and M; is a sequence of X-manifolds such that

lim vol(M;) = 400, liminfinjrad(M;) > 0
I—00 I—00
bk (M;)

= vk, . vol(M) — Bi(X)-
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Higher rank simple Lie groups

Theorem
(Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet)
If G is as above, and M; is a sequence of X-manifolds such that
lim vol(M;) = 400, liminfinjrad(M;) > 0
[—00

I—00

- b(M;)
= vk, :l_ltgo vol(M;) — Br(X).

Sketch.

Let M; = X/TI';. By Stuck-Zimmer, nr, converges in M(G) to de. Show
that L2-betti numbers vary continuously on M(G) using a generalized
version of Lick approximation. O

v
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Random walks

Let G = (a, b|R) be a 2-generator group,
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Random walks

Let G = (a, b|R) be a 2-generator group,

p = uniform prob. meas. on {a,b,a~ ', b1},
{Xi}24 =i.i.d. random variables with law s,

Zn:X1"'Xn.
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Random walks

Let G = (a, b|R) be a 2-generator group,

p = uniform prob. meas. on {a,b,a~ ', b1},
{Xi}24 =i.i.d. random variables with law s,
Zn= Xy Xp.

{Z,} is the simple random walk on G with p-increments.
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Entropy
Let 1" be the law of Z,,
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Entropy
Let 1" be the law of Z,,

H(u") === u({g})log u({g}):

geG

P(G) = lim ().

n—oo N

0 < h,(G) < h,(F2).

Lewis Bowen (Texas A&M) Invariant Random Subgroups

9/29



Entropy
Let 1" be the law of Zj,

H(u") == = u({g})log u({g});

geG

P(G) = lim ().

n—oo N
0 < hu(G) < hu(F2).

Problem

What are all possible values of h,(G) as G varies over all 2-generator
groups?
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Random walk entropy

@ This problem is related to the structure theory of stationary actions
and Furstenberg entropy.
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Random walk entropy

@ This problem is related to the structure theory of stationary actions
and Furstenberg entropy.

Theorem
{h.(G) : G a 2-generator group}
is dense in [0, h,(F2)].
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Random walks on random coset spaces

For K < FF», consider the random walk {KZ,}>° ; on K\F.
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Random walks on random coset spaces
For K < IF,, consider the random walk {KZ,}°° , on K\F.

n=1

Let % ({Kg}) = Prob (KZ, = Kg),
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Random walks on random coset spaces
For K < T, consider the random walk {KZ,}2° ; on K\F».

Let % ({Kg}) = Prob (KZ, = Kg),

hu()) = lim —/HMK ) dA(K
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Random walk entropy

Theorem

There exists a path-connected subspace N C Me(F2) on which the
map A € N — h,(\) is continuous and surjects onto [0, h,(F2)].
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Random walk entropy

Theorem

There exists a path-connected subspace N C Me(F2) on which the
map A € N — h,(\) is continuous and surjects onto [0, h,(F2)].

Theorem

The finitely-supported measures in N are dense and these correspond
to normal subgroups of F». Therefore,

{h.(G) : G a 2-generator group}
is dense in [0, h,(F2)].
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Let K, < F» be the group generated by all elements of the form ghg !
where g € (a",b") and either h = a*b"a* for some 1 < |k| < n—1
andr e Zorh=bfa’b~* forsome1 < |k|<n—1andrcZ.
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A covering construction

Choose 0 < p < 1 and choose each loop of K,\F2 with probability p
independently.
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A covering construction

Choose 0 < p < 1 and choose each loop of K,\F2 with probability p
independently. Consider the resulting 2-complex. Take its universal
cover. This is the Schreier coset graph of an IRS with law Xp, p.
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A covering construction

h,.(An,p) is continuous in p,
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A covering construction
h,.(An,p) is continuous in p,
>\n,0 = 59 = h,u(>\n,0) = hM(IFg),

M0 hu(An1) = 0.
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A covering construction
h,.(An,p) is continuous in p,
Ano = de = hu(Ano) = hu(F2),
limp 00 hu(An1) = 0.

We can approximate A\, be choosing a periodic collection of loops of
K, \F2 and then taking the universal cover of the 2-complex,
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A covering construction
h,.(An,p) is continuous in p,
Ano = e = Nu(Ano) = hu(F2),
limp 00 hu(An1) = 0.

We can approximate A\, be choosing a periodic collection of loops of
K»\F2 and then taking the universal cover of the 2-complex, which
gives a Schreier coset graph for a group with only finitely many
conjugates. Its normal core has entropy approximating App.
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Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank > 2 and K < G is an ergodic IRS
then either K is a lattice a.s. or K = {e}.
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Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank > 2 and K < G is an ergodic IRS
then either K is a lattice a.s. or K = {e}.

Theorem (Vershik, 2010)
There is a nice classification of IRS’s of S.o = U,Sh. J

Theorem (Bader-Shalom, 2006)

If Gy, Go are just non-compact infinite property (T) groups then every
ergodic IRS K < Gy x Gy either splits as a product K = Hy x H> or K
is a lattice subgroup a.s.
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What sort of simplex is M(G)?

A simplex ¥ is
@ Poulsenif 0¢X is dense in ¥;
@ Bauerif 0oX is closed in ¥.
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What sort of simplex is M(G)?
A simplex ¥ is

@ Poulsenif 0¢X is dense in ¥;
@ Bauerif 0oX is closed in ¥.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)

There is a unique Poulsen simplex ¥ up to affine isomorphism.

Moreover, 9,X = 2.
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What sort of simplex is M(G)?

A simplex ¥ is
@ Poulsenif 0¢X is dense in ¥;
@ Bauerif 0oX is closed in ¥.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)

There is a unique Poulsen simplex ¥ up to affine isomorphism.
Moreover, X = L2.

There are uncountably many nonisomorphic Bauer simplices.
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Simplices

M(F,) is neither.
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subgroups.
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Simplices
M(F,) is neither.

Let M;(F,) € Me(F,) be those measures coming from finite-index
subgroups.

M;(F,) is countable and each . € My;(F,) is isolated in Mg (F,).

Let Mig(F,) := Mo(F,) \ Myi(E,) and M(F,) = Hull(Mg(F,)).

Theorem
M;(F,) is a Poulsen simplex. So Mje(F,) = L2. J
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Surgery

Given two Schreier coset graphs Ky \F,, Kx\F,, we can connect them
together by replacing a vertex of each with 2 vertices and adding some

edges.
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Ergodic measures are dense

Let n € Mi(F,).

For p € (0, 1) we will construct 7, € Mjg(F,) such that limp_.g np = 7.
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Building an ergodic approximation

K\G

Let K < F, be random with law 7.
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Building an ergodic approximation

K\G

Color each vertex of K\F, red with prob. p independently.
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Building an ergodic approximation

K\G

At a red vertex, choose a random subgroup L < F, with law n
independent of K and attach its Schreier coset graph by surgery to
K\F,.
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Building an ergodic approximation

K\G

At a red vertex, choose a random subgroup J < F, with law 7
independent of K and other subgroups and attach its Schreier coset
graph by surgery to K\F,.
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Building an ergodic approximation

KNG
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Building an ergodic approximation

K\G
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Building an ergodic approximation

K\G
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Building an ergodic approximation

This is the Schreier coset graph of a random subgroup K < F». Let 7,
be the law of this subgroup. Show: 7, is ergodic and limp_.q 1p = 7.
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Further results and questions

@ (Abert-Glasner-Weiss) If K < G is an ergodic IRS then
p(K\G) = p(G) & K is amenable a.s.
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Further results and questions

@ (Abert-Glasner-Weiss) If K < G is an ergodic IRS then
p(K\G) = p(G) & K is amenable a.s.

@ (B.) Any ergodic aperiodic probability-measure-preserving
equivalence relation (X, p, E) with cost(E) < r is isomorphic to
(Sub(F,), A\, Er,) for some A € M(F,).
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Further results and questions

@ (Abert-Glasner-Weiss) If K < G is an ergodic IRS then
p(K\G) = p(G) & K is amenable a.s.

@ (B.) Any ergodic aperiodic probability-measure-preserving
equivalence relation (X, i, E) with cost(E) < r is isomorphic to
(Sub(F,), A\, Er,) for some A € M(F,).

@ (Bartholdi-Grigorchuk) There is a finitely generated group G with
an ergodic IRS K so that the Schreier coset graph K\ G has
polynomial growth of irrational degree almost surely.
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