Invariant Random Subgroups

Lewis Bowen

Group Theory International Webinar May 2012

Lewis Bowen (Texas A&M)

G : a locally compact group.

G : a locally compact group.

Sub(G): the space of closed subgroups.

G: a locally compact group.

Sub(G): the space of closed subgroups.

G acts on Sub(*G*) by conjugation. $g \cdot H := gHg^{-1}$.

G: a locally compact group.

Sub(G): the space of closed subgroups.

G acts on Sub(*G*) by conjugation. $g \cdot H := gHg^{-1}$.

M(G): space of *G*-invariant Borel probability measures on Sub(*G*).

G: a locally compact group.

Sub(G): the space of closed subgroups.

G acts on Sub(*G*) by conjugation. $g \cdot H := gHg^{-1}$.

M(G): space of *G*-invariant Borel probability measures on Sub(*G*).

An *invariant random subgroup* (IRS) is a random subgroup H < G with law in M(G).

• $N \lhd G \Rightarrow \delta_N \in M(G)$.

- $N \lhd G \Rightarrow \delta_N \in M(G).$
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let $\Gamma < G$ be a lattice. \exists a *G*-invariant prob. meas. λ on G/Γ .

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let $\Gamma < G$ be a lattice. \exists a *G*-invariant prob. meas. λ on G/Γ .

Define $\Phi : G/\Gamma \to \operatorname{Sub}(G)$ by $\Phi(g\Gamma) := g\Gamma g^{-1}$.

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let Γ < G be a lattice. ∃ a G-invariant prob. meas. λ on G/Γ.
 Define Φ : G/Γ → Sub(G) by Φ(gΓ) := gΓg⁻¹.

Then $\Phi_*\lambda := \mu_{\Gamma} \in M(G)$.

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let Γ < G be a lattice. ∃ a G-invariant prob. meas. λ on G/Γ.
 Define Φ : G/Γ → Sub(G) by Φ(gΓ) := gΓg⁻¹.
 Then Φ_{*}λ := μ_Γ ∈ M(G).
- Let $G \curvearrowright (X, \mu)$ be a probability-measure-preserving Borel action.

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let Γ < G be a lattice. ∃ a G-invariant prob. meas. λ on G/Γ.
 Define Φ : G/Γ → Sub(G) by Φ(gΓ) := gΓg⁻¹.
 Then Φ_{*}λ := μ_Γ ∈ M(G).
- Let $G \curvearrowright (X, \mu)$ be a probability-measure-preserving Borel action. Stab : $X \rightarrow Sub(G)$, Stab $(x) := \{g \in G : gx = x\}$.

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let Γ < G be a lattice. ∃ a G-invariant prob. meas. λ on G/Γ.
 Define Φ : G/Γ → Sub(G) by Φ(gΓ) := gΓg⁻¹.
 Then Φ_{*}λ := μ_Γ ∈ M(G).
- Let G ∩(X, μ) be a probability-measure-preserving Borel action.
 Stab : X → Sub(G), Stab(x) := {g ∈ G : gx = x}.
 Stab is G-equivariant ⇒ Stab_{*}μ ∈ M(G).

- $N \lhd G \Rightarrow \delta_N \in M(G)$.
- If N < G has only finitely many conjugates ⇒ uniform prob. meas. on the conjugates of N is in M(G).
- Let Γ < G be a lattice. ∃ a G-invariant prob. meas. λ on G/Γ.
 Define Φ : G/Γ → Sub(G) by Φ(gΓ) := gΓg⁻¹.
 Then Φ_{*}λ := μ_Γ ∈ M(G).
- Let G ∩(X, μ) be a probability-measure-preserving Borel action.
 Stab : X → Sub(G), Stab(x) := {g ∈ G : gx = x}.
 Stab is G-equivariant ⇒ Stab_{*}μ ∈ M(G).
 - (Abert-Glasner-Virag) \Rightarrow every measure in M(G) arises this way.

M(G) is a simplex

Definition

A convex closed metrizable subset *K* of a locally convex linear space is a simplex if each point in *K* is the barycenter of a unique probability measure supported on the subset $\partial_e K$ of extreme points of *K*.

M(G) is a simplex

Definition

A convex closed metrizable subset K of a locally convex linear space is a simplex if each point in K is the barycenter of a unique probability measure supported on the subset $\partial_e K$ of extreme points of K.

If
$$\mu_1, \mu_2 \in M(G)$$
 and $t \in [0, 1]$ then $t\mu_1 + (1 - t)\mu_2 \in M(G)$.

Research directions in IRS's

Problem: classify the ergodic IRS's of a given group or describe M(G).

Research directions in IRS's

Problem: classify the ergodic IRS's of a given group or describe M(G).

Remark 1. M(G) is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.

Research directions in IRS's

Problem: classify the ergodic IRS's of a given group or describe M(G).

Remark 1. M(G) is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.

Remark 2. If *K* is an IRS then $K \setminus G$ can be thought of as something like a group. Although it need not be homogeneous, it possesses "statistical homogeneity".

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and K < G is an ergodic IRS then either K is a lattice a.s. or $K = \{e\}$.

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank \geq 2 and K < G is an ergodic IRS then either K is a lattice a.s. or K = {e}.

Let X = G/K. An X-manifold *M* is a manifold locally modeled on X (i.e., $M = X/\Gamma$ for some lattice $\Gamma < G$).

Theorem (Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet) If G is as above, and M_i is a sequence of X-manifolds such that

 $\lim_{i \to \infty} vol(M_i) = +\infty, \quad \liminf_{i \to \infty} injrad(M_i) > 0$ $\Rightarrow \forall k, \quad \lim_{i \to \infty} \frac{b_k(M_i)}{vol(M_i)} = \beta_k(X).$

Theorem (Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet)

If G is as above, and M_i is a sequence of X-manifolds such that

$$\lim_{n\to\infty} vol(M_i) = +\infty, \quad \liminf_{i\to\infty} injrad(M_i) > 0$$

$$\Rightarrow \forall k, \quad \lim_{i \to \infty} \frac{b_k(M_i)}{vol(M_i)} = \beta_k(X).$$

Sketch.

Let $M_i = X/\Gamma_i$. By Stuck-Zimmer, μ_{Γ_i} converges in M(G) to δ_e . Show that L^2 -betti numbers vary continuously on M(G) using a generalized version of Lück approximation.

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

 μ = uniform prob. meas. on { a, b, a^{-1}, b^{-1} },

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

 μ = uniform prob. meas. on { a, b, a^{-1}, b^{-1} },

 $\{X_i\}_{i=1}^{\infty}$ = i.i.d. random variables with law μ ,

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

 μ = uniform prob. meas. on { a, b, a^{-1}, b^{-1} },

 $\{X_i\}_{i=1}^{\infty}$ = i.i.d. random variables with law μ ,

 $Z_n = X_1 \cdots X_n.$

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

 μ = uniform prob. meas. on { a, b, a^{-1}, b^{-1} },

 $\{X_i\}_{i=1}^{\infty}$ = i.i.d. random variables with law μ ,

 $Z_n = X_1 \cdots X_n.$

 $\{Z_n\}$ is the simple random walk on *G* with μ -increments.

$$H(\mu^n) := -\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$H(\mu^n) := -\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$h_{\mu}(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n).$$

$$H(\mu^n) := -\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$h_{\mu}(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n).$$

$$0\leq h_{\mu}(G)\leq h_{\mu}(\mathbb{F}_{2}).$$

Let μ^n be the law of Z_n ,

$$H(\mu^n) := -\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$h_{\mu}(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n).$$

$$0\leq h_{\mu}(G)\leq h_{\mu}(\mathbb{F}_{2}).$$

Problem

What are all possible values of $h_{\mu}(G)$ as G varies over all 2-generator groups?

Random walk entropy

 This problem is related to the structure theory of stationary actions and Furstenberg entropy.

Random walk entropy

 This problem is related to the structure theory of stationary actions and Furstenberg entropy.

```
Theorem \{h_{\mu}(G): G \text{ a } 2\text{ -generator group}\} is dense in [0, h_{\mu}(\mathbb{F}_2)].
```
Random walks on random coset spaces

For $K < \mathbb{F}_2$, consider the random walk $\{KZ_n\}_{n=1}^{\infty}$ on $K \setminus \mathbb{F}_2$.

Random walks on random coset spaces

For $K < \mathbb{F}_2$, consider the random walk $\{KZ_n\}_{n=1}^{\infty}$ on $K \setminus \mathbb{F}_2$.

Let $\mu_{K}^{n}(\{Kg\}) = \text{Prob}(KZ_{n} = Kg)$,

Random walks on random coset spaces

For $K < \mathbb{F}_2$, consider the random walk $\{KZ_n\}_{n=1}^{\infty}$ on $K \setminus \mathbb{F}_2$.

Let $\mu_{\mathcal{K}}^n(\{\mathcal{K}g\}) = \operatorname{Prob}(\mathcal{K}Z_n = \mathcal{K}g)$,

$$h_{\mu}(\lambda) := \lim_{n \to \infty} \frac{1}{n} \int H(\mu_{K}^{n}) d\lambda(K).$$

Random walk entropy

Theorem

There exists a path-connected subspace $\mathcal{N} \subset M_e(\mathbb{F}_2)$ on which the map $\lambda \in \mathcal{N} \mapsto h_{\mu}(\lambda)$ is continuous and surjects onto $[0, h_{\mu}(\mathbb{F}_2)]$.

Random walk entropy

Theorem

There exists a path-connected subspace $\mathcal{N} \subset M_e(\mathbb{F}_2)$ on which the map $\lambda \in \mathcal{N} \mapsto h_{\mu}(\lambda)$ is continuous and surjects onto $[0, h_{\mu}(\mathbb{F}_2)]$.

Theorem

The finitely-supported measures in \mathcal{N} are dense and these correspond to normal subgroups of \mathbb{F}_2 . Therefore,

 $\{h_{\mu}(G): G \ a \ 2\text{-generator group}\}$

is dense in $[0, h_{\mu}(\mathbb{F}_2)]$.

Let $K_n < \mathbb{F}_2$ be the group generated by all elements of the form ghg^{-1} where $g \in \langle a^n, b^n \rangle$ and either $h = a^k b^r a^{-k}$ for some $1 \le |k| \le n - 1$ and $r \in \mathbb{Z}$ or $h = b^k a^r b^{-k}$ for some $1 \le |k| \le n - 1$ and $r \in \mathbb{Z}$.

Choose $0 \le p \le 1$ and choose each loop of $K_n \setminus \mathbb{F}_2$ with probability p independently.

Choose $0 \le p \le 1$ and choose each loop of $K_n \setminus \mathbb{F}_2$ with probability p independently. Consider the resulting 2-complex.

Choose $0 \le p \le 1$ and choose each loop of $K_n \setminus \mathbb{F}_2$ with probability p independently. Consider the resulting 2-complex. Take its universal cover.

Lewis Bowen (Texas A&M)

Choose $0 \le p \le 1$ and choose each loop of $K_n \setminus \mathbb{F}_2$ with probability p independently. Consider the resulting 2-complex. Take its universal cover. This is the Schreier coset graph of an IRS with law $\lambda_{n.p.}$.

Lewis Bowen (Texas A&M)

 $h_{\mu}(\lambda_{n,p})$ is continuous in p,

 $h_{\mu}(\lambda_{n,p})$ is continuous in p,

 $\lambda_{n,0} = \delta_{e} \Rightarrow h_{\mu}(\lambda_{n,0}) = h_{\mu}(\mathbb{F}_{2}),$

 $h_{\mu}(\lambda_{n,p})$ is continuous in p,

$$\lambda_{n,0} = \delta_{e} \Rightarrow h_{\mu}(\lambda_{n,0}) = h_{\mu}(\mathbb{F}_{2}),$$

 $\lim_{n\to\infty}h_{\mu}(\lambda_{n,1})=0.$

 $h_{\mu}(\lambda_{n,p})$ is continuous in p,

 $\lambda_{n,0} = \delta_{e} \Rightarrow h_{\mu}(\lambda_{n,0}) = h_{\mu}(\mathbb{F}_{2}),$

 $\lim_{n\to\infty}h_{\mu}(\lambda_{n,1})=0.$

We can approximate $\lambda_{n,p}$ be choosing a periodic collection of loops of $K_n \setminus \mathbb{F}_2$ and then taking the universal cover of the 2-complex,

 $h_{\mu}(\lambda_{n,p})$ is continuous in p,

$$\lambda_{n,0} = \delta_{e} \Rightarrow h_{\mu}(\lambda_{n,0}) = h_{\mu}(\mathbb{F}_{2}),$$

 $\lim_{n\to\infty}h_{\mu}(\lambda_{n,1})=0.$

We can approximate $\lambda_{n,p}$ be choosing a periodic collection of loops of $K_n \setminus \mathbb{F}_2$ and then taking the universal cover of the 2-complex, which gives a Schreier coset graph for a group with only finitely many conjugates.

 $h_{\mu}(\lambda_{n,p})$ is continuous in p,

$$\lambda_{n,0} = \delta_{e} \Rightarrow h_{\mu}(\lambda_{n,0}) = h_{\mu}(\mathbb{F}_{2}),$$

 $\lim_{n\to\infty}h_{\mu}(\lambda_{n,1})=0.$

We can approximate $\lambda_{n,p}$ be choosing a periodic collection of loops of $K_n \setminus \mathbb{F}_2$ and then taking the universal cover of the 2-complex, which gives a Schreier coset graph for a group with only finitely many conjugates. Its normal core has entropy approximating $\lambda_{n,p}$.

Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank \geq 2 and K < G is an ergodic IRS then either K is a lattice a.s. or K = {e}.

Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and K < G is an ergodic IRS then either K is a lattice a.s. or $K = \{e\}$.

Theorem (Vershik, 2010)

There is a nice classification of IRS's of $S_{\infty} = \cup_n S_n$.

Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and K < G is an ergodic IRS then either K is a lattice a.s. or $K = \{e\}$.

Theorem (Vershik, 2010)

There is a nice classification of IRS's of $S_{\infty} = \cup_n S_n$.

Theorem (Bader-Shalom, 2006)

If G_1 , G_2 are just non-compact infinite property (T) groups then every ergodic IRS $K < G_1 \times G_2$ either splits as a product $K = H_1 \times H_2$ or K is a lattice subgroup a.s.

What sort of simplex is M(G)?

A simplex Σ is

- *Poulsen* if $\partial_e \Sigma$ is dense in Σ ;
- **Bauer** if $\partial_e \Sigma$ is closed in Σ .

What sort of simplex is M(G)?

A simplex Σ is

- *Poulsen* if $\partial_e \Sigma$ is dense in Σ ;
- **Bauer** if $\partial_e \Sigma$ is closed in Σ .

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978) There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_e \Sigma \cong L^2$. What sort of simplex is M(G)?

A simplex Σ is

- *Poulsen* if $\partial_e \Sigma$ is dense in Σ ;
- **Bauer** if $\partial_e \Sigma$ is closed in Σ .

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978) There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_e \Sigma \cong L^2$.

There are uncountably many nonisomorphic Bauer simplices.

 $M(\mathbb{F}_r)$ is neither.

 $M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.

 $M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.

 $M_{fi}(\mathbb{F}_r)$ is countable and each $\mu \in M_{fi}(\mathbb{F}_r)$ is isolated in $M_e(\mathbb{F}_r)$.

 $M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.

 $M_{fi}(\mathbb{F}_r)$ is countable and each $\mu \in M_{fi}(\mathbb{F}_r)$ is isolated in $M_e(\mathbb{F}_r)$.

Let $M_{ie}(\mathbb{F}_r) := M_e(\mathbb{F}_r) \setminus M_{fi}(\mathbb{F}_r)$ and $M_i(\mathbb{F}_r) = \overline{\operatorname{Hull}(M_{ie}(\mathbb{F}_r))}$.

 $M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.

 $M_{fi}(\mathbb{F}_r)$ is countable and each $\mu \in M_{fi}(\mathbb{F}_r)$ is isolated in $M_e(\mathbb{F}_r)$.

Let $M_{ie}(\mathbb{F}_r) := M_e(\mathbb{F}_r) \setminus M_{fi}(\mathbb{F}_r)$ and $M_i(\mathbb{F}_r) = \overline{\operatorname{Hull}(M_{ie}(\mathbb{F}_r))}$.

Theorem

 $M_i(\mathbb{F}_r)$ is a Poulsen simplex. So $M_{ie}(\mathbb{F}_r) \cong L^2$.

Surgery

Given two Schreier coset graphs $K_1 \setminus \mathbb{F}_r$, $K_2 \setminus \mathbb{F}_r$, we can connect them together by replacing a vertex of each with 2 vertices and adding some edges.

Ergodic measures are dense

Let $\eta \in M_i(\mathbb{F}_r)$.

For $p \in (0, 1)$ we will construct $\eta_p \in M_{ie}(\mathbb{F}_r)$ such that $\lim_{p \to 0} \eta_p = \eta$.

Let $K < \mathbb{F}_r$ be random with law η .

Color each vertex of $K \setminus \mathbb{F}_r$ red with prob. *p* independently.

At a red vertex, choose a random subgroup $L < \mathbb{F}_r$ with law η independent of K and attach its Schreier coset graph by surgery to $K \setminus \mathbb{F}_r$.

At a red vertex, choose a random subgroup $J < \mathbb{F}_r$ with law η independent of K and other subgroups and attach its Schreier coset graph by surgery to $K \setminus \mathbb{F}_r$.

Lewis Bowen (Texas A&M)

Building an ergodic approximation

Building an ergodic approximation

This is the Schreier coset graph of a random subgroup $K < \mathbb{F}_2$. Let η_p be the law of this subgroup. Show: η_p is ergodic and $\lim_{p\to 0} \eta_p = \eta$.

Further results and questions

• (Abert-Glasner-Weiss) If K < G is an ergodic IRS then $\rho(K \setminus G) = \rho(G) \Leftrightarrow K$ is amenable a.s.

Further results and questions

- (Abert-Glasner-Weiss) If K < G is an ergodic IRS then $\rho(K \setminus G) = \rho(G) \Leftrightarrow K$ is amenable a.s.
- (B.) Any ergodic aperiodic probability-measure-preserving equivalence relation (X, μ, E) with cost(E) < r is isomorphic to (Sub(F_r), λ, E_{F_r}) for some λ ∈ M(F_r).

Further results and questions

- (Abert-Glasner-Weiss) If K < G is an ergodic IRS then $\rho(K \setminus G) = \rho(G) \Leftrightarrow K$ is amenable a.s.
- (B.) Any ergodic aperiodic probability-measure-preserving equivalence relation (X, μ, E) with cost(E) < r is isomorphic to (Sub(F_r), λ, E_{F_r}) for some λ ∈ M(F_r).
- (Bartholdi-Grigorchuk) There is a finitely generated group *G* with an ergodic IRS *K* so that the Schreier coset graph $K \setminus G$ has polynomial growth of irrational degree almost surely.