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Set-up

G : a locally compact group.

Sub(G) : the space of closed subgroups.

G acts on Sub(G) by conjugation. g · H := gHg−1.

M(G) : space of G-invariant Borel probability measures on Sub(G).

An invariant random subgroup (IRS) is a random subgroup H < G with
law in M(G).

Lewis Bowen (Texas A&M) Invariant Random Subgroups 2 / 29



Set-up

G : a locally compact group.

Sub(G) : the space of closed subgroups.

G acts on Sub(G) by conjugation. g · H := gHg−1.

M(G) : space of G-invariant Borel probability measures on Sub(G).

An invariant random subgroup (IRS) is a random subgroup H < G with
law in M(G).

Lewis Bowen (Texas A&M) Invariant Random Subgroups 2 / 29



Set-up

G : a locally compact group.

Sub(G) : the space of closed subgroups.

G acts on Sub(G) by conjugation. g · H := gHg−1.

M(G) : space of G-invariant Borel probability measures on Sub(G).

An invariant random subgroup (IRS) is a random subgroup H < G with
law in M(G).

Lewis Bowen (Texas A&M) Invariant Random Subgroups 2 / 29



Set-up

G : a locally compact group.

Sub(G) : the space of closed subgroups.

G acts on Sub(G) by conjugation. g · H := gHg−1.

M(G) : space of G-invariant Borel probability measures on Sub(G).

An invariant random subgroup (IRS) is a random subgroup H < G with
law in M(G).

Lewis Bowen (Texas A&M) Invariant Random Subgroups 2 / 29



Set-up

G : a locally compact group.

Sub(G) : the space of closed subgroups.

G acts on Sub(G) by conjugation. g · H := gHg−1.

M(G) : space of G-invariant Borel probability measures on Sub(G).

An invariant random subgroup (IRS) is a random subgroup H < G with
law in M(G).

Lewis Bowen (Texas A&M) Invariant Random Subgroups 2 / 29



Examples

N C G⇒ δN ∈ M(G).

If N < G has only finitely many conjugates⇒ uniform prob. meas.
on the conjugates of N is in M(G).

Let Γ < G be a lattice. ∃ a G-invariant prob. meas. λ on G/Γ.

Define Φ : G/Γ→ Sub(G) by Φ(gΓ) := gΓg−1.

Then Φ∗λ := µΓ ∈ M(G).

Let Gy(X , µ) be a probability-measure-preserving Borel action.

Stab : X → Sub(G), Stab(x) := {g ∈ G : gx = x}.

Stab is G-equivariant⇒ Stab∗µ ∈ M(G).

(Abert-Glasner-Virag)⇒ every measure in M(G) arises this way.
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M(G) is a simplex

Definition
A convex closed metrizable subset K of a locally convex linear space
is a simplex if each point in K is the barycenter of a unique probability
measure supported on the subset ∂eK of extreme points of K .

If µ1, µ2 ∈ M(G) and t ∈ [0,1] then tµ1 + (1− t)µ2 ∈ M(G).
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Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe M(G).

Remark 1. M(G) is compact in the weak* topology. So it can be
viewed as a compactification of the set of lattice subgroups.

Remark 2. If K is an IRS then K\G can be thought of as something
like a group. Although it need not be homogeneous, it possesses
“statistical homogeneity”.
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Higher rank simple Lie groups

Theorem (Stuck-Zimmer, 1994)
If G is a simple Lie group of real rank ≥ 2 and K < G is an ergodic IRS
then either K is a lattice a.s. or K = {e}.

Let X = G/K . An X -manifold M is a manifold locally modeled on X
(i.e., M = X/Γ for some lattice Γ < G).
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Higher rank simple Lie groups

Theorem
(Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet)
If G is as above, and Mi is a sequence of X-manifolds such that

lim
i→∞

vol(Mi) = +∞, lim inf
i→∞

injrad(Mi) > 0

⇒ ∀k , lim
i→∞

bk (Mi)

vol(Mi)
= βk (X ).

Sketch.
Let Mi = X/Γi . By Stuck-Zimmer, µΓi converges in M(G) to δe. Show
that L2-betti numbers vary continuously on M(G) using a generalized
version of Lück approximation.
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Random walks

Let G = 〈a,b|R〉 be a 2-generator group,

µ = uniform prob. meas. on {a,b,a−1,b−1},

{Xi}∞i=1 = i.i.d. random variables with law µ,

Zn = X1 · · ·Xn.

{Zn} is the simple random walk on G with µ-increments.
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Entropy
Let µn be the law of Zn,

H(µn) := −
∑
g∈G

µ({g}) logµ({g});

hµ(G) := lim
n→∞

1
n

H(µn).

0 ≤ hµ(G) ≤ hµ(F2).

Problem
What are all possible values of hµ(G) as G varies over all 2-generator
groups?
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Random walk entropy

This problem is related to the structure theory of stationary actions
and Furstenberg entropy.

Theorem

{hµ(G) : G a 2-generator group}

is dense in [0,hµ(F2)].
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Random walks on random coset spaces

For K < F2, consider the random walk {KZn}∞n=1 on K\F2.

Let µn
K ({Kg}) = Prob (KZn = Kg),

hµ(λ) := lim
n→∞

1
n

∫
H(µn

K ) dλ(K ).
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Random walk entropy

Theorem
There exists a path-connected subspace N ⊂ Me(F2) on which the
map λ ∈ N 7→ hµ(λ) is continuous and surjects onto [0,hµ(F2)].

Theorem
The finitely-supported measures in N are dense and these correspond
to normal subgroups of F2. Therefore,

{hµ(G) : G a 2-generator group}

is dense in [0,hµ(F2)].
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Let Kn < F2 be the group generated by all elements of the form ghg−1

where g ∈ 〈an,bn〉 and either h = akbr a−k for some 1 ≤ |k | ≤ n − 1
and r ∈ Z or h = bkar b−k for some 1 ≤ |k | ≤ n − 1 and r ∈ Z.
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A covering construction

Choose 0 ≤ p ≤ 1 and choose each loop of Kn\F2 with probability p
independently.

Consider the resulting 2-complex. Take its universal
cover. This is the Schreier coset graph of an IRS with law λn,p.
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A covering construction

hµ(λn,p) is continuous in p,

λn,0 = δe ⇒ hµ(λn,0) = hµ(F2),

limn→∞ hµ(λn,1) = 0.

We can approximate λn,p be choosing a periodic collection of loops of
Kn\F2 and then taking the universal cover of the 2-complex, which
gives a Schreier coset graph for a group with only finitely many
conjugates. Its normal core has entropy approximating λn,p.
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Classification Results

Theorem (Stuck-Zimmer, 1994)
If G is a simple Lie group of real rank ≥ 2 and K < G is an ergodic IRS
then either K is a lattice a.s. or K = {e}.

Theorem (Vershik, 2010)
There is a nice classification of IRS’s of S∞ = ∪nSn.

Theorem (Bader-Shalom, 2006)
If G1,G2 are just non-compact infinite property (T) groups then every
ergodic IRS K < G1 ×G2 either splits as a product K = H1 × H2 or K
is a lattice subgroup a.s.
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What sort of simplex is M(G)?

A simplex Σ is
Poulsen if ∂eΣ is dense in Σ;
Bauer if ∂eΣ is closed in Σ.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)
There is a unique Poulsen simplex Σ up to affine isomorphism.
Moreover, ∂eΣ ∼= L2.

There are uncountably many nonisomorphic Bauer simplices.
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Simplices

M(Fr ) is neither.

Let Mfi(Fr ) ⊂ Me(Fr ) be those measures coming from finite-index
subgroups.

Mfi(Fr ) is countable and each µ ∈ Mfi(Fr ) is isolated in Me(Fr ).

Let Mie(Fr ) := Me(Fr ) \Mfi(Fr ) and Mi(Fr ) = Hull(Mie(Fr )).

Theorem
Mi(Fr ) is a Poulsen simplex. So Mie(Fr ) ∼= L2.
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Surgery

Given two Schreier coset graphs K1\Fr ,K2\Fr , we can connect them
together by replacing a vertex of each with 2 vertices and adding some
edges.
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Ergodic measures are dense

Let η ∈ Mi(Fr ).

For p ∈ (0,1) we will construct ηp ∈ Mie(Fr ) such that limp→0 ηp = η.
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Building an ergodic approximation

Let K < Fr be random with law η.
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Building an ergodic approximation

Color each vertex of K\Fr red with prob. p independently.
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Building an ergodic approximation

At a red vertex, choose a random subgroup L < Fr with law η
independent of K and attach its Schreier coset graph by surgery to
K\Fr .
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Building an ergodic approximation

At a red vertex, choose a random subgroup J < Fr with law η
independent of K and other subgroups and attach its Schreier coset
graph by surgery to K\Fr .
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Building an ergodic approximation
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Building an ergodic approximation
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Building an ergodic approximation
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Building an ergodic approximation

This is the Schreier coset graph of a random subgroup K < F2. Let ηp
be the law of this subgroup. Show: ηp is ergodic and limp→0 ηp = η.
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Further results and questions

(Abert-Glasner-Weiss) If K < G is an ergodic IRS then
ρ(K\G) = ρ(G)⇔ K is amenable a.s.

(B.) Any ergodic aperiodic probability-measure-preserving
equivalence relation (X , µ,E) with cost(E) < r is isomorphic to
(Sub(Fr ), λ,EFr ) for some λ ∈ M(Fr ).

(Bartholdi-Grigorchuk) There is a finitely generated group G with
an ergodic IRS K so that the Schreier coset graph K\G has
polynomial growth of irrational degree almost surely.
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