Invariant Random Subgroups

Lewis Bowen

Group Theory International Webinar

May 2012

Set-up

G : a locally compact group.

Set-up

G : a locally compact group.
$\operatorname{Sub}(G)$: the space of closed subgroups.

Set-up

G : a locally compact group.
$\operatorname{Sub}(G)$: the space of closed subgroups.
G acts on $\operatorname{Sub}(G)$ by conjugation. $g \cdot H:=g \mathrm{Hg}^{-1}$.

Set-up

G : a locally compact group.
$\operatorname{Sub}(G)$: the space of closed subgroups.
G acts on $\operatorname{Sub}(G)$ by conjugation. $g \cdot H:=g H^{-1}$.
$M(G)$: space of G-invariant Borel probability measures on $\operatorname{Sub}(G)$.

Set-up

G : a locally compact group.
$\operatorname{Sub}(G)$: the space of closed subgroups.
G acts on $\operatorname{Sub}(G)$ by conjugation. $g \cdot H:=g H^{-1}$.
$M(G)$: space of G-invariant Borel probability measures on $\operatorname{Sub}(G)$.

An invariant random subgroup (IRS) is a random subgroup $H<G$ with law in $M(G)$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Define $\Phi: G / \Gamma \rightarrow \operatorname{Sub}(G)$ by $\Phi(g \Gamma):=g \Gamma g^{-1}$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Define $\Phi: G / \Gamma \rightarrow \operatorname{Sub}(G)$ by $\Phi(g \Gamma):=g\left\ulcorner g^{-1}\right.$.
Then $\Phi_{*} \lambda:=\mu_{\Gamma} \in M(G)$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Define $\Phi: G / \Gamma \rightarrow \operatorname{Sub}(G)$ by $\Phi(g \Gamma):=g\left\ulcorner g^{-1}\right.$.
Then $\Phi_{*} \lambda:=\mu_{\Gamma} \in M(G)$.

- Let $G \curvearrowright(X, \mu)$ be a probability-measure-preserving Borel action.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Define $\Phi: G / \Gamma \rightarrow \operatorname{Sub}(G)$ by $\Phi(g \Gamma):=g\left\ulcorner g^{-1}\right.$.
Then $\Phi_{*} \lambda:=\mu_{\Gamma} \in M(G)$.

- Let $G \curvearrowright(X, \mu)$ be a probability-measure-preserving Borel action.
$\operatorname{Stab}: X \rightarrow \operatorname{Sub}(G), \operatorname{Stab}(x):=\{g \in G: g x=x\}$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Define $\Phi: G / \Gamma \rightarrow \operatorname{Sub}(G)$ by $\Phi(g \Gamma):=g\left\ulcorner g^{-1}\right.$.
Then $\Phi_{*} \lambda:=\mu_{\Gamma} \in M(G)$.

- Let $G \curvearrowright(X, \mu)$ be a probability-measure-preserving Borel action.
$\operatorname{Stab}: X \rightarrow \operatorname{Sub}(G), \operatorname{Stab}(x):=\{g \in G: g x=x\}$.
Stab is G-equivariant $\Rightarrow \operatorname{Stab}_{*} \mu \in M(G)$.

Examples

- $N \triangleleft G \Rightarrow \delta_{N} \in M(G)$.
- If $N<G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
- Let $\Gamma<G$ be a lattice. \exists a G-invariant prob. meas. λ on G / Γ.

Define $\Phi: G / \Gamma \rightarrow \operatorname{Sub}(G)$ by $\Phi(g \Gamma):=g\left\ulcorner g^{-1}\right.$.
Then $\Phi_{*} \lambda:=\mu_{\Gamma} \in M(G)$.

- Let $G \curvearrowright(X, \mu)$ be a probability-measure-preserving Borel action. $\operatorname{Stab}: X \rightarrow \operatorname{Sub}(G), \operatorname{Stab}(x):=\{g \in G: g x=x\}$. Stab is G-equivariant $\Rightarrow \operatorname{Stab}_{*} \mu \in M(G)$.
(Abert-Glasner-Virag) \Rightarrow every measure in $M(G)$ arises this way.

$M(G)$ is a simplex

Definition

A convex closed metrizable subset K of a locally convex linear space is a simplex if each point in K is the barycenter of a unique probability measure supported on the subset $\partial_{e} K$ of extreme points of K.

$M(G)$ is a simplex

Definition

A convex closed metrizable subset K of a locally convex linear space is a simplex if each point in K is the barycenter of a unique probability measure supported on the subset $\partial_{e} K$ of extreme points of K.

If $\mu_{1}, \mu_{2} \in M(G)$ and $t \in[0,1]$ then $t \mu_{1}+(1-t) \mu_{2} \in M(G)$.

Research directions in IRS's

Problem: classify the ergodic IRS's of a given group or describe $M(G)$.

Research directions in IRS's

Problem: classify the ergodic IRS's of a given group or describe $M(G)$.

Remark 1. $M(G)$ is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.

Research directions in IRS's

Problem: classify the ergodic IRS's of a given group or describe $M(G)$.

Remark 1. $M(G)$ is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.

Remark 2. If K is an IRS then $K \backslash G$ can be thought of as something like a group. Although it need not be homogeneous, it possesses "statistical homogeneity".

Higher rank simple Lie groups

Theorem (Stuck-Zimmer, 1994)
If G is a simple Lie group of real rank ≥ 2 and $K<G$ is an ergodic IRS then either K is a lattice a.s. or $K=\{e\}$.

Higher rank simple Lie groups

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and $K<G$ is an ergodic IRS then either K is a lattice a.s. or $K=\{e\}$.

Let $X=G / K$. An X-manifold M is a manifold locally modeled on X (i.e., $M=X / \Gamma$ for some lattice $\Gamma<G$).

Higher rank simple Lie groups

Theorem

(Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet) If G is as above, and M_{i} is a sequence of X-manifolds such that

$$
\begin{gathered}
\lim _{i \rightarrow \infty} \operatorname{vol}\left(M_{i}\right)=+\infty, \quad \liminf _{i \rightarrow \infty} \operatorname{injrad}\left(M_{i}\right)>0 \\
\Rightarrow \forall k, \quad \lim _{i \rightarrow \infty} \frac{b_{k}\left(M_{i}\right)}{\operatorname{vol}\left(M_{i}\right)}=\beta_{k}(X) .
\end{gathered}
$$

Higher rank simple Lie groups

Theorem

(Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet) If G is as above, and M_{i} is a sequence of X-manifolds such that

$$
\begin{gathered}
\lim _{i \rightarrow \infty} \operatorname{vol}\left(M_{i}\right)=+\infty, \quad \liminf _{i \rightarrow \infty} \operatorname{injrad}\left(M_{i}\right)>0 \\
\Rightarrow \forall k, \quad \lim _{i \rightarrow \infty} \frac{b_{k}\left(M_{i}\right)}{\operatorname{vol}\left(M_{i}\right)}=\beta_{k}(X) .
\end{gathered}
$$

Sketch.

Let $M_{i}=X / \Gamma_{i}$. By Stuck-Zimmer, $\mu_{\Gamma_{i}}$ converges in $M(G)$ to δ_{e}. Show that L^{2}-betti numbers vary continuously on $M(G)$ using a generalized version of Lück approximation.

Random walks

Let $G=\langle a, b \mid R\rangle$ be a 2-generator group,

Random walks

Let $G=\langle a, b \mid R\rangle$ be a 2-generator group,
$\mu=$ uniform prob. meas. on $\left\{a, b, a^{-1}, b^{-1}\right\}$,

Random walks

Let $G=\langle a, b \mid R\rangle$ be a 2-generator group,
$\mu=$ uniform prob. meas. on $\left\{a, b, a^{-1}, b^{-1}\right\}$,
$\left\{X_{i}\right\}_{i=1}^{\infty}=$ i.i.d. random variables with law μ,

Random walks

Let $G=\langle a, b \mid R\rangle$ be a 2-generator group,
$\mu=$ uniform prob. meas. on $\left\{a, b, a^{-1}, b^{-1}\right\}$,
$\left\{X_{i}\right\}_{i=1}^{\infty}=$ i.i.d. random variables with law μ,
$Z_{n}=X_{1} \cdots X_{n}$.

Random walks

Let $G=\langle a, b \mid R\rangle$ be a 2-generator group,
$\mu=$ uniform prob. meas. on $\left\{a, b, a^{-1}, b^{-1}\right\}$,
$\left\{X_{i}\right\}_{i=1}^{\infty}=$ i.i.d. random variables with law μ,
$Z_{n}=X_{1} \ldots X_{n}$.
$\left\{Z_{n}\right\}$ is the simple random walk on G with μ-increments.

Entropy

Let μ^{n} be the law of Z_{n},

Entropy

Let μ^{n} be the law of Z_{n},

$$
H\left(\mu^{n}\right):=-\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\}) ;
$$

Entropy

Let μ^{n} be the law of Z_{n},

$$
\begin{gathered}
H\left(\mu^{n}\right):=-\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\}) ; \\
h_{\mu}(G):=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\mu^{n}\right) .
\end{gathered}
$$

Entropy

Let μ^{n} be the law of Z_{n},

$$
\begin{gathered}
H\left(\mu^{n}\right):=-\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\}) \\
h_{\mu}(G):=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\mu^{n}\right) \\
0 \leq h_{\mu}(G) \leq h_{\mu}\left(\mathbb{F}_{2}\right)
\end{gathered}
$$

Entropy

Let μ^{n} be the law of Z_{n},

$$
\begin{gathered}
H\left(\mu^{n}\right):=-\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\}) \\
h_{\mu}(G):=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\mu^{n}\right) \\
0 \leq h_{\mu}(G) \leq h_{\mu}\left(\mathbb{F}_{2}\right)
\end{gathered}
$$

Problem

What are all possible values of $h_{\mu}(G)$ as G varies over all 2-generator groups?

Random walk entropy

- This problem is related to the structure theory of stationary actions and Furstenberg entropy.

Random walk entropy

- This problem is related to the structure theory of stationary actions and Furstenberg entropy.

Theorem

$$
\left\{h_{\mu}(G): G \text { a-generator group }\right\}
$$

is dense in $\left[0, h_{\mu}\left(\mathbb{F}_{2}\right)\right]$.

Random walks on random coset spaces

For $K<\mathbb{F}_{2}$, consider the random walk $\left\{K Z_{n}\right\}_{n=1}^{\infty}$ on $K \backslash \mathbb{F}_{2}$.

Random walks on random coset spaces

For $K<\mathbb{F}_{2}$, consider the random walk $\left\{K Z_{n}\right\}_{n=1}^{\infty}$ on $K \backslash \mathbb{F}_{2}$.

Let $\mu_{K}^{n}(\{K g\})=\operatorname{Prob}\left(K Z_{n}=K g\right)$,

Random walks on random coset spaces

For $K<\mathbb{F}_{2}$, consider the random walk $\left\{K Z_{n}\right\}_{n=1}^{\infty}$ on $K \backslash \mathbb{F}_{2}$.

Let $\mu_{K}^{n}(\{K g\})=\operatorname{Prob}\left(K Z_{n}=K g\right)$,

$$
h_{\mu}(\lambda):=\lim _{n \rightarrow \infty} \frac{1}{n} \int H\left(\mu_{K}^{n}\right) d \lambda(K) .
$$

Random walk entropy

Theorem

There exists a path-connected subspace $\mathcal{N} \subset M_{e}\left(\mathbb{F}_{2}\right)$ on which the $\operatorname{map} \lambda \in \mathcal{N} \mapsto h_{\mu}(\lambda)$ is continuous and surjects onto $\left[0, h_{\mu}\left(\mathbb{F}_{2}\right)\right]$.

Random walk entropy

Theorem

There exists a path-connected subspace $\mathcal{N} \subset M_{e}\left(\mathbb{F}_{2}\right)$ on which the map $\lambda \in \mathcal{N} \mapsto h_{\mu}(\lambda)$ is continuous and surjects onto $\left[0, h_{\mu}\left(\mathbb{F}_{2}\right)\right]$.

Theorem

The finitely-supported measures in \mathcal{N} are dense and these correspond to normal subgroups of \mathbb{F}_{2}. Therefore,

$$
\left\{h_{\mu}(G): \text { G a 2-generator group }\right\}
$$

is dense in $\left[0, h_{\mu}\left(\mathbb{F}_{2}\right)\right]$.

Let $K_{n}<\mathbb{F}_{2}$ be the group generated by all elements of the form ghg^{-1} where $g \in\left\langle a^{n}, b^{n}\right\rangle$ and either $h=a^{k} b^{r} a^{-k}$ for some $1 \leq|k| \leq n-1$ and $r \in \mathbb{Z}$ or $h=b^{k} a^{r} b^{-k}$ for some $1 \leq|k| \leq n-1$ and $r \in \mathbb{Z}$.

A covering construction

Choose $0 \leq p \leq 1$ and choose each loop of $K_{n} \backslash \mathbb{F}_{2}$ with probability p independently.

A covering construction

Choose $0 \leq p \leq 1$ and choose each loop of $K_{n} \backslash \mathbb{F}_{2}$ with probability p independently. Consider the resulting 2 -complex.

A covering construction

Choose $0 \leq p \leq 1$ and choose each loop of $K_{n} \backslash \mathbb{F}_{2}$ with probability p independently. Consider the resulting 2-complex. Take its universal cover.

A covering construction

Choose $0 \leq p \leq 1$ and choose each loop of $K_{n} \backslash \mathbb{F}_{2}$ with probability p independently. Consider the resulting 2-complex. Take its universal cover. This is the Schreier coset graph of an IRS with law $\lambda_{n, p}$.

A covering construction

$h_{\mu}\left(\lambda_{n, p}\right)$ is continuous in p,

A covering construction

$h_{\mu}\left(\lambda_{n, p}\right)$ is continuous in p,

$$
\lambda_{n, 0}=\delta_{e} \Rightarrow h_{\mu}\left(\lambda_{n, 0}\right)=h_{\mu}\left(\mathbb{F}_{2}\right)
$$

A covering construction

$h_{\mu}\left(\lambda_{n, p}\right)$ is continuous in p,

$$
\lambda_{n, 0}=\delta_{e} \Rightarrow h_{\mu}\left(\lambda_{n, 0}\right)=h_{\mu}\left(\mathbb{F}_{2}\right),
$$

$\lim _{n \rightarrow \infty} h_{\mu}\left(\lambda_{n, 1}\right)=0$.

A covering construction

$h_{\mu}\left(\lambda_{n, p}\right)$ is continuous in p,
$\lambda_{n, 0}=\delta_{e} \Rightarrow h_{\mu}\left(\lambda_{n, 0}\right)=h_{\mu}\left(\mathbb{F}_{2}\right)$,
$\lim _{n \rightarrow \infty} h_{\mu}\left(\lambda_{n, 1}\right)=0$.

We can approximate $\lambda_{n, p}$ be choosing a periodic collection of loops of $K_{n} \backslash \mathbb{F}_{2}$ and then taking the universal cover of the 2-complex,

A covering construction

$h_{\mu}\left(\lambda_{n, p}\right)$ is continuous in p,
$\lambda_{n, 0}=\delta_{e} \Rightarrow h_{\mu}\left(\lambda_{n, 0}\right)=h_{\mu}\left(\mathbb{F}_{2}\right)$,
$\lim _{n \rightarrow \infty} h_{\mu}\left(\lambda_{n, 1}\right)=0$.

We can approximate $\lambda_{n, p}$ be choosing a periodic collection of loops of $K_{n} \backslash \mathbb{F}_{2}$ and then taking the universal cover of the 2-complex, which gives a Schreier coset graph for a group with only finitely many conjugates.

A covering construction

$h_{\mu}\left(\lambda_{n, p}\right)$ is continuous in p,
$\lambda_{n, 0}=\delta_{e} \Rightarrow h_{\mu}\left(\lambda_{n, 0}\right)=h_{\mu}\left(\mathbb{F}_{2}\right)$,
$\lim _{n \rightarrow \infty} h_{\mu}\left(\lambda_{n, 1}\right)=0$.

We can approximate $\lambda_{n, p}$ be choosing a periodic collection of loops of $K_{n} \backslash \mathbb{F}_{2}$ and then taking the universal cover of the 2-complex, which gives a Schreier coset graph for a group with only finitely many conjugates. Its normal core has entropy approximating $\lambda_{n, p}$.

Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and $K<G$ is an ergodic IRS then either K is a lattice a.s. or $K=\{e\}$.

Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and $K<G$ is an ergodic IRS then either K is a lattice a.s. or $K=\{e\}$.

Theorem (Vershik, 2010)
There is a nice classification of IRS's of $S_{\infty}=\cup_{n} S_{n}$.

Classification Results

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and $K<G$ is an ergodic IRS then either K is a lattice a.s. or $K=\{e\}$.

Theorem (Vershik, 2010)

There is a nice classification of IRS's of $S_{\infty}=\cup_{n} S_{n}$.

Theorem (Bader-Shalom, 2006)
If G_{1}, G_{2} are just non-compact infinite property (T) groups then every ergodic IRS $K<G_{1} \times G_{2}$ either splits as a product $K=H_{1} \times H_{2}$ or K is a lattice subgroup a.s.

What sort of simplex is $M(G)$?

A simplex Σ is

- Poulsen if $\partial_{e} \Sigma$ is dense in Σ;
- Bauer if $\partial_{e} \Sigma$ is closed in Σ.

What sort of simplex is $M(G)$?

A simplex Σ is

- Poulsen if $\partial_{e} \Sigma$ is dense in Σ;
- Bauer if $\partial_{e} \Sigma$ is closed in Σ.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)

There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_{e} \Sigma \cong L^{2}$.

What sort of simplex is $M(G)$?

A simplex Σ is

- Poulsen if $\partial_{e} \Sigma$ is dense in Σ;
- Bauer if $\partial_{e} \Sigma$ is closed in Σ.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)
There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_{e} \Sigma \cong L^{2}$.

There are uncountably many nonisomorphic Bauer simplices.

Simplices

$M\left(\mathbb{F}_{r}\right)$ is neither.

Simplices

$M\left(\mathbb{F}_{r}\right)$ is neither.
Let $M_{f i}\left(\mathbb{F}_{r}\right) \subset M_{e}\left(\mathbb{F}_{r}\right)$ be those measures coming from finite-index subgroups.

Simplices

$M\left(\mathbb{F}_{r}\right)$ is neither.

Let $M_{f i}\left(\mathbb{F}_{r}\right) \subset M_{e}\left(\mathbb{F}_{r}\right)$ be those measures coming from finite-index subgroups.
$M_{f i}\left(\mathbb{F}_{r}\right)$ is countable and each $\mu \in M_{i i}\left(\mathbb{F}_{r}\right)$ is isolated in $M_{e}\left(\mathbb{F}_{r}\right)$.

Simplices

$M\left(\mathbb{F}_{r}\right)$ is neither.

Let $M_{f i}\left(\mathbb{F}_{r}\right) \subset M_{e}\left(\mathbb{F}_{r}\right)$ be those measures coming from finite-index subgroups.
$M_{f i}\left(\mathbb{F}_{r}\right)$ is countable and each $\mu \in M_{i i}\left(\mathbb{F}_{r}\right)$ is isolated in $M_{e}\left(\mathbb{F}_{r}\right)$.

Let $M_{i e}\left(\mathbb{F}_{r}\right):=M_{e}\left(\mathbb{F}_{r}\right) \backslash M_{f i}\left(\mathbb{F}_{r}\right)$ and $M_{i}\left(\mathbb{F}_{r}\right)=\overline{\operatorname{Hull}\left(M_{i e}\left(\mathbb{F}_{r}\right)\right)}$.

Simplices

$M\left(\mathbb{F}_{r}\right)$ is neither.

Let $M_{f i}\left(\mathbb{F}_{r}\right) \subset M_{e}\left(\mathbb{F}_{r}\right)$ be those measures coming from finite-index subgroups.
$M_{f i}\left(\mathbb{F}_{r}\right)$ is countable and each $\mu \in M_{i i}\left(\mathbb{F}_{r}\right)$ is isolated in $M_{e}\left(\mathbb{F}_{r}\right)$.

$$
\text { Let } M_{i e}\left(\mathbb{F}_{r}\right):=M_{e}\left(\mathbb{F}_{r}\right) \backslash M_{f i}\left(\mathbb{F}_{r}\right) \text { and } M_{i}\left(\mathbb{F}_{r}\right)=\overline{\operatorname{Hull}\left(M_{i e}\left(\mathbb{F}_{r}\right)\right)} \text {. }
$$

Theorem

$M_{i}\left(\mathbb{F}_{r}\right)$ is a Poulsen simplex. So $M_{i e}\left(\mathbb{F}_{r}\right) \cong L^{2}$.

Surgery

Given two Schreier coset graphs $K_{1} \backslash \mathbb{F}_{r}, K_{2} \backslash \mathbb{F}_{r}$, we can connect them together by replacing a vertex of each with 2 vertices and adding some edges.

Ergodic measures are dense

Let $\eta \in M_{i}\left(\mathbb{F}_{r}\right)$.

For $p \in(0,1)$ we will construct $\eta_{p} \in M_{i e}\left(\mathbb{F}_{r}\right)$ such that $\lim _{p \rightarrow 0} \eta_{p}=\eta$.

Building an ergodic approximation

Let $K<\mathbb{F}_{r}$ be random with law η.

Building an ergodic approximation

Color each vertex of $K \backslash \mathbb{F}_{r}$ red with prob. p independently.

Building an ergodic approximation

At a red vertex, choose a random subgroup $L<\mathbb{F}_{r}$ with law η independent of K and attach its Schreier coset graph by surgery to $K \backslash \mathbb{F}_{r}$.

Building an ergodic approximation

At a red vertex, choose a random subgroup $J<\mathbb{F}_{r}$ with law η independent of K and other subgroups and attach its Schreier coset graph by surgery to $K \backslash \mathbb{F}_{r}$.

Building an ergodic approximation

This is the Schreier coset graph of a random subgroup $K<\mathbb{F}_{2}$. Let η_{p} be the law of this subgroup. Show: η_{p} is ergodic and $\lim _{p \rightarrow 0} \eta_{p}=\eta$.

Further results and questions

- (Abert-Glasner-Weiss) If $K<G$ is an ergodic IRS then $\rho(K \backslash G)=\rho(G) \Leftrightarrow K$ is amenable a.s.

Further results and questions

- (Abert-Glasner-Weiss) If $K<G$ is an ergodic IRS then $\rho(K \backslash G)=\rho(G) \Leftrightarrow K$ is amenable a.s.
- (B.) Any ergodic aperiodic probability-measure-preserving equivalence relation (X, μ, E) with $\operatorname{cost}(E)<r$ is isomorphic to $\left(\operatorname{Sub}\left(\mathbb{F}_{r}\right), \lambda, E_{\mathbb{F}_{r}}\right)$ for some $\lambda \in M\left(\mathbb{F}_{r}\right)$.

Further results and questions

- (Abert-Glasner-Weiss) If $K<G$ is an ergodic IRS then $\rho(K \backslash G)=\rho(G) \Leftrightarrow K$ is amenable a.s.
- (B.) Any ergodic aperiodic probability-measure-preserving equivalence relation (X, μ, E) with $\operatorname{cost}(E)<r$ is isomorphic to $\left(\operatorname{Sub}\left(\mathbb{F}_{r}\right), \lambda, E_{\mathbb{F}_{r}}\right)$ for some $\lambda \in M\left(\mathbb{F}_{r}\right)$.
- (Bartholdi-Grigorchuk) There is a finitely generated group G with an ergodic IRS K so that the Schreier coset graph $K \backslash G$ has polynomial growth of irrational degree almost surely.

