Groups associated with polynomial iterations

Volodymyr Nekrashevych

April 12, 2012

V. Nekrashevych (Texas A&M)

Polynomial iterations

April 12, 2012 1 / 23

Let X be a finite set.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Let X be a finite set. Let $(a_i)_{i=1}^n$ be a sequence of elements of the symmetric group S_X .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a finite set. Let $(a_i)_{i=1}^n$ be a sequence of elements of the symmetric group S_X . Draw an oriented 2-dim CW-complex with vertices X, where we represent every cycle (x_1, x_2, \ldots, x_k) of every permutation a_i by a 2-cell.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a finite set. Let $(a_i)_{i=1}^n$ be a sequence of elements of the symmetric group S_X . Draw an oriented 2-dim CW-complex with vertices X, where we represent every cycle (x_1, x_2, \ldots, x_k) of every permutation a_i by a 2-cell. Different cells do not have common edges.

Let X be a finite set. Let $(a_i)_{i=1}^n$ be a sequence of elements of the symmetric group S_X . Draw an oriented 2-dim CW-complex with vertices X, where we represent every cycle (x_1, x_2, \ldots, x_k) of every permutation a_i by a 2-cell. Different cells do not have common edges. We call it *cycle diagram* of the sequence.

Let X be a finite set. Let $(a_i)_{i=1}^n$ be a sequence of elements of the symmetric group S_X . Draw an oriented 2-dim CW-complex with vertices X, where we represent every cycle (x_1, x_2, \ldots, x_k) of every permutation a_i by a 2-cell. Different cells do not have common edges. We call it *cycle diagram* of the sequence.

The sequence is *dendroid* if its cycle diagram is contractible.

$d = 2 \checkmark$ $d = 3 \checkmark \land \land$ $d = 4 \checkmark \checkmark \land \land \land \land$ $d = 5 \leadsto \checkmark \land \land \land \land \land \land$

V. Nekrashevych (Texas A&M)

Polynomial iterations

April 12, 2012 3 / 23

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

📃 ૧૧૯

<ロ> (日) (日) (日) (日) (日)

More generally, for any partition of a dendroid sequence the sequence $(a_{i_{1,1}} \cdots a_{i_{1,k_1}}), (a_{i_{2,1}} \cdots a_{i_{2,k_2}}), \dots, (a_{i_{m,1}} \cdots a_{i_{m,k_m}})$ is dendroid.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

More generally, for any partition of a dendroid sequence the sequence $(a_{i_{1,1}} \cdots a_{i_{1,k_1}}), (a_{i_{2,1}} \cdots a_{i_{2,k_2}}), \ldots, (a_{i_{m,1}} \cdots a_{i_{m,k_m}})$ is dendroid. Suppose that a_1, \ldots, a_n is dendroid. Let $b_i \in S_X$ be such that b_i is conjugate to a_i or a_i^{-1} in S_X , and $\langle b_1, \ldots, b_n \rangle$ is transitive.

More generally, for any partition of a dendroid sequence the sequence $(a_{i_{1,1}} \cdots a_{i_{1,k_1}}), (a_{i_{2,1}} \cdots a_{i_{2,k_2}}), \ldots, (a_{i_{m,1}} \cdots a_{i_{m,k_m}})$ is dendroid. Suppose that a_1, \ldots, a_n is dendroid. Let $b_i \in S_X$ be such that b_i is conjugate to a_i or a_i^{-1} in S_X , and $\langle b_1, \ldots, b_n \rangle$ is transitive. Then b_1, \ldots, b_n is dendroid.

Let T be a locally finite rooted tree.

Let T be a locally finite rooted tree. A set g_1, \ldots, g_n of automorphisms of T is *dendroid* if it is a dendroid set of permutations of each level of T.

Image: A math a math

Let T be a locally finite rooted tree. A set g_1, \ldots, g_n of automorphisms of T is *dendroid* if it is a dendroid set of permutations of each level of T.

The groups generated by dendroid sets of automorphisms of a rooted trees coincide with the *iterated monodromy groups of sequences of polynomials*.

Let f_i be a sequence of complex polynomials seen as a backward iteration

$$\mathbb{C} \xleftarrow{f_1} \mathbb{C} \xleftarrow{f_2} \mathbb{C} \xleftarrow{f_3} \cdots$$

Suppose that this iteration is *post-critically finite*, i.e., there exists a finite set $M \subset \mathbb{C}$ such that M contains all critical values of $f_1 \circ f_2 \circ \cdots \circ f_n$ for every n.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let f_i be a sequence of complex polynomials seen as a backward iteration

$$\mathbb{C} \xleftarrow{f_1} \mathbb{C} \xleftarrow{f_2} \mathbb{C} \xleftarrow{f_3} \cdots$$

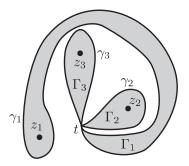
Suppose that this iteration is *post-critically finite*, i.e., there exists a finite set $M \subset \mathbb{C}$ such that M contains all critical values of $f_1 \circ f_2 \circ \cdots \circ f_n$ for every n.

Then $\pi_1(\mathbb{C} \setminus M, t)$ acts on the tree of preimages

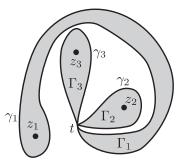
$$\bigsqcup_{n=0}^{\infty}(f_1\circ f_2\circ\cdots\circ f_n)^{-1}(t)$$

by the monodromy action.

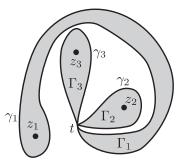
・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



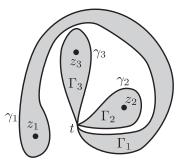
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Then this set of generators is a dendroid set of automorphisms of the tree of preimages.



Then this set of generators is a dendroid set of automorphisms of the tree of preimages. The cycle diagrams are the preimages of the shaded area under $f_1 \circ \cdots \circ f_n$.



Then this set of generators is a dendroid set of automorphisms of the tree of preimages. The cycle diagrams are the preimages of the shaded area under $f_1 \circ \cdots \circ f_n$. Every dendroid set of automorphisms of a rooted tree can be obtained this way.

V. Nekrashevych (Texas A&M)

We can take one polynomial $f_i = f(z)$, if it is *post-critically finite*.

(ロ) (部) (目) (日) (日)

We can take one polynomial $f_i = f(z)$, if it is *post-critically finite*. Examples: z^d , $z^2 - 1$, $T_d(z)$, $z^2 + i$, etc.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We can take one polynomial $f_i = f(z)$, if it is *post-critically finite*. Examples: z^d , $z^2 - 1$, $T_d(z)$, $z^2 + i$, etc.

We can take z^2 and $1 - z^2$ in any order, since their critical values are 0 and 1, and the set $\{0,1\}$ is invariant under both of them.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We can take one polynomial $f_i = f(z)$, if it is *post-critically finite*. Examples: z^d , $z^2 - 1$, $T_d(z)$, $z^2 + i$, etc.

We can take z^2 and $1 - z^2$ in any order, since their critical values are 0 and 1, and the set $\{0,1\}$ is invariant under both of them. We get in this way an uncountable set of two-generated groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What can be said about the groups generated by dendroid sets of automorphisms of a rooted tree? It follows from results of I. Benjamini, O. Shramm, A. Sharipa, and M. Abert, G. Elek that almost all connected components of the graph of

the action of such a group on the boundary of the tree are amenable.

It follows from results of I. Benjamini, O. Shramm, A. Sharipa, and M. Abert, G. Elek that almost all connected components of the graph of the action of such a group on the boundary of the tree are amenable. In particular, the group can not have property (T).

It follows from results of I. Benjamini, O. Shramm, A. Sharipa, and M. Abert, G. Elek that almost all connected components of the graph of the action of such a group on the boundary of the tree are amenable. In particular, the group can not have property (T). On the other hand, there exists a faithful action of $C_2 * C_2 * C_2 * C_2$ generated by a dendroid set of automorphisms of a rooted tree (constructed by M. Abert and G. Elek).

It follows from results of I. Benjamini, O. Shramm, A. Sharipa, and M. Abert, G. Elek that almost all connected components of the graph of the action of such a group on the boundary of the tree are amenable. In particular, the group can not have property (T). On the other hand, there exists a faithful action of $C_2 * C_2 * C_2 * C_2$

generated by a dendroid set of automorphisms of a rooted tree (constructed by M. Abert and G. Elek). The graph of the action of this group on a generic orbit on the boundary coincides with the Cayley graph.

Automata

An *automaton* over an alphabet X consists of a set of *internal states* A and a map

$\tau: A \times X \longrightarrow X \times A.$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automata

An *automaton* over an alphabet X consists of a set of *internal states* A and a map

$$\tau: A \times X \longrightarrow X \times A.$$

Given $a_1 \in A$ and a word $x_1 \dots x_n \in X^*$, we compute $\tau(a_1, x_1) = (y_1, a_2)$, then $\tau(a_2, x_2) = (y_2, a_3), \dots, \tau(a_n, x_n) = (y_n, a_{n+1})$.

Automata

An *automaton* over an alphabet X consists of a set of *internal states* A and a map

$$\tau: A \times X \longrightarrow X \times A.$$

Given $a_1 \in A$ and a word $x_1 \dots x_n \in X^*$, we compute $\tau(a_1, x_1) = (y_1, a_2)$, then $\tau(a_2, x_2) = (y_2, a_3), \dots, \tau(a_n, x_n) = (y_n, a_{n+1})$. The obtained word $y_1y_2 \dots y_n$ is the *image* of $x_1x_2 \dots x_n$ under the action of a_1 .

A generalization

Consider an automaton over an alphabet X given by its *input set* A_1 , *output set* A_2 and a map

$$\tau: A_1 \times X \longrightarrow X \times A_2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A generalization

Consider an automaton over an alphabet X given by its *input set* A_1 , *output set* A_2 and a map

$$\tau: A_1 \times X \longrightarrow X \times A_2.$$

An automaton is a group automaton if for every $a \in A_1$ the transformation mapping x to the first coordinate of $\tau(a, x)$ is a permutation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let A_1 and A_2 be automata over alphabets X_1 and X_2 , respectively;

3

Let A_1 and A_2 be automata over alphabets X_1 and X_2 , respectively; with input sets A_1 and A_2 , and output sets A_2 and A_3 , respectively.

3

Let A_1 and A_2 be automata over alphabets X_1 and X_2 , respectively; with input sets A_1 and A_2 , and output sets A_2 and A_3 , respectively. Then their product $A_2 \otimes A_1$ is an automaton over $X_1 \times X_2$ with input set A_1 , output set A_3 , defined by successive application of the automata A_2 and A_1 :

Let A_1 and A_2 be automata over alphabets X_1 and X_2 , respectively; with input sets A_1 and A_2 , and output sets A_2 and A_3 , respectively. Then their product $A_2 \otimes A_1$ is an automaton over $X_1 \times X_2$ with input set A_1 , output set A_3 , defined by successive application of the automata A_2 and A_1 :

$$\tau(a_1, x_1x_2) = (y_1y_2, a_3),$$

where

$$(y_1, a_2) = \tau(a_1, x_1), \qquad (y_2, a_3) = \tau(a_2, x_2).$$

Suppose we have a sequence of automata $\mathcal{A}_1, \mathcal{A}_2, \ldots$ over alphabets X_1, X_2, \ldots

Suppose we have a sequence of automata A_1, A_2, \ldots over alphabets X_1, X_2, \ldots Suppose that the input and output sets of A_i are A_i and A_{i+1} .

Suppose we have a sequence of automata $\mathcal{A}_1, \mathcal{A}_2, \ldots$ over alphabets X_1, X_2, \ldots Suppose that the input and output sets of \mathcal{A}_i are \mathcal{A}_i and \mathcal{A}_{i+1} . Then $\mathcal{A}_n \otimes \cdots \otimes \mathcal{A}_1$ is an automaton over $X_1 \times X_2 \times \cdots \times X_n$, and \mathcal{A}_1 hence acts on each of these sets.

Suppose we have a sequence of automata $\mathcal{A}_1, \mathcal{A}_2, \ldots$ over alphabets X_1, X_2, \ldots . Suppose that the input and output sets of \mathcal{A}_i are \mathcal{A}_i and \mathcal{A}_{i+1} . Then $\mathcal{A}_n \otimes \cdots \otimes \mathcal{A}_1$ is an automaton over $X_1 \times X_2 \times \cdots \times X_n$, and \mathcal{A}_1 hence acts on each of these sets. It acts by automorphism of the naturally defined rooted tree $\bigsqcup_{n=0}^{\infty} X_1 \times \cdots \times X_n$,

Suppose we have a sequence of automata A_1, A_2, \ldots over alphabets X_1, X_2, \ldots . Suppose that the input and output sets of A_i are A_i and A_{i+1} . Then $A_n \otimes \cdots \otimes A_1$ is an automaton over $X_1 \times X_2 \times \cdots \times X_n$, and A_1 hence acts on each of these sets. It acts by automorphism of the naturally defined rooted tree $\bigsqcup_{n=0}^{\infty} X_1 \times \cdots \times X_n$, where a word $x_1 \ldots x_n$ is adjacent to $x_1 \ldots x_n x_{n+1}$.

A group automaton over an alphabet X, input and output sets A and B is *dendroid* if the following conditions hold.

3

A group automaton over an alphabet X, input and output sets A and B is *dendroid* if the following conditions hold.

1 The set of permutations defined by A on X is dendroid.

A group automaton over an alphabet X, input and output sets A and B is *dendroid* if the following conditions hold.

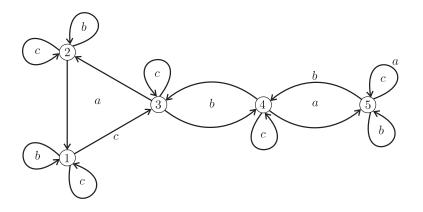
- The set of permutations defined by A on X is dendroid.
- Por every b ∈ B \ {e} there exists a unique pair a ∈ A, x ∈ X such that τ(a, x) = (y, b) for some y ∈ X.

イロト イポト イヨト イヨト 二日

A group automaton over an alphabet X, input and output sets A and B is *dendroid* if the following conditions hold.

- The set of permutations defined by A on X is dendroid.
- ② For every *b* ∈ *B* \ {*e*} there exists a unique pair *a* ∈ *A*, *x* ∈ *X* such that $\tau(a, x) = (y, b)$ for some $y \in X$.
- For any cycle (x₁, x₂,..., x_k) of the action of a ∈ A on X we have τ(a, x_i) = (x_{i+1}, e) for all but possibly one index i. (Here indices are taken modulo k.)

(日)



For any sequence A_1, A_2, \ldots of dendroid automata such that the input and output sets of A_i are A_i and A_{i+1} , the action of A_1 on the tree of words is dendroid.

For any sequence A_1, A_2, \ldots of dendroid automata such that the input and output sets of A_i are A_i and A_{i+1} , the action of A_1 on the tree of words is dendroid.

For any dendroid set A of automorphisms of a rooted tree T there exists a sequence of dendroid automata as above such that the action of A_1 on the tree of words is conjugate to the action of A on T.

Let A_i be a sequence of dendroid automata over alphabets X_i with input and output sets A_i and A_{i+1} .

Let A_i be a sequence of dendroid automata over alphabets X_i with input and output sets A_i and A_{i+1} . Suppose that $|X_i|$ and $|A_i|$ are bounded.

Let A_i be a sequence of dendroid automata over alphabets X_i with input and output sets A_i and A_{i+1} . Suppose that $|X_i|$ and $|A_i|$ are bounded. Then the group generated by A_1 does not contain free subgroups.

Let A_i be a sequence of dendroid automata over alphabets X_i with input and output sets A_i and A_{i+1} . Suppose that $|X_i|$ and $|A_i|$ are bounded. Then the group generated by A_1 does not contain free subgroups.

Are such groups amenable?

Consider the following two dendroid automata A_0 and A_1 (over the alphabet $X = \{0, 1\}$ and input-output set $\{a, b, c, e\}$).

An example

Consider the following two dendroid automata A_0 and A_1 (over the alphabet $X = \{0, 1\}$ and input-output set $\{a, b, c, e\}$).

$$\left\{\begin{array}{ll} \tau(a,0)=(1,e), & \tau(a,1)=(0,e), \\ \tau(b,0)=(0,a), & \tau(b,1)=(1,c), \\ \tau(c,0)=(0,e), & \tau(c,1)=(1,b). \end{array}\right.$$

An example

Consider the following two dendroid automata A_0 and A_1 (over the alphabet $X = \{0, 1\}$ and input-output set $\{a, b, c, e\}$).

$$\left\{\begin{array}{ll} \tau(a,0)=(1,e), & \tau(a,1)=(0,e), \\ \tau(b,0)=(0,a), & \tau(b,1)=(1,c), \\ \tau(c,0)=(0,e), & \tau(c,1)=(1,b). \end{array}\right.$$

and

$$\left\{ \begin{array}{ll} \tau(a,0)=(1,e), & \tau(a,1)=(0,e), \\ \tau(b,0)=(0,a), & \tau(b,1)=(1,c), \\ \tau(c,0)=(0,b), & \tau(c,1)=(1,e). \end{array} \right.$$

3

An example

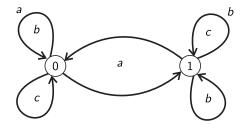
Consider the following two dendroid automata A_0 and A_1 (over the alphabet $X = \{0, 1\}$ and input-output set $\{a, b, c, e\}$).

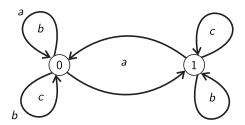
$$\left\{\begin{array}{ll} \tau(a,0)=(1,e), & \tau(a,1)=(0,e), \\ \tau(b,0)=(0,a), & \tau(b,1)=(1,c), \\ \tau(c,0)=(0,e), & \tau(c,1)=(1,b). \end{array}\right.$$

and

$$\left\{ \begin{array}{ll} \tau(a,0)=(1,e), & \tau(a,1)=(0,e), \\ \tau(b,0)=(0,a), & \tau(b,1)=(1,c), \\ \tau(c,0)=(0,b), & \tau(c,1)=(1,e). \end{array} \right.$$

Choosing a sequence $w = i_1 i_2 \ldots \in \{0, 1\}^{\infty}$, we get a dendroid set of automorphisms of the binary rooted tree defined by the sequence $\mathcal{A}_{i_1}, \mathcal{A}_{i_2}, \ldots$ Let G_w be the group generated by these automorphisms.



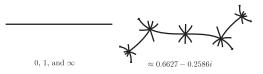


The groups G_w correspond to the sequences of polynomials of the form $f_i(z) = \left(1 - \frac{2z}{w_i}\right)^2$, where $w_i \in \mathbb{C}$ are such that $w_i = \left(1 - \frac{2}{w_{i+1}}\right)^2$.

The groups G_w correspond to the sequences of polynomials of the form $f_i(z) = \left(1 - \frac{2z}{w_i}\right)^2$, where $w_i \in \mathbb{C}$ are such that $w_i = \left(1 - \frac{2}{w_{i+1}}\right)^2$.

The Julia sets of analogous *forward* iterations resemble the graphs of action of the groups G_w on levels of the tree.

イロト イポト イヨト イヨト

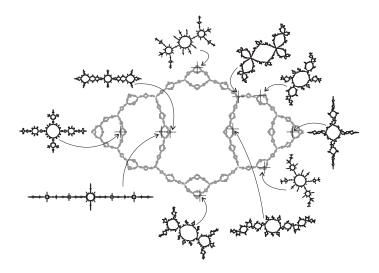


V. Nekrashevych (Texas A&M)

April 12, 2012 21 / 23

三 のへの

▲口 → ▲圖 → ▲ 国 → ▲ 国 →



王

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Two groups G_{w_1} and G_{w_2} are isomorphic if and only if w_1 and w_2 are cofinal.

3

Two groups G_{w_1} and G_{w_2} are isomorphic if and only if w_1 and w_2 are cofinal.

There exists uncountably many growth types in the family $\{G_w\}$.

3

イロト イポト イヨト イヨト

Two groups G_{w_1} and G_{w_2} are isomorphic if and only if w_1 and w_2 are cofinal.

There exists uncountably many growth types in the family $\{G_w\}$.

The closure of G_w in the automorphism group of the tree does not depend on w.

・ロト ・聞ト ・ヨト ・ヨト