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A “wish list” from geometric group theory

Find a geometric/algorithmic property that:

1) Makes computing the word problem for 3-manifold groups

tractable.

Eg: Asynchronously “automatic” over an indexed language (Brid-

son, Gilman), but not regular/automatic (ECHLPT, N Brady).

2) Uniformly captures the algorithms for building van Kampen

diagrams arising from both finite convergent rewriting systems

and almost convexity.

3) Facilitates computation of asymptotic “filling” invariants

(from van Kampen diagrams, e.g. Dehn, isodiametric functions).

4) Captures the complexity/ simplicity of the word problem for

Thompson’s group F .

GGT theme: Measure algorithmic properties using normal forms

+ conditions on Γ; e.g. automatic, combable (“fellow travel”).



Stackable groups I: Definition

Group G = 〈A〉, |A| <∞, A = A−1, Γ = Cayley graph

Notn. Normal forms N = {yg | g ∈ G} ⊂ A∗; N →֒→ G (yǫ = 1)

~E(Γ) := {eg,a :=
a

g •−−>−−•ga| g ∈ G, a ∈ A} = directed edges of Γ

~Ed := {eg,a | yg a = yga or yg = yga a−1} = degenerate edges

~Er := ~E(Γ) \ ~Ed = recursive edges

Defn. G is stackable (over A) if ∃
• normal forms N , • constant k, and
• well-founded strict partial ordering < on ~Er, such that

∀ eg,a ∈ ~Er: ∃ directed path labeled a1 · · · an from g to ga in Γ
satisfying: n ≤ k and

∀ directed edges ei := ega1···ai−1,ai in the path:

either ei ∈ ~Er and ei < eg,a, or ei ∈ ~Ed.
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Stacking map c : ~Er → A∗:
Choice of c(eg,a) = a1 · · · an.

Note c(eg,a) 6= a.



Stackable groups, II: Picture

Prop. (B,H) Stackable ⇒ finite presentation, N prefix-closed.

Rmks. • N , ~Ed ←→ tree T ⊆ Γ.

• yg ∈ N ←→ simple path in Γ.

• < on ~Er ←→ “flow” of non-tree edges toward identity.

Ex. BS(1,2) = 〈tat−1 = a2〉
N = {t−iajtk | i, k ∈ N0, j ∈ Z, and either 0 ∈ {i, k} or 2 6 | j}
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Stackable groups, III: Algorithms
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ag Extend to c′ : ~E(Γ)→ A∗:

c′(eg,a) :=





c(eg,a) if eg,a ∈ ~Er

a if eg,a ∈ ~Ed.

Defn. G is algorithmically stackable if

graph(c′) := {(y, a, c′(ey,a)) | y ∈ N , a ∈ A} ⊂ A∗ × A×A∗

is computable, and

automatically stackable, or autostackable, if graph(c′) (viewed

as padded strings over (A ∪ {$})3) is a regular language.

Prop. (B,H) Algorithmically stackable ⇒ solvable word problem.

Stacking reduction algorithm on words in A∗:

(1) If y ∈ N , a ∈ A, ya /∈ N , z ∈ A∗, reduce y a z → y c(ey,a) z.

(2) Free reduction

Repetition of (1-2) reduces any w ∈ A∗ to normal form.



Inductive procedure for constructing van Kampen diagrams

Stackable gp G, P = 〈A | R〉 stacking pres., N = {yg | g ∈ G}

Defn. w ∈ A∗ with w =G ǫ⇒ ∃ van Kampen diagram ∆:
(i) finite, planar, contractible, combinatorial 2-complex,
(ii) ∂∆ = path at basepoint ∗ labeled w, ∂(2-cells) ∈ R.

Step I: Noetherian induction using well-founded strict partial
ordering < on ~Er ⇒ algorithm to fill “icicles” = v. K. diagrams
for words of the form w = yg a y−1
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Rmk. yg paths simple in Γ ⇒ gluings preserve planarity.

Step II: Build a van Kampen
diagram for any w = b1 · · · bn ∈ A∗

with w =G ǫ using “seashell”:
(Wish 3)
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Autostackable examples: Finite convergent rewriting systems

Def. A finite convergent rewriting system (CRS) for a group

G consists of a finite generating set A = A−1 and a finite set

of defining relations R = {u → v} with u, v ∈ A∗ such that the

rewritings xuy → xvy for all x, y ∈ A∗ satisfy:

• N := A∗ − ∪u→v∈RA∗uA∗ is a set of normal forms for G.

• x > y iff x→ · · · → y is a well-founded strict partial ordering.

Ex: Finite, free, abelian, surface (Le Chenadec), prime alt. /

torus knot (Chouraqui/Benninghofen, Kemmerich, Richter),

π1 closed 3-manifold non-hyp. uniform geometry (H, Shapiro),

iterated Baumslag-Solitar (Gersten) groups;

closed under graph/semidirect product and certain amalgamated

products, HNN extensions (H, Meier/Groves, Smith)

Thm. (Brittenham, H.) Finite CRS ⇒ autostackable.

Stacking: N : Irreducible words (above)

<: Define prl(eg,a) := number of (shortest prefix) rewritings

from yg a to yga, and e′ < e iff prl(e′) < prl(e).

c: Write yg a = ỹũa where ũa→ v ∈ R; then c(eg,a) := ũ−1v.



Autostackable examples: Iterated Baumslag-Solitar groups

Gk = 〈a0, a1, ..., ak | a
ai+1
i = a2

i ; 0 ≤ i ≤ k − 1〉

Gk is autostackable: Gk has a finite CRS (Gersten).

But the minimal isoperimetric (Dehn) function for Gk+1 grows

at least as fast as a k-fold iterated tower of exponentials

n 7→ 22..
.2

n

︸ ︷︷ ︸
k times

. (Gersten)

Rmk. Asymptotic properties of autostackable groups are much

less restrictive than those of automatic groups.

Automatic groups

Defn. G = 〈A〉 is automatic if ∃ • constant k and

• regular language N = {yg | g ∈ G} of normal forms such that

∀ g ∈ G, a ∈ A: the paths yg, yga (synchronously) k-fellow travel.



Comparing autostackable and automatic structures

Thm. (Brittenham, H.) All shortlex automatic groups (which

include all word hyperbolic groups) are autostackable.

Autostackable Automatic

{(y, a, c′(ey,a)) | y ∈ N , a ∈ A} {(y, a, yya) | y ∈ N , a ∈ A}
is regular. is regular.

v.K. d. icicle filled inductively: v.K. d. icicle is k-thin:
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Dehn fcn. may be iterated Dehn fcn. � quadratic.

exponential.

For M = 3-manifold with any of the 8 uniform geometries:

Thm. (B,H) π1(M) is Thm. (ECHLPT) π1(M) is

autostackable. automatic iff geometry

(Wish (1)) is not Nil, Sol.



Stackable examples: Almost convex groups

Group G = 〈A〉, |A| <∞, A = A−1, Γ = Cayley graph

Notn. For edge eg,a define d̃(eg,a) := min{dΓ(ǫ, g), dΓ(ǫ, ga)}.

Defn. (Cannon) G is almost convex (over A) if ∃

• constant k such that

∀r ∈ N, ∀ g, h ∈ G with dΓ(ǫ, g) = r = dΓ(ǫ, h) and dΓ(g, h) ≤ 2:

∃ directed path labeled a1 · · · an from g to h in Γ satisfying:

n ≤ k and

∀ directed edges ei := ega1···ai−1,ai in the path: d̃(ei) < r.

Thm. (Brittenham, H.) Almost convex ⇒ algorithmically stack-

able.

Stacking: N := {shortlex normal forms}.

<: Define e′ < e iff d̃(e′) < d̃(e).

c: c(ega) := almost convexity path.

(Wish (2))



Stackable examples: Thompson’s group F

F < PL0([0,1]); slopes 2i, breakpoints in Z2.

F = 〈x0, x1 | [x0x−1
1 , x−1

0 x1x0], [x0x−1
1 , x−2

0 x1x2
0]〉.

Rmk. The word problem is solvable for F . How solvable is it?

F is not (minimally) almost convex (Cleary, Taback; Belk, Bux).

Open Q’s. (Guba) Is F automatic? Does F have a finite

convergent rewriting system? (Wish (4))

Thm. (Cleary, H., Stein, Taback) Thompson’s group F is (al-

gorithmically) stackable.

Rmk. The stacking normal forms are context free:

N := set of all w ∈ A∗ such that

(1) w ∈ A∗−∪u∈UA∗uA∗ with U := {xη
0x
−η
0 , x

η
1x
−η
1 , x2

0x
η
1 | η=±1},

(2) For each prefix v of w, expsumx0(v) ≤ 0.

Prop. (Cleary, H., Stein, Taback) N is a (6,0)-quasigeodesic

set of normal forms for F .



Recall: A “wish list” from geometric group theory

Find a geometric/algorithmic property that:

1) Makes computing the word problem for 3-manifold groups

tractable.

2) Uniformly captures the algorithms for building van Kampen

diagrams arising from both finite convergent rewriting systems

and almost convexity.

3) Facilitates computation of asymptotic “filling” invariants

(from van Kampen diagrams, e.g. Dehn, isodiametric functions).

4) Captures the complexity/ simplicity of the word problem for

Thompson’s group F .



Filling functions, I: Diameter

G = gp(P), P = 〈A | R〉, A = A−1, X = Cayley 2-cx

w ∈ A∗ with w =G ǫ⇒ ∃ planar van Kampen diagram ∆: ∂∆ = w

Notn. • π∆ : ∆→ X, π∆(∗) = ǫ

• dY = path metric in 1-skeleton of 2-cx Y . (Y = ∆ or X.)

Defn. (G,P) admits an intrinsic [extrinsic] diametric inequal-

ity for nondecreasing function f : N→ N if

∀ w ∈ A∗ with w =G ǫ, ∃ a v.K. diagram ∆ for w such that

∀v ∈∆0, d∆(∗, v) ≤ f(l(w)) [dX(ǫ, π∆(v)) ≤ f(l(w))].

Rmk. ∆ ⊆ R2; embed ∆(1) →֒ R3, p 7→ (p, d∆(∗, p)) or (p, dX(ǫ, π∆(p)).

Picture: ID / ED bound the height of the highest peak in ∆:
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Filling functions, II: Combing van Kampen diagrams

Idea: Refine ID/ED: Measure “tameness” of peaks and valleys.

Def. A van Kampen homotopy of a v.K. diagram ∆ is a

continuous function Ψ : ∂∆× [0,1]→∆ such that

• ∀p ∈ ∂∆, Ψ(p,0) = ∗ and Ψ(p,1) = p,

• ∀t ∈ [0,1], Ψ(∗, t) = ∗, and

• ∀p ∈ ∂∆0, Ψ(p, t) ∈∆1 for all t ∈ [0,1].

* *

Defn. d̃Y (y, ·) = coarse distance to vertex y in a 2-cx Y :

p = vertex: d̃Y (y, p) := dY (y, p)

p ∈ Int(edge e): d̃Y (y, p) := min{d̃Y (y, v)) | v ∈ ∂(e)}+ 1
2

p ∈ Int(2-cell σ): d̃Y (y, p) := max{d̃Y (y, e) | e ∈ ∂(σ)} − 1
4



Filling functions, III: Tame filling inequalities

Defn. (G,P) admits an intrinsic [extrinsic] tame filling in-

equality for nondecreasing function f : N[14]→ N[14] if

∀ w ∈ A∗ with w =G ǫ, ∃ a v.K. diagram ∆ for w and

a v.K. homotopy Ψ : ∂∆× [0,1]→∆ such that

∀p ∈ ∂ and ∀0 ≤ s < t ≤ 1, d̃∆(∗,Ψ(p, s)) ≤ f(d̃∆(∗,Ψ(p, t)))

[dX(ǫ, π∆(Ψ(p, s))) ≤ f(dX(ǫ, π∆(Ψ(p, s))))].

Verbally: IT / ET bound: After a homotopy path reaches height

f(n), the path cannot return down to height n.

w

Y( )p,

p

0

d ( ),*D ed ( ),/
X

*

Rmk/Conj. (Tschantz) For some presentations, a finite func-

tion f may not exist.



Quasi-isometry invariants

Thm. (Gersten; Bridson, Riley; Brittenham, H) The following

are quasi-isometry invariants of groups, up to Lipschitz equiva-

lence of nondecreasing functions:

• Intrinsic diameter inequality for f ,

• Extrinsic diameter inequality for f ,

• Extrinsic tame filling inequality for f , and

• Intrinsic tame filling inequality for f w.r.t. presentation with

sufficiently large set of defining relations.

Notn. G is in ETf if G admits an extrinsic tame filling inequality

for a function Lipschitz equiv. to f . Similarly IDf , EDf , ITf .

ITf ETf (1) Bridson-Riley

(2) ⇓ ⇓ (2) (2) Brittenham-H

IDf̂

⇒
6⇐ EDf̂
(1) f̂(n) = ⌈f(n)⌉



Inductive procedure for constructing van Kampen homotopies

Stackable gp G, P = 〈A | R〉 stacking pres., N = {yg | g ∈ G}

Step I. Noetherian induction⇒ algorithm to build “edge fillings”

of icicles = v. K. diagrams for words yg a y−1
ga :
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Step II: Build a van Kampen

homotopy for any

w = b1 · · · bn ∈ A∗ with w =G ǫ

using “seashell”:
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Rmk. Procedure enables algorithm to find bounds for tame

filling inequalities. (Wish 3)



Tame filling invariants for stackable groups, I

Thm 1. (Brittenham, H.) Stackable groups admit finite-valued

intrinsic and extrinsic tame filling inequalities.

Cor. (B, H) Stackable groups admit tame combings (a la Mihalik-

Tschantz).

Conj. (Tschantz) ∃ fin. pres. non-tame-combable group.

Conj. ∃ finitely presented group that is not stackable with re-

spect to any finite generating set.

Thm 2. (B, H) Algorithmically stackable groups satisfy recursive

intrinsic and extrinsic tame filling inequalities.



Tame filling invariants for stackable groups, II

Thm 3. (B, H) If G admits a finite convergent rewriting system,

then G admits intrinsic and extrinsic tame filling inequalities for

a function equivalent to the string growth complexity function

γ : N→ N defined by

γ(n) := max{l(x) | w →∗ x, l(w) ≤ n}.

Thm 4. (B, H) The following are equivalent for a group G:

◦ G is almost convex.

◦ G satisfies an intrinsic tame filling inequality for id : N[14]→ N[14].

◦ G satisfies an extrinsic tame filling inequality w.r.t. id.

Thm 5. (Cleary, H., Stein, Taback; B, H) Thompson’s group

F admits linear extrinsic and intrinsic tame filling inequalities.

Rmk. Refines: F has linear intrinsic diameter inequality. (Guba)



Open Questions

(1) Cayley automatic groups (Kharlampovich, Khoussainov, Mi-

asnikov) have a regular language of “normal forms” (not nec-

essarily over a generating set) that fellow travel. Are all Cayley

automatic groups autostackable, or vice-versa?

(2a) Is π1 of every closed 3-manifold autostackable?

(2b) Determine closure properties for (auto)stackable groups.

Thm (Johnson) The class of (algorithmically) stackable groups

is closed under graph and semidirect products (and hence free/direct

products).

(2b’) Is the fundamental group of a graph of autostackable

groups, with edge groups “nice” (eg 1, Z or Z2), autostackable?



Open Questions, II

(3) Is there a global upper bound (eg iterated exponential, prim-

itive recursive) on the Dehn fcn, or solution time for the word

problem, for all autostackable groups?

(4) (Gilman) Is there an algorithm which, given a finite presen-

tation G = 〈A | R〉 together with a division ordering on A∗ and a

well-founded strict partial ordering on (directed) edges of Γ, will

halt and output an autostackable structure for G over A with

respect to these orderings if one exists?


