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Verbal set and verbal subgroup

Let F (X) be a free group on a countable generating set

X = {x1, x2, . . .}. Let w ∈ F (X).

Let G be a group. g ∈ G is called a w-element if g is an image of w

under a homomorphism F (X) → G.

One can think of w as a monomial w = w(x1, x2, . . . , xk). Then

w(g1, g2, . . . , gk) ∈ G is the image of w under homomorphism

extending map xi → gi.
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The set of w-elements in G, also called the set of values of w in G, is

denoted w[G]:

{g ∈ G | g = w(g1, . . . , gk)} = w[G].

The subgroup generated by w[G] is denoted by w(G):

⟨w[G]⟩ = w(G).

w(G) is called w-verbal subgroup of G.
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Examples:

• w = x−1y−1xy. w(G) = [G,G].

• w = x2, G = Z. w(G) = 2Z.

• w = x5y−2. w(G) = w[G] = G since g = g5(g2)−2 = w(g, g2).
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Represent w as

w = xm1
1 xm2

2 · · ·xmk

k w′,

where w′ ∈ [F, F ]. Denote e(w) = gcd(m1,m2, . . . ,mk), or e(w) = 0

if all mi = 0.

If e(w) = d > 0, then every d-th power gd ∈ w[G]. Indeed, there are

d1, . . . , dk such that

d1m1 + . . .+ dkmk = d.

Then w(gd1 , gd2 , . . . , gdk) = gd.

In particular, if e(w) = 1, then w[G] = G.

Words w ∈ F s.t. w ̸= 1 in F and e(w) ̸= 1 are called proper.
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Question: can elements of w(G) be represented as a product of

bounded number of values of w±1?

For a g ∈ w(G), define its w-width:

lw(g) = min{n | g = g1g2 · · · gn, g±1
i ∈ w[G]}.
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w-width of G is defined to be

lw(G) = sup{lw(g) | g ∈ w(G)},

which is a non-negative integer or infinity. If lw(G) <∞ for any w, we

say that G is verbally elliptic:

∃l w(G) ⊆ w±1[G]l

If lw(G) = ∞ for any proper w, we say that G is verbally parabolic:

∀l w(G) ̸⊆ w±1[G]l
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History

• Ore’s Conjecture (1951): Commutator width of non-abelian finite

simple groups is 1. Established by Liebeck, O’Brian, Shalev and

Tiep (2010).

• Serre’s Conjecture: If G is a finitely generated profinite group then

every subgroup of finite index is open. Proved by Nikolov and

Segal (2007). Proof based on establishing uniform bounds on

verbal width in finite groups.

In infinite groups, study was initiated by P. Hall.

• Stroud (1960’s): All finitely generated abelian-by-nilpotent groups

G are verbally elliptic.

• Rhemtulla (1968): All free products (except for infinite dihedral

group) are verbally parabolic.
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• Merzlyakov (1967): All linear algebraic groups are VE.

• Romankov (1982): All f.g. virtually nilpotent and virtually

polycyclic groups are VE.

• Grigorchuk (1996): Groups in a wide class of amalgamated free

products and HNN-extensions are VP.

• Bardakov: Braid groups are VP (1992), HNN-extensions with

proper associated subgroups and one relator groups with at least

three generators are VP (1997).

• See also Dobrynina (2000).
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Theorem. Every non-elementary hyperbolic group G is VP, i.e.,

every proper verbal subgroup of G has infinite width.
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Rhemtulla’s gap function

In 1968, Rhemtulla showed that w-verbal subgroups free products

(with exception to infinite dihedral group) have infinite width for every

proper w.

For simplicity, we briefly trace his proof in case of a free group F (a, b).
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Suppose e(w) = d and g = w(g1, g2, . . . , gk). Then gi can be cut into

pieces so that each piece occurs in g a number of times divisible by d

(counting inverse occurrences as −1).
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So, if we count occurrences of a specific subword in g, we get

0 mod d, except for subwords that “hit boundary between pieces”.

The same holds if g ∈ F (a, b) is a product of ≤ l values of w±1.
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Specifically, Rhemtulla counts number of subwords of the form bajb:

for all j, except for L = L(w, l) values, number of occurrences of the

subword bajb in w1w2 . . . wl is divisible by d.

In this context, aj (or just j) is called a b-gap.
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To disprove finite width, one can easily construct an element g ∈ w(G)

where arbitrarily many subwords of this form occur exactly 1 time. For

example, in case d > 1, the following elements work:

g = (aba)d(a2ba2)d . . . (ambam)d.

Indeed, every subword of the form ba2j+1b (j = 0, . . . ,m− 1) occurs

exactly once.

Construction in the case d = 0 is more technically involved.
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In other words, function γ(g) that counts number of j’s such that gaps

aj are “irregular”, is bounded on w±1[G]l and unbounded on w(G).
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Plan

How do we adopt this approach to the case of hyperbolic groups?

1. Decide occurrences of what to count.

2. Figure out how to split values of w into pieces repeating e(w) times.
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Plan

How do we adopt this approach to the case of hyperbolic groups?

1. Decide occurrences of what to count.

— Done using Big Powers Condition.

2. Figure out how to split values of w into pieces repeating e(w) times.

— Done using thin hyperbolic n-gons.

Alternative approach: adopt Fujiwara’s treatment of second bounded

cohomologies in hyperbolic groups.
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Hyperbolic spaces

Geodesic metric space is called δ-hyperbolic if all geodesic triangles are

δ-thin:

≤ δ
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δ-hyperbolic spaces possess fellow travel property:

if p(t), q(t) are two geodesic paths with p(0) = q(0) and

|p(T )− q(T )| ≤ A, then there is a constant K(δ,A) s.t.

|p(t)− q(t)| ≤ K for any t ∈ [0, T ].

≤ A

≤ K
≤ K

≤ K≤ K
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A path p in a metric space is called (λ, ε)-quasigeodesic if

1

λ
· |t− t′| − ε ≤ |p(t)− p(t′)| ≤ λ · |t− t′|+ ε
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We say that paths p, q asynchronously K-fellow travel if they possess

monotone reparameterizations that K-fellow travel:

|p(φ(t))− q(ψ(t))| ≤ K.

Lemma. Let H be a δ-hyperbolic geodesic metric space. Let p, q be

two (λ, ε)-quasigeodesic paths in H joining points P1, P2 and Q1, Q2,

respectively. Suppose H ≥ 0 is such that |P1Q1| ≤ H and

|P2Q2| ≤ H. Then there exists K = K(δ, λ, ε,H) ≥ 0 such that p, q

asynchronously K-fellow travel.

≤ H
≤ H

≤ K ≤ K
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Big Powers condition for hyperbolic groups

(Olshansky) Let h1, . . . , hℓ be elements infinite order in a hyperbolic

group G such that E(hi) ̸= E(hj). Then there exists

N = N(h1, . . . , hℓ) > 0 such that

hm1
i1
hm2
i2

· · ·hms
is

̸= 1

whenever ik ̸= ik+1 for k = 1, . . . , s− 1, and |mk| > N for

k = 2, . . . , s− 1.

Moreover, the corresponding words are quasigeodesic with parameters

that depend G and hi, but not s.
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Corollary. One can find elements b, f0, f1 such that if

gm1
1 gm2

2 · · · gmk

k = g′1
m′

1g′2
m′

2 · · · g′l
m′

l ,

where gi, g
′
i ∈ D = {b±1, f±1

0 , f±1
1 }, mi,m

′
i > 0, and gi ̸= g±1

i+1,

g′i ̸= (g′i+1)
±1, then k = l and gi = g′i.
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We fix appropriate b, f0, f1 and integer M > 0 (arises from certain

technical reasons), and consider a set of elements

R = R(b, f0, f1,M) ⊆ G defined by

R = {g ∈ G | ∃k ∈ N, gi ∈ D,mi ≥M, gi−1 ̸= g±1
i ,

g = gm1
1 gm2

2 · · · gmk

k }.
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Defining gaps

For g ∈ R, its factor of the form

bmµg
mµ+1

µ+1 · · · gmµ+ν

µ+ν bmµ+ν+1 ,

where gi ̸= b, b−1, is called a b-syllable. Define b−1-syllables similarly.

With each b-syllable s we associate its b-gap, which is an integer

ωs ∈ Z that counts number of occurrences of f0 in s:

ωs = ε1 + ε2 + · · ·+ εν ,

where εi = 0 if gµ+i = f±1
1 , and εi is such that gµ+i = fεi0 , otherwise.
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For s = bm · f100 f1001 f50 · bm′
, ωs = 1 + 1 = 2.

For s = bm · f100 f1001 f50 f
−500
1 · bm′

, ωs = 1 + 1 = 2.

For s = bm · f100 f1001 f−5
0 f−500

1 · bm′
, ωs = 1− 1 = 0.
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Function γ : R→ Z counts number of “irregular” gaps in g, that is the

number of gaps that occur a number of times not divisible by e(w).

We will show that γ is bounded on R ∩ w±1[G]l and unbounded on

R ∩ w(G).

(Note that if xy ∈ R, it does not guarantee that x ∈ R and y ∈ R.)
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Thin hyperbolic n-gons

Since triangles in a hyperbolic space are δ-thin, all geodesic n-gons are

also δ′-thin (where δ′ depends on n):

H'

H

H'+H

H'+H

p1

p2

p3

q23
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By fellow travel property, the same holds for quasigeodesic n-gons

(with a different δ′ that depends on parameters of quasigeodesity).
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This allows to “cut up” g = w(g1, . . . , gk) just as in case of free group

(free product).

Suppose g ∈ w[G] ∩R. Let w = xi1 . . . xiN . Consider quasigeodesic

(N + 1)-gon whose sides are gi1 , . . . , giN and g−1:
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The big powers product g is therefore cut into pieces and each

fellow-traveling class of pieces occurs (up to “short” artifacts on

boundary) a number of times divisible by d (counting inverse

occurrences as −1), therefore γ is bounded on R ∩ w[G].

It follows (considering longer word) that γ is bounded on R∩w±1[G]l.

It is easy to construct elements in R ∩ w(G) with arbitrarily large γ.
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Indeed, for d = e(w) > 1, one can take basically the same example as

in case of free groups:

Xj = (fM1 fM0 )jbM (fM1 fM0 )j ,

and

g = Xd
1X

d
2 . . . X

d
m.

Case d = 0 is more technically involved.
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Consequences

Observation: if a group G has a verbally parabolic homomorphic

image, then G is verbally parabolic. Therefore, the following groups

are VP (by original Rhemtulla’s result):

• non-abelian residually free groups;

• pure braid groups (also follows from Bardakov’s results);

• non-abelian right angled Artin gorups.

Consequence of the main result: non-elementary groups hyperbolic

relative to proper residually finite subgroups (Osin) are VP. Thus, the

following non-elementary groups are VP:

• the fundamental groups of complete finite volume manifolds of

pinched negative curvature;

• CAT (0) groups with isolated flats;

• groups acting freely on Rn–trees.
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