"Group Theory International"
 Online Seminar

Marston Conder

(University of Auckland, New Zealand)
"Distinguishing triangle groups by their finite quotients" Thursday, Feb 2, 2pm (New York Time)

Abstract:

For positive integers p, q and r, the ordinary (p, q, r) triangle group $\Delta^{\circ}(p, q, r)$ is the abstract group with presentation

$$
<x, y, z \mid x^{p}=y^{q}=z^{r}=x y z=1>
$$

This group is finite, or infinite soluble, or infinite insoluble, according to whether $1 / p$ $+1 / q+1 / r$ is greater than, equal to, or less than 1 . As part of some work with Martin Bridson and Alan Reid on distinguishing Fuchsian groups, I will show how to prove that two triangle groups $\left.\Delta^{0} p, q, r\right)$ and $\Delta^{\circ}\left(p^{\prime}, q^{\prime}, r^{\prime}\right)$ have the same finite quotients if and only if they are isomorphic, that is, if and only if the triple ($p^{\prime}, q^{\prime}, r^{\prime}$) is a permutation of (p, q, r). The proof involves distinguishing triangle groups mainly by their cyclic, dihedral and 2-dimensional projective quotients, plus direct products of these and extensions of abelian groups, and some elementary number theory.

