## "Group Theory International" Online Seminar

**Marston Conder** 

(University of Auckland, New Zealand)

"Distinguishing triangle groups by their finite quotients"

Thursday, Feb 2, 2pm (New York Time)

## Abstract:

For positive integers p, q and r, the ordinary (p,q,r) triangle group  $\Delta^{o}(p,q,r)$  is the abstract group with presentation

 $< x,y,z | x^p = y^q = z^r = xyz = 1 >$ 

This group is finite, or infinite soluble, or infinite insoluble, according to whether 1/p + 1/q + 1/r is greater than, equal to, or less than 1. As part of some work with Martin Bridson and Alan Reid on distinguishing Fuchsian groups, I will show how to prove that two triangle groups  $\Delta^{o}p,q,r$ ) and  $\Delta^{o}(p',q',r')$  have the same finite quotients if and only if they are isomorphic, that is, if and only if the triple (p',q',r') is a permutation of (p,q,r). The proof involves distinguishing triangle groups mainly by their cyclic, dihedral and 2-dimensional projective quotients, plus direct products of these and extensions of abelian groups, and some elementary number theory.

Next presentation: Feb 16, 2012. TBA

