◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The conjugacy problem in automaton groups is not solvable

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Webinar

October 20th, 2012.

3. Orbit decidability

4. Automaton groups

Outline

- 2 Strategy of the proof
- Orbit decidability

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3. Orbit decidability

Outline

2 Strategy of the proof

- Orbit decidability
- 4 Automaton groups

▲□▶▲□▶▲□▶▲□▶ □ のへで

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

3. Orbit decidability

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

3. Orbit decidability

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by finite self-similar sets) with unsolvable conjugacy problem.

- Grigorchuk-Nekrashevych-Sushchanskii (00): Is CP solvable for automaton groups ?
- WP is solvable for all such groups (straightforward, at most exponential time).
- WP is solvable in polynomial time, for the subclass of f.g. contracting groups.

	Introduction
0	•0

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Related results

• Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.

- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

	Introduction
0	•0

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

	Introduction
0	•0

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

	Introduction
0	•0

3. Orbit decidability

4. Automaton groups

(ロ) (同) (三) (三) (三) (○) (○)

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

	Introduction
0	•0

3. Orbit decidability

4. Automaton groups

- Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk group.
- Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.
- Grigorchuk-Wilson (00): CP for all subgroups of finite index in the first Grigorchuk group.
- Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups generated by bounded automata (i.e. Pol(0) groups).
- Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the first Grigorchuk group.

A question

3. Orbit decidability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our examples contain free nonabelian subgroups, so

Question

• Is the CP solvable for all f.g., contracting, self-similar groups ?

• Is the CP solvable for automaton groups in Pol(n), for $n \ge 1$?

A question

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our examples contain free nonabelian subgroups, so

Question

• Is the CP solvable for all f.g., contracting, self-similar groups ?

• Is the CP solvable for automaton groups in Pol(n), for $n \ge 1$?

3. Orbit decidability

4. Automaton groups

Outline

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

2. Strategy of the proof ●O 3. Orbit decidability

4. Automaton groups

Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let *H* be f.g., and $\Gamma \leq Aut(H)$ f.g. If $\Gamma \leq Aut(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable *CP*.

and

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

and then show that

Theorem (Sunic-V.)

Let $\Gamma \leq GL_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

・ロト・日本・日本・日本・日本・日本

2. Strategy of the proof ●O 3. Orbit decidability

4. Automaton groups

Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let *H* be f.g., and $\Gamma \leq Aut(H)$ f.g. If $\Gamma \leq Aut(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable *CP*.

and

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

and then show that

Theorem (Sunic-V.)

Let $\Gamma \leq GL_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

・ロト・四ト・モー・ ヨー うへぐ

2. Strategy of the proof ●O 3. Orbit decidability

4. Automaton groups

Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let *H* be f.g., and $\Gamma \leq Aut(H)$ f.g. If $\Gamma \leq Aut(H)$ is orbit undecidable then $H \rtimes \Gamma$ has unsolvable *CP*.

and

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

and then show that

Theorem (Sunic-V.)

Let $\Gamma \leq GL_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Strategy of the proof

With an easy and nice idea due to Zoran, we get the improvement

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic-V.)

For $d \ge 6$, there exists a f.p. group G simultaneously satisfying the following three conditions:

- G is \mathbb{Z}^d -by-free,
- G is an automaton group,
- G has unsolvable conjugacy problem.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Strategy of the proof

With an easy and nice idea due to Zoran, we get the improvement

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic-V.)

For $d \ge 6$, there exists a f.p. group G simultaneously satisfying the following three conditions:

- G is \mathbb{Z}^d -by-free,
- G is an automaton group,
- G has unsolvable conjugacy problem.

3. Orbit decidability

4. Automaton groups

Outline

2 Strategy of the proof

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

2. Strategy of the proof

3. Orbit decidability

.

4. Automaton groups

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leq \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^d$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leq \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^{a}$

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

NURSERSER E 990

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leq \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^d$

Observation (folklore)

The full group $Aut(\mathbb{Z}^d) = GL_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup $\Gamma \leq \operatorname{Aut}(H)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in H$, it decides whether v and $\alpha(u)$ are conjugate, for some $\alpha \in \Gamma$.

First examples: $H = \mathbb{Z}^d$

Observation (folklore)

The full group $Aut(\mathbb{Z}^d) = GL_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

OD subgroups in $GL_d(\mathbb{Z})$

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08) Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

OD subgroups in $GL_d(\mathbb{Z})$

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

OD subgroups in $GL_d(\mathbb{Z})$

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

OD subgroups in $Aut(F_r)$

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(F_r) are orbit decidable. That is, given $\varphi \in Aut(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

OD subgroups in $Aut(F_r)$

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(F_r) are orbit decidable. That is, given $\varphi \in Aut(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

OD subgroups in $Aut(F_r)$

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(F_r) are orbit decidable. That is, given $\varphi \in Aut(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

OD subgroups in $Aut(F_r)$

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(F_r) are orbit decidable. That is, given $\varphi \in Aut(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

OD subgroups in $Aut(F_r)$

Examples over the free group: $H = F_r$

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = \alpha(u)$ for some $\alpha \in \operatorname{Aut}(F_r)$.

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(F_r) are orbit decidable. That is, given $\varphi \in Aut(F_r)$ and $u, v \in F_r$, one can decide whether $v = \varphi^n(u)$, up to conjugacy, for some $n \in \mathbb{Z}$.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

OD subgroups of $Aut(F_r)$

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

OD subgroups of $Aut(F_r)$

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma \ s.t.$

Hence, $h_1 \sim_G h_2 \iff \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \Box

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

4. Automaton groups

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leq G$, we have $h_1 \sim_G h_2 \Leftrightarrow \exists (h, \gamma) \in H \rtimes \Gamma s.t.$

$$\begin{array}{ll} (h_2, \ Id) &=& (h, \ \gamma)^{-1} \cdot (h_1, \ Id) \cdot (h, \ \gamma) \\ & & (\gamma^{-1}(h^{-1}), \ \gamma^{-1}) \cdot (h_1 h, \ \gamma) \\ & & (\gamma^{-1}(h^{-1}h_1 h), \ Id). \end{array}$$

Hence, $h_1 \sim_G h_2 \iff \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$.

4. Automaton groups

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \iff \exists (h, \gamma) \in H \rtimes \Gamma \ s.t.$

$$\begin{array}{ll} (h_2, \ ld) &=& (h, \ \gamma)^{-1} \cdot (h_1, \ ld) \cdot (h, \ \gamma) \\ & (\gamma^{-1}(h^{-1}), \ \gamma^{-1}) \cdot (h_1 h, \ \gamma) \\ & (\gamma^{-1}(h^{-1}h_1 h), \ ld). \end{array}$$

Hence, $h_1 \sim_G h_2 \iff \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

4. Automaton groups

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. $G = H \rtimes \Gamma$ contains elements $(h, \gamma) \in H \times \Gamma$ operated like

$$(h_1, \gamma_1) \cdot (h_2, \gamma_2) = (h_1 \gamma_1(h_2), \gamma_1 \gamma_2)$$

$$(h, \gamma)^{-1} = (\gamma^{-1}(h^{-1}), \gamma^{-1}).$$

For $h_1, h_2 \in H \leqslant G$, we have $h_1 \sim_G h_2 \iff \exists (h, \gamma) \in H \rtimes \Gamma \ s.t.$

$$\begin{array}{ll} (h_2, \ ld) &=& (h, \ \gamma)^{-1} \cdot (h_1, \ ld) \cdot (h, \ \gamma) \\ & & (\gamma^{-1}(h^{-1}), \ \gamma^{-1}) \cdot (h_1 h, \ \gamma) \\ & & (\gamma^{-1}(h^{-1}h_1 h), \ ld). \end{array}$$

Hence, $h_1 \sim_G h_2 \iff \exists \gamma \in \Gamma$ and $h \in H$ s.t. $h_1 = h\gamma(h_2)h^{-1}$. \Box

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1, \ldots, \alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \ldots, \alpha_m \rangle \leq \operatorname{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1,\dots,M_m} F_m$ has solvable conjugacy problem.

Corollary

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1, \ldots, \alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \ldots, \alpha_m \rangle \leq \operatorname{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1,\dots,M_m} F_m$ has solvable conjugacy problem.

Corollary

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1, \ldots, \alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \ldots, \alpha_m \rangle \leq \operatorname{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \ldots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \ldots, M_m} F_m$ has solvable conjugacy problem.

Corollary

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

Connection to semidirect products

In fact, for the free and free abelian cases (among others), the convers is also true, after "erasing the relations from Γ ":

Theorem (B-M-V, 08)

Let H be \mathbb{Z}^d or F_r , and $\Gamma \leq \operatorname{Aut}(H)$ generated by $\alpha_1, \ldots, \alpha_m$. Then, $H \rtimes_{\alpha_1, \ldots, \alpha_m} F_m$ has solvable CP if and only if $\Gamma = \langle \alpha_1, \ldots, \alpha_m \rangle \leq \operatorname{Aut}(H)$ is orbit decidable.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1,\dots,M_m} F_m$ has solvable conjugacy problem.

Corollary

4. Automaton groups

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in Aut(F_r) then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is:

Observation (B-M-V, 08)

4. Automaton groups

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in Aut(F_r) then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is:

Observation (B-M-V, 08)

4. Automaton groups

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in Aut(F_r) then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is:

Observation (B-M-V, 08)

4. Automaton groups

Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in Aut(F_r) then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary

Every F₂-by-free group has solvable conjugacy problem.

What we shall use is:

Observation (B-M-V, 08)

4. Automaton groups

Finding orbit undecidable subgroups

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r), for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let *H* be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

・ロト・日本・日本・日本・日本・日本

4. Automaton groups

Finding orbit undecidable subgroups

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r), for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let *H* be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

・ロト・日本・日本・日本・日本・日本

4. Automaton groups

Finding orbit undecidable subgroups

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r), for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08) Let H be a group, and let $A \leq B \leq \operatorname{Aut}(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then, OD(A) solvable \Rightarrow MP(A, B) solvable.

4. Automaton groups

Finding orbit undecidable subgroups

But...

Theorem (Miller, 70's)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (F_r), for $r \ge 3$. Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B). \square$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

Let *H* be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B). \square$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B). \square$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let $A \leq B \leq Aut(H)$ and $v \in H$ be such that $B \cap Stab^*(v) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(H)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi = w\} = B \cap (Stab(v) \cdot \varphi) = (B \cap Stab(v)) \cdot \varphi = \{\varphi\}.$

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B).\Box$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

So,...

Taking the copy B of $F_2 \times F_2$ in Aut(F_3) via the embedding

 $\begin{array}{cccccc} F_2 \times F_2 & \hookrightarrow & Aut(F_3), \\ (u,v) & \mapsto & _u\theta_v \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$

and a Mihailova subgroup in there $A \leq B \leq \operatorname{Aut}(F_3)$ (taking v = qaqbq) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Finding orbit undecidable subgroups

So,...

Taking the copy B of $F_2 \times F_2$ in Aut(F_3) via the embedding

 $\begin{array}{ccccccc} F_2 \times F_2 & \hookrightarrow & Aut(F_3), \\ (u,v) & \mapsto & {}_u\theta_v \colon F_3 & \to & F_3 \\ & q & \mapsto & u^{-1}qv \\ & a & \mapsto & a \\ & b & \mapsto & b \end{array}$

and a Mihailova subgroup in there $A \le B \le \operatorname{Aut}(F_3)$ (taking $v = \operatorname{qaqbq}$) one obtains precisely the orbit undecidable subgroups corresponding to Miller's examples.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \ Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1, 0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix}$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1, 0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \ \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \ \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \ \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \ Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

- $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$
- $\langle P, Q \rangle \cap Stab(1, 0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle.$
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1, 0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \ \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \ \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \ \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1, 0) = \{I\}$ and consider

$$B = \langle \begin{pmatrix} P' & 0 \\ \hline 0 & I \end{pmatrix}, \begin{pmatrix} Q' & 0 \\ \hline 0 & I \end{pmatrix}, \begin{pmatrix} I & 0 \\ \hline 0 & P' \end{pmatrix}, \begin{pmatrix} I & 0 \\ \hline 0 & Q' \end{pmatrix} \rangle \leq GL_4(\mathbb{Z}).$$

• Note that
$$B \simeq F_2 \times F_2$$
.

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

• $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1, 0) = \{I\}$ and consider

$$B = \langle \begin{pmatrix} P' & 0 \\ \hline 0 & I \end{pmatrix}, \begin{pmatrix} Q' & 0 \\ \hline 0 & I \end{pmatrix}, \begin{pmatrix} I & 0 \\ \hline 0 & P' \end{pmatrix}, \begin{pmatrix} I & 0 \\ \hline 0 & Q' \end{pmatrix} \rangle \leq GL_4(\mathbb{Z}).$$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

● $Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & -1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}$$

- $\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle.$
- Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant GL_d(\mathbb{Z})$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \leq_{24} GL_2(\mathbb{Z}).$$

• Stab $(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle.$$

• Choose a free subgroup $F_2 \simeq \langle P', Q' \rangle \leq \langle P, Q \rangle$ such that $\langle P', Q' \rangle \cap Stab(1,0) = \{I\}$ and consider

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding orbit undecidable subgroups

• Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.

Take A ≤ B ≃ F₂ × F₂ with unsolvable membership problem.

By previous Proposition, A ≤ GL₄(Z) is orbit undecidable.

• Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding orbit undecidable subgroups

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \le B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, A ≤ GL₄(Z) is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding orbit undecidable subgroups

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding orbit undecidable subgroups

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

2. Strategy of the proof

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finding orbit undecidable subgroups

- Write v = (1, 0, 1, 0). By construction, $B \cap Stab(v) = \{I\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since d − 2 ≥ 4, there exists (g₁,..., g_m) = Γ ≤ GL_{d−2}(Z) being orbit undecidable.
- Let F_m = ⟨f₁,..., f_m⟩, and choose matrices s₁,..., s_m ∈ GL₂(ℤ) such that ⟨s₁,..., s_m⟩ ≃ F_m.
- Consider the homomorphism given by

$$\begin{array}{rccc} \phi \,:\, F_m &\to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i &\mapsto & \left(\begin{array}{ccc} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since d − 2 ≥ 4, there exists ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d−2}(ℤ) being orbit undecidable.
- Let F_m = ⟨f₁,..., f_m⟩, and choose matrices s₁,..., s_m ∈ GL₂(ℤ) such that ⟨s₁,..., s_m⟩ ≃ F_m.
- Consider the homomorphism given by

$$\begin{array}{rccc} \phi \,:\, F_m &\to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i &\mapsto & \left(\begin{array}{ccc} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since d − 2 ≥ 4, there exists ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d−2}(ℤ) being orbit undecidable.
- Let F_m = ⟨f₁,..., f_m⟩, and choose matrices s₁,..., s_m ∈ GL₂(ℤ) such that ⟨s₁,..., s_m⟩ ≃ F_m.
- Consider the homomorphism given by

$$\begin{array}{rccc} \phi \, : \, F_m & \to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i & \mapsto & \left(\begin{array}{c} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since d − 2 ≥ 4, there exists ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d−2}(ℤ) being orbit undecidable.
- Let F_m = ⟨f₁,..., f_m⟩, and choose matrices s₁,..., s_m ∈ GL₂(ℤ) such that ⟨s₁,..., s_m⟩ ≃ F_m.
- Consider the homomorphism given by

$$\begin{array}{rccc} \phi \,:\, F_m & \to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i & \mapsto & \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix} \end{array}$$

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since d − 2 ≥ 4, there exists ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d−2}(ℤ) being orbit undecidable.
- Let F_m = ⟨f₁,..., f_m⟩, and choose matrices s₁,..., s_m ∈ GL₂(ℤ) such that ⟨s₁,..., s_m⟩ ≃ F_m.
- Consider the homomorphism given by

$$\begin{array}{rccc} \phi \, : \, F_m & \to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i & \mapsto & \left(\begin{array}{ccc} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

Playing with 2 extra dimensions...

These orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ come from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

Proof. Let $d \ge 6$.

- Since d − 2 ≥ 4, there exists ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d−2}(ℤ) being orbit undecidable.
- Let F_m = ⟨f₁,..., f_m⟩, and choose matrices s₁,..., s_m ∈ GL₂(ℤ) such that ⟨s₁,..., s_m⟩ ≃ F_m.
- Consider the homomorphism given by

$$egin{array}{rcl} \phi : F_m &
ightarrow & \operatorname{GL}_d(\mathbb{Z}) \ f_i & \mapsto & \left(egin{array}{cc} g_i & 0 \ 0 & s_i \end{array}
ight) \end{array}$$

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Playing with 2 extra dimensions...

- Since $\langle s_1, \ldots, s_m \rangle \leq GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that F ≤ GL_d(ℤ) is orbit undecidable (using the orbit undecidability of ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d-2}(ℤ)). □

In summary,

For $d \ge 6$, there exists a free $\Gamma \le GL_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Playing with 2 extra dimensions...

- Since $\langle s_1, \ldots, s_m \rangle \leq GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that F ≤ GL_d(ℤ) is orbit undecidable (using the orbit undecidability of ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d-2}(ℤ)). □

In summary,

For $d \ge 6$, there exists a free $\Gamma \le GL_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

2. Strategy of the proo

3. Orbit decidability

4. Automaton groups

(日) (日) (日) (日) (日) (日) (日)

Playing with 2 extra dimensions...

- Since $\langle s_1, \ldots, s_m \rangle \leq GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that F ≤ GL_d(ℤ) is orbit undecidable (using the orbit undecidability of ⟨g₁,...,g_m⟩ = Γ ≤ GL_{d-2}(ℤ)). □

In summary,

For $d \ge 6$, there exists a free $\Gamma \le GL_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

4. Automaton groups

Outline

2 Strategy of the proof

▲□▶▲□▶▲□▶▲□▶ □ のへで

2. Strategy of the proo

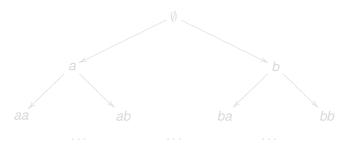
3. Orbit decidability

4. Automaton groups

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:



Definition

• Every tree automorphism g decomposes as a root permutation $\pi_g: X \to X$, and k sections $g|_x$, for $x \in X$:

2. Strategy of the proc

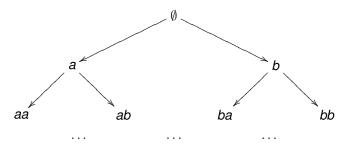
3. Orbit decidability

4. Automaton groups

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:



Definition

• Every tree automorphism g decomposes as a root permutation $\pi_g: X \to X$, and k sections $g|_x$, for $x \in X$:

2. Strategy of the proo

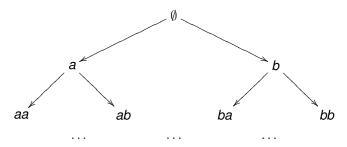
3. Orbit decidability

4. Automaton groups ●0000000000

Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:



Definition

• Every tree automorphism g decomposes as a root permutation $\pi_g: X \to X$, and k sections $g|_x$, for $x \in X$:

 $\sigma(x, y, y) = (x, y) \sigma(x, y)$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

The Grigorchuk group: ${m {G}}=\langle lpha,\,eta,\,\gamma,\,\delta
angle$, where

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha,\gamma), \quad \gamma = 1(\alpha,\delta), \quad \delta = 1(1,\beta).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

The Grigorchuk group: ${m {G}}=\langle lpha,\,eta,\,\gamma,\,\delta
angle$, where

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha,\gamma), \quad \gamma = 1(\alpha,\delta), \quad \delta = 1(1,\beta).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

The Grigorchuk group: ${m {G}} = \langle lpha, \, eta, \, \gamma, \, \delta
angle$, where

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha,\gamma), \quad \gamma = 1(\alpha,\delta), \quad \delta = 1(1,\beta).$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

The Grigorchuk group: $G = \langle \alpha, \beta, \gamma, \delta \rangle$, where

$$\alpha = \sigma(1, 1), \ \beta = 1(\alpha, \gamma), \ \gamma = 1(\alpha, \delta), \ \delta = 1(1, \beta).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

 $G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$

emma

• The group $G_{\mathcal{M},n}$ is finitely generated.

 If, in addition, det M_i = ±1, then G_{M,n} ≅ Z^d × Γ, where Γ = ⟨M₁,..., M_m⟩ ≤ GL_d(Z); in particular, G_{M,n} does not depend on n.

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$

emma

• The group $G_{\mathcal{M},n}$ is finitely generated.

 If, in addition, det M_i = ±1, then G_{M,n} ≅ Z^d × Γ, where Γ = ⟨M₁,..., M_m⟩ ≤ GL_d(Z); in particular, G_{M,n} does not depend on n.

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},n} = \langle \{_{\mathbf{v}} M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$$

emma

• The group $G_{\mathcal{M},n}$ is finitely generated.

 If, in addition, det M_i = ±1, then G_{M,n} ≅ Z^d ⋊ Γ, where Γ = ⟨M₁,..., M_m⟩ ≤ GL_d(Z); in particular, G_{M,n} does not depend on n.

3. Orbit decidability

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$$

Lemma

- The group $G_{\mathcal{M},n}$ is finitely generated.
- If, in addition, det M_i = ±1, then G_{M,n} ≃ Z^d × Γ, where Γ = ⟨M₁,..., M_m⟩ ≤ GL_d(Z); in particular, G_{M,n} does not depend on n.

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$.

Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v} M_{\mathbf{v}'} M' : \mathbf{u} \longrightarrow \mathbf{v}' + M' \mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M' \mathbf{u}) =$$

 $(\mathbf{v} + M \mathbf{v}') + MM' \mathbf{u} =$
 $\mathbf{v}_{+M\mathbf{v}'} (MM')(\mathbf{u}).$

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} : \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

 $\mathbf{v}^{M_{\mathbf{v}'}M':\mathbf{u}\longrightarrow\mathbf{v}'+M'\mathbf{u}\longrightarrow\mathbf{v}+M(\mathbf{v}'+M'\mathbf{u})=}_{(\mathbf{v}+M\mathbf{v}')+MM'\mathbf{u}=}_{\mathbf{v}+M\mathbf{v}'}(MM')(\mathbf{u}).$

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then $_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation $_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v}M_{\mathbf{v}'}M': \mathbf{u} \longrightarrow \mathbf{v}' + M'\mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M'\mathbf{u}) =$$

 $(\mathbf{v} + M\mathbf{v}') + MM'\mathbf{u} =$
 $\mathbf{v} + M\mathbf{v}'(MM')(\mathbf{u}).$

3. Orbit decidability

4. Automaton groups

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v}M_{\mathbf{v}'}M': \mathbf{u} \longrightarrow \mathbf{v}' + M'\mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M'\mathbf{u}) =$$

 $(\mathbf{v} + M\mathbf{v}') + MM'\mathbf{u} =$
 $\mathbf{v}_{+M\mathbf{v}'}(MM')(\mathbf{u}).$

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M},n}$ (with $\mathcal{M} = \{M_1, \dots, M_m\}$ as before) and $\det M_i = \pm 1 \Rightarrow G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

It only remains to prove that:

Proposition $G_{\mathcal{M},n}$ is an automaton group.

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M},n}$ (with $\mathcal{M} = \{M_1, \dots, M_m\}$ as before) and $\det M_i = \pm 1 \Rightarrow G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

It only remains to prove that:

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_n may be (uniquely) represented as right infinite words over $Y_n = \{0, ..., n-1\}$:

$$y_1y_2y_3\cdots \iff y_1+n\cdot y_2+n^2\cdot y_3+\cdots$$

Similarly, elements of \mathbb{Z}_n^d (the free *d*-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_n = Y_n^d = \{(y_1, \ldots, y_d)^T \mid y_i \in Y_n\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \quad \longleftrightarrow \quad \mathbf{x}_1 + n \cdot \mathbf{x}_2 + n^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_n| = n$ and $|X_n| = n^d$.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_n may be (uniquely) represented as right infinite words over $Y_n = \{0, ..., n-1\}$:

$$y_1 y_2 y_3 \cdots \iff y_1 + n \cdot y_2 + n^2 \cdot y_3 + \cdots$$

Similarly, elements of \mathbb{Z}_n^d (the free *d*-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_n = Y_n^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_n\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \quad \longleftrightarrow \quad \mathbf{x}_1 + n \cdot \mathbf{x}_2 + n^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_n| = n$ and $|X_n| = n^d$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_n may be (uniquely) represented as right infinite words over $Y_n = \{0, ..., n-1\}$:

$$y_1y_2y_3\cdots \iff y_1+n\cdot y_2+n^2\cdot y_3+\cdots$$

Similarly, elements of \mathbb{Z}_n^d (the free *d*-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_n = Y_n^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_n\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \quad \longleftrightarrow \quad \mathbf{x}_1 + n \cdot \mathbf{x}_2 + n^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_n| = n$ and $|X_n| = n^d$.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $Mod(\mathbf{v}) \in X_n$ and $Div(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = Mod(\mathbf{v}) + n \cdot Div(\mathbf{v}).$

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, and every $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \ldots \in \mathbb{Z}_n^d$, we have

 $\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\mathsf{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$

Proof.

$$\mathbf{v} M(\mathbf{x}_1 \mathbf{x}_2 \cdots) = \mathbf{v} + M \mathbf{x}_1 \mathbf{x}_2 \cdots = \mathbf{v} + M(\mathbf{x}_1 + n \cdot (\mathbf{x}_2 \mathbf{x}_3 \cdots))$$

$$= \mathbf{v} + M\mathbf{x}_1 + n \cdot M\mathbf{x}_2\mathbf{x}_3 \cdots$$

- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + nM\mathbf{x}_2\mathbf{x}_3 \cdots$
- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + M\mathbf{x}_2\mathbf{x}_3 \cdots)$
- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\cdots). \square$

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $Mod(\mathbf{v}) \in X_n$ and $Div(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = Mod(\mathbf{v}) + n \cdot Div(\mathbf{v}).$

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, and every $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \ldots \in \mathbb{Z}_n^d$, we have

 $\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$

Proof.

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\cdots) = \mathbf{v} + M\mathbf{x}_1\mathbf{x}_2\cdots = \mathbf{v} + M(\mathbf{x}_1 + n \cdot (\mathbf{x}_2\mathbf{x}_3\cdots))$$

$$= \mathbf{v} + M\mathbf{x}_1 + n \cdot M\mathbf{x}_2\mathbf{x}_3 \cdots$$

- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + nM\mathbf{x}_2\mathbf{x}_3 \cdots$
- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + M\mathbf{x}_2\mathbf{x}_3 \cdots)$
- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\cdots). \Box$

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $Mod(\mathbf{v}) \in X_n$ and $Div(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = Mod(\mathbf{v}) + n \cdot Div(\mathbf{v}).$

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, and every $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \ldots \in \mathbb{Z}_n^d$, we have

 $\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$

Proof.

$$\mathbf{v}^{M}(\mathbf{x}_{1}\mathbf{x}_{2}\cdots) = \mathbf{v} + M\mathbf{x}_{1}\mathbf{x}_{2}\cdots = \mathbf{v} + M(\mathbf{x}_{1} + n \cdot (\mathbf{x}_{2}\mathbf{x}_{3}\cdots))$$

$$= \mathbf{v} + M\mathbf{x}_{1} + n \cdot M\mathbf{x}_{2}\mathbf{x}_{3}\cdots$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_{1}) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_{1}) + nM\mathbf{x}_{2}\mathbf{x}_{3}\cdots)$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_{1}) + n \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{x}_{1}) + M\mathbf{x}_{2}\mathbf{x}_{3}\cdots)$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_{1}) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_{1}) + M\mathbf{x}_{2}\mathbf{x}_{3}\cdots)$$

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $A_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \quad and \quad m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $A_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $\mathcal{A}_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $\mathcal{A}_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

2. Strategy of the proc

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $\mathcal{A}_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,n}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_n^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},n}$ as the disjoint union of the automata $A_{M_1,n}, \ldots, A_{M_m,n}$.

- Alphabet: X_n,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},n}$ (over an alphabet of size n^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,n}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_n^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},n}$ as the disjoint union of the automata $A_{M_1,n}, \ldots, A_{M_m,n}$.

- Alphabet: X_n,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},n}$ (over an alphabet of size n^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,n}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_n^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},n}$ as the disjoint union of the automata $A_{M_1,n}, \ldots, A_{M_m,n}$.

- Alphabet: X_n,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},n}$ (over an alphabet of size n^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

3. Orbit decidability

4. Automaton groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$G_{\mathcal{M}}$ is an automaton group

Proof. Clearly, $G(\mathcal{A}_{\mathcal{M},n}) \leq G_{\mathcal{M},n}$.

For the other inclusion it remains to see that $\mathcal{A}_{\mathcal{M},n}$ has enough states to generate $G_{\mathcal{M},n}$. In fact, for every $M \in \mathcal{M}$, we have states $m_0, m_{-\mathbf{e}_1}, \ldots, m_{-\mathbf{e}_d}$ and so, also have

 $m_0 = {}_0M: \mathbf{u} \mapsto M\mathbf{u}$

and

$$au_{\mathbf{e}_j} = m_{\mathbf{0}}(m_{-\mathbf{e}_j})^{-1} \colon \mathbf{u} \mapsto M^{-1}(\mathbf{e}_j + \mathbf{u}) \mapsto MM^{-1}(\mathbf{e}_j + \mathbf{u}) = \mathbf{e}_j + \mathbf{u},$$

which generate $G_{\mathcal{M},n}$.

3. Orbit decidability

4. Automaton groups

$G_{\mathcal{M}}$ is an automaton group

Proof. Clearly, $G(\mathcal{A}_{\mathcal{M},n}) \leq G_{\mathcal{M},n}$.

For the other inclusion it remains to see that $\mathcal{A}_{\mathcal{M},n}$ has enough states to generate $G_{\mathcal{M},n}$. In fact, for every $M \in \mathcal{M}$, we have states $m_0, m_{-\mathbf{e}_1}, \ldots, m_{-\mathbf{e}_d}$ and so, also have

 $m_{\mathbf{0}} = {}_{\mathbf{0}}M : \mathbf{u} \mapsto M\mathbf{u}$

and

 $\tau_{\mathbf{e}_j} = m_{\mathbf{0}}(m_{-\mathbf{e}_j})^{-1} \colon \mathbf{u} \mapsto M^{-1}(\mathbf{e}_j + \mathbf{u}) \mapsto MM^{-1}(\mathbf{e}_j + \mathbf{u}) = \mathbf{e}_j + \mathbf{u},$

which generate $G_{\mathcal{M},n}$.

3. Orbit decidability

4. Automaton groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$G_{\mathcal{M}}$ is an automaton group

Proof. Clearly, $G(\mathcal{A}_{\mathcal{M},n}) \leq G_{\mathcal{M},n}$.

For the other inclusion it remains to see that $\mathcal{A}_{\mathcal{M},n}$ has enough states to generate $G_{\mathcal{M},n}$. In fact, for every $M \in \mathcal{M}$, we have states $m_0, m_{-\mathbf{e}_1}, \ldots, m_{-\mathbf{e}_d}$ and so, also have

 $m_0 = {}_0M: \mathbf{u} \mapsto M\mathbf{u}$

and

$$\tau_{\mathbf{e}_j} = m_{\mathbf{0}}(m_{-\mathbf{e}_j})^{-1} \colon \mathbf{u} \mapsto M^{-1}(\mathbf{e}_j + \mathbf{u}) \mapsto MM^{-1}(\mathbf{e}_j + \mathbf{u}) = \mathbf{e}_j + \mathbf{u},$$

which generate $G_{\mathcal{M},n}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

So, we have proved that

Theorem

For $d \ge 6$, there exists $\mathcal{M} = \{M_1, \ldots, M_m\}$ such that $\Gamma = \langle M_1, \ldots, M_m \rangle \leqslant GL_d(\mathbb{Z})$ is free and orbit undecidable. Hence, the group $\mathcal{A}_{\mathcal{M},n} \simeq G_{\mathcal{M},n}$

- is an automaton group,
- is \mathbb{Z}^d -by-free (i.e. $\simeq \mathbb{Z}^d \rtimes \Gamma$),
- has unsolvable conjugacy problem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

THANKS