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Stallings’ foldings in free groups

Consider oriented graphs Γ whose edges are labeled by elements of a

finite alphabet X ∪X−1.

Example. X = {x, y}
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Γ

Label of an edge e is denoted µ(e). Define µ(e−1) = µ(e)−1.

A path p in Γ has a label µ(p) = µ(e1) · · ·µ(ek) which is a word in the

alphabet X ∪X−1.
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Let v ∈ V (Γ). Define the language of Γ with respect to v to be

L(Γ, v) = {µ(p) | p is a reduced loop in Γ at v},

where “reduced” stands for “without back-tracking”.

The set

L(Γ, v) = {w | w ∈ L(Γ, v)},
where “¯” denotes free reduction, is a subgroup of F (X).
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On the other hand, if H is a finitely generated subgroup of F (X) then

it is easy to construct a graph Γ such that H = L(Γ, v) for some

v ∈ V (Γ).

Example. Let H = 〈x2, xy〉 < F (x, y) and take Γ to be a bouquet

of loops at a vertex v, labeled by the generators of H.

x

x

y
Γ

v

x

Obviously, H = L(Γ, v).
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The idea to work with X-labeled graphs rather than subgroups of

F (X) was introduced by J. Stallings (1983).

Many problems for subgroups of a free group now can be restated in

terms of graphs and easily solved. But graphs representing subgroups

have to be folded.

An X-labeled graph Γ is folded if it does not have subgraphs of the

form

x

x

x

x
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Consider the following operations called foldings
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Fact. If ∆ is obtained from Γ by a folding, so that w ∈ V (∆)

corresponds to v ∈ V (Γ). Then L(Γ, v) = L(∆, w).

Fact. For every finitely generated H ≤ F (X) there exists a folded

X-labeled graph Γ such that H = L(Γ, v) for some v ∈ V (Γ).
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We start with a bouquet of loops labeled by generators of H and

perform all possible foldings.

Example: H = 〈x, y2, y−1xy〉 < F (x, y).
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Fact. If Γ is folded then L(Γ, v) = L(Γ, v)

Let H ≤ F (X) and let Γ be a folded X-digraph such that

H = L(Γ, v) for some v ∈ V (Γ). If g ∈ F (X) then

g ∈ H ⇐⇒ g ∈ L(Γ, v).

It is easy to check the last inclusion which gives a solution of the

Subgroup Membership Problem.
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A way to look at Stalling graphs:

1. F (X) represented by reduced words in alphabet X ∪X−1.

F (X) ↪→ R(Z, X).

2. Graphs labeled by words in X ∪X−1.

3. Stallings foldings, Stallings graph. In a folded graph element of a

group is readable iff corresponding reduced word is readable.

4. Solution to Membership problem and numerous other problems.
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Fully residually free groups and U-foldings

If G is a f.g. fully residually free group, then G ↪→ FZ[t], where FZ[t] is

Lyndon’s free group.

FZ[t] can be defined as a union of chain of groups

F (X) = F0 < F1 < . . . < Fn < · · ·

where F = F (X) is a free group on an alphabet X, and Fk is

generated by Fk−1 and formal expressions of the type

{wα | w ∈ Fk−1, α ∈ Z[t]}.

That is, every element of Fk can be viewed as a parametric word of

the type

wα1
1 wα2

2 · · ·wαm
m ,

where m ∈ N, wi ∈ Fk−1, and αi ∈ Z[t].
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Moreover, for a specific f.g. G we can take part of this chain “that

matters”: G ↪→ Fn,

F (X) = F0 < F1 < . . . < Fn,

where Fk = 〈Fk−1, u
α
k |α ∈ Z[t]〉 (Miasnikov, Kharlampovich).

Idea: Treat uα as an infinite word uuu · · ·uuu.
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Ordered abelian groups

Let Λ be an ordered abelian group (any a, b ∈ A are comparable and

for any c ∈ Λ : a ≤ b ⇒ a+ c ≤ b+ c).

Examples.

1. archimedean case: Λ = R, Λ = Z with usual order.

2. non-archimedean case: Λ = Z2 with the right lexicographic order

(a, b) < (c, d) ⇐⇒ b < d or b = d and a < c.

In particular,

(0, 1) > (n, 0) for every n ∈ Z.
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Z2

(0,0)

(0,-1)

(0,1)

x

y

Z2 with the right lexicographic order

( (( (( (( (
(0,0)(0,-1) (0,1)
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For α, β ∈ Λ the closed segment [α, β] is defined by

[α, β] = {γ ∈ Λ | α ≤ γ ≤ β }.

Example. Λ = Z2, [(−2,−1), (3, 1)]

(0,0)

(-2,-1)

(3,1)

x

y

( ((
(0,0)(-2,-1)

(
(3,1)

ω −ω      +     ω −ω
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Infinite words

Let Λ be a discretely ordered abelian group (contains a minimal

positive element 1Λ) and X = {xi | i ∈ I} be a set.

A Λ-word is a function of the type

w : [1Λ, α] → X±,

where α ≥ 0. The element α is called the length |w| of w.

By ε we denote the empty Λ-word (when α = 0).

w is reduced ⇐⇒ no subwords xx−1, x−1x (x ∈ X).

R(Λ, X) = the set of all reduced Λ-words.
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Example. X = {x, y, z}, Λ = Z2

x

(0,0) (1,0)

y-1 x

x-1 y z (0,1)

z
(-3,1)

x-1 z

In “linear” notation

x-1 y zx y-1 x z x-1 z
( (

(1,0) (-3,1)

. . . . . .
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Concatenation of Λ-words

1A 1A

1A

α β

α+βα

u v

uv

We write u ◦ v instead of uv in the case when uv is reduced.
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Inversion of Λ-words

1A
α

u-1

1A
α

u

x1A
x2A

xαxα−1

xα
-1

xα−1

-1 x2A

-1
x1A

-1
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Multiplication of Λ-words

u v

uv

u
~

c-1 c v
~

u
~

c-1 c v
~

u  v = 

u
~ v

~

* u
~

v
~

19



Multiplication of Λ-words

Let u, v ∈ R(Λ, X).

Suppose u and v can be represented in the form

u = ũ ◦ c−1, v = c ◦ ṽ,

where c ∈ R(Λ, X) is of maximal possible length.

Then define

u ∗ v = ũ ◦ ṽ.

The decomposition of u and v above exists only if u−1 and v have the

maximal common initial part defined on a closed segment.
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Example. u, v ∈ R(Z2, X)

xx x
. . .

yy y

zz z

u-1 :

v :

( . . .(

xx x
. . . ( . . .(

The common initial part of u−1 and v is

xx x
. . . (

which is not defined on a closed segment. Hence, u ∗ v is not defined.
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Cyclic decomposition

v ∈ R(Λ, X) is cyclically reduced if v(1Λ)
−1 6= v(|v|).

v ∈ R(Λ, X) admits a cyclic decomposition if

v = c−1 ◦ u ◦ c,

where c, u ∈ R(A,X) and u is cyclically reduced.

Example. u ∈ R(Z2, X) does not admit a cyclic decomposition

xx
. . .

yy y
u  : ( . . .( . . . ( . . .(

x
−1

x
−1
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Torsion

R(Λ, X) has elements of order 2.

Example. u ∈ R(Z2, X)

xx
. . . ( . . .(

x
−1

x
−1

u :

has order 2.

Fact. Let u ∈ R(Λ, X). If u ∗ u is defined then either u admits a

cyclic decomposition (thus, has infinite order), or has order 2.
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F Z[t] as a group of infinite words

Recall that a f.g. fully residually free G embeds into Fn,

F (X) = F0 < F1 < . . . < Fn,

where Fk = 〈Fk−1, u
α
k |α ∈ Z[t]〉.

Theorem. (Miasnikov, Remeslennikov, Serbin) There exists

an embedding

φ : Fn ↪→ R(ZN , X).

Moreover, this embedding is effective and representation of elements

of FZ[t] by infinite words introduces “nice” normal forms on FZ[t].

(in fact, φ : FZ[t] ↪→ R∗(Z[t], X).)
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Example. Let X = {x, y}, F = F (X). If u ∈ F is cyclically reduced

then

G = 〈F, s | s−1us = u〉
is embeddable into R(Z2, X).

Indeed, F ⊂ R∗(Z2, X) and we define s as an “infinite power” of u

s = [uuuu · · ·)(· · ·uuuu] = ut

It is easy to see that

u ◦ s = s ◦ u.
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Elements of G = 〈F, s | s−1us = u〉 viewed as infinite words have

normal forms.

If g ∈ G then its normal form

π(g) = g1 ◦ uα1 ◦ g2 ◦ · · · ◦ uαn ◦ gn+1,

where gi ∈ F, αi ∈ Z2 − Z.

Normal forms can be computed easily.

Example. Let u = xy ∈ F and g = (y−1x−1) s x−1 s−1 ∈ G. Then,

a representation of g as an infinite word is

g = (y−1x−1) ∗ ut ∗ x−1 ∗ u−t = (y−1x−1) ∗ (u ◦ ut−1) ∗ x−1 ∗ u−t =

= (y−1x−1) ∗ ((xy) ◦ ut−1) ∗ x−1 ∗ u−t = ut−1 ◦ x−1 ◦ u−t.
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Generalization of Stallings’ foldings to F Z[t]

Theorem. (Miasnikov, Remeslennikov, Serbin) Let G be a

f.g. subgroup of FZ[t]. Then there exists a finite labeled directed

graph ΓG such that

g ∈ G if and only if ΓG ”accepts” π(g).

In other words ΓG solves the Subgroup Membership Problem in FZ[t].

Moreover, ΓG can be constructed effectively, given generators of G.

Edges of ΓG are labeled by letters from the alphabet

{X ∪X−1} ∪ {uα | u ∈ U,α ∈ Z[t]},

where U is a special subset of FZ[t].
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Graphs labeled by X and uα
i . U -foldings.

1. A g ∈ G represented by its reduced form π(g). G ↪→ R(ZN , X).

2. Graphs labeled by special infinite words.

3. U -foldings, U -folded graphs. In U -folded graph an element is

readable iff its normal form is readable.

4. Solution to Membership problem and numerous other problems

(2004-2008):

Miasnikov, Remeslennikov, Serbin. Membership problem.

Kharlampovich, Miasnikov, Remeslennikov, Serbin. Intersection,

Houson property, conjugacy, normality, malnormality.

Serbin, N. Finite index, Greenberg-Stallings, commensurator.

Proof of Subgroup Separability in terms of U -graphs is not known.
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Can we organize Stallings-like graph technique for arbitrary f.g.

subgroups of R∗(Zn, X)?
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u  v

u  w

u

v w
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u

w=uu...u...v
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Λ-trees

Let Λ be an ordered abelian group, for example Zn with right

lexicographic order.

The following definition is due to Morgan and Shalen (1984).

A Λ-tree is a geodesic Λ-metric space (X, d) such that for all

x, y, z ∈ X

[x, y] ∩ [x, z] = [x,w] for some w ∈ X,

[x, y] ∩ [y, z] = {y} ⇒ [x, z] = [x, y] ∪ [y, z].
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Examples.

n = 1.

Z-tree is a “usual” simplicial tree.
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n = 2.

Z2-tree can be viewed as a “tree of Z-trees”.

T

α

β
S

T

S
(  ,  )α β
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An isometric action of a group on a Λ-tree X is free if there are no

inversions and the stabilizer of each point of X is trivial. We say that

a group G is Λ-free if G admits such an action on some Λ-tree.
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Alperin–Bass Program. Find the group theoretic information

carried by free action on a Λ-tree.

Problem. Describe finitely presented (finitely generated) groups

acting freely on an arbitrary Λ-tree.

Two principal cases:

• Λ archimedian

• Λ non-archimedian
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Archimedian case

Λ ↪→ R. Groups acting on R-trees are described by Rips’ theorem:

Theorem. A finitely generated group acts freely on an R-tree if and

only if it is a free product of free abelian groups and surface groups

(with exception of non- orientable groups of genus 1, 2, and 3)

37



Non-archimedian case

Conjecture. (Kharlampovich, Miasnikov, Serbin) A finitely

presented group acting freely and regularly on Λ-tree can be embedded

in a group acting freely on a Zn-tree.
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Zn-free groups

Martino, O Rourke (2004), Guirardel (2004).

1. (MR) Zn-free groups are commutation transitive, and any abelian

subgroup of a Zn-free group is free abelian of rank at most n.

2. (MR) Zn-free groups are coherent.

3. (G) Zn-free groups are hyperbolic relative to maximal abelian

subgroups.

4. (MR) A finitely generated Zn-free group all of whose maximal

abelian subgroups are cyclic is word hyperbolic (as are all its

finitely generated subgroups).

5. (MR) Word Problem is decidable in any Zn-free group.

6. (MR) Class of Zn-free (for some n) groups is closed under

amalgamated products along maximal abelian subgroups.
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The following is due to Chiswell and Myasnikov–Remeslennikov–Serbin

((1) → (3)).

Theorem. Let G be a finitely generated group. Then the following

are equivalent:

1. there exists an embedding G ↪→ R∗(Zn, X),

2. G has a free Lyndon length function with values in Zn,

3. G acts freely on Zn-tree.
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Action of G on a Λ-tree is called regular if, under corresponding

G ↪→ R∗(Zn, X),

∀f, g ∈ G com(f, g) ∈ G.

In terms of action itself: action is branch-point transitive.
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Length functions

A function l : G → Λ is called a (Lyndon) length function on G if:

(L1) ∀ g ∈ G : l(g) > 0 and l(1) = 0;

(L2) ∀ g ∈ G : l(g) = l(g−1);

(L3) ∀ g, f, h ∈ G : c(g, f) > c(g, h) → c(g, h) = c(f, h),

where c(g, f) = 1
2 (l(g) + l(f)− l(g−1f)).

f
g

c(f,g)

h
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A length function l : G → Λ is called free if:

(L4) ∀ g, f ∈ G : c(g, f) ∈ Λ.

(L5) ∀ g ∈ G : g 6= 1 → l(g2) > l(g).

If l(fg) = l(f) + l(g), we write fg = f ◦ g.
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A length function l : G → Λ is called regular if it satisfies the

regularity axiom:

(L6) ∀ g, f ∈ G, ∃ u, g1, f1 ∈ G :

g = u ◦ g1 & f = u ◦ f1 & l(u) = c(g, f).

f
g

Gu
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Example

Take G ⊆ F (x, y), G = y−1〈x〉y. If

f = y−1x100y, g = y−1x10y,

then

u = y−1x10 /∈ G,

so the free length function that F induces on G is not regular.
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How to embed a group with free length function into a group with free

regular length function: “cut up” elements into pieces until (L6) is

satisfied.

Theorem. (Chiswell, Muller) Finitely generated group acting

freely on a Λ-tree can be embedded in a group acting freely and

regularly on a Λ-tree.

Theorem. (Kharlampovich, Miasnikov, Serbin) Finitely

generated group acting freely on a Zn-tree can be embedded in a

finitely generated group acting freely and regularly on a Zn-tree.

Moreover, the embedding is (in certain sense) effective.
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Theorem. (Kharlampovich, Myasnikov, Remeslennikov,

Serbin) Finitely generated G has a regular free action on a Zn-tree if

and only if G can be represented as a union of a finite series of groups

G1 < G2 < . . . < Gn = G,

where

1. Gi has a regular free action on a Zi-tree (that is, G1 is a free

group),

2. Gi+1 is obtained from Gi by finitely many HNN-extensions in

which associated subgroups are maximal abelian and

length-isomorphic.
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Free groups:

1. F (X) represented by reduced words in alphabet X ∪X−1.

2. Graphs labeled by words in X ∪X−1.

3. Stallings foldings, Stallings graph.

4. Solution to Membership problem and numerous other problems.

F.g. fully residually free groups:

1. A g ∈ G represented by its reduced form π(g). G ↪→ R(ZN , X).

2. Graphs labeled by special infinite words.

3. U -foldings, U -folded graphs.

4. Solution to Membership problem and numerous other problems.
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Good intentions.

Given finitely generated Zn-free group G,

1. based on structure theorem and Britton’s lemma, define normal

form of elements of G,

2. build (not folded) graph labeled by infinite words that recognizes G,

3. “fold” it so that it accepts normal forms of elements of G,

4. enjoy solving algorithmic problems.
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Good intention #1 fails.

Normal forms similar to ones in limit groups are unreasonably

technically complicated. Instead of a unique normal form, for each

g ∈ G we define an infinite set of words Π(g).
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Denote in last theorem

Gn = 〈Gn−1, Tn−1 | w−1Cww
φw
= Dw, w ∈ Tn−1, 〉.

As an infinite word, element w starts with “positive” infinite power of

any element of Cw and ends with “positive” infinite power of any

element of Dw.
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Example:

Cw = 〈xy〉, Dw = 〈zx〉,
w = xyxy · · · zxzx,

(x−1z−1x−1z−1 . . . y−1x−1y−1x−1)xy(xyxy · · · zxzx) = zx.
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Define finite alphabet B(G) to be union X ∪ T1 ∪ . . . ∪ Tn−1.

53



Building folded B(G)-graph.

Primary (short-term) goal:

build B(G)-graph that can be used to solve subgroup membership

problem.

Long-term goal:

build B(G)-graph that can be reasonably used to solve other

algorithmic problems.
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Theorem. (Nikolaev, Serbin) For a fixed G, there exists

algorithm that, given a B(G)-graph Γ produces Γ′, that recognizes the
same group, with the following property:

if there exists path p in Γ′ such that

o(p) = v1, e(p) = v2, µ(p) = g,

then there exists path q such that

o(q) = v1, e(q) = v2, µ(p) ∈ Π(g).

The latter for a given g can be checked effectively.
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Good: Solved uniform subgroup membership problem (and power

problem).

Bad: Solution to other algorithmic problems (even intersection

problem) will be rather involved.
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