Membership problem in \mathbb{Z}^n -free groups

Andrey Nikolaev Stevens Institute of Technology (joint with Denis Serbin)

Stallings' foldings in free groups

Consider oriented graphs Γ whose edges are labeled by elements of a finite alphabet $X \cup X^{-1}$.

Example. $X = \{x, y\}$

Label of an edge e is denoted $\mu(e)$. Define $\mu(e^{-1}) = \mu(e)^{-1}$.

A path p in Γ has a label $\mu(p) = \mu(e_1) \cdots \mu(e_k)$ which is a word in the alphabet $X \cup X^{-1}$.

Let $v \in V(\Gamma)$. Define the language of Γ with respect to v to be $L(\Gamma, v) = \{\mu(p) \mid p \text{ is a reduced loop in } \Gamma \text{ at } v\},$ where "reduced" stands for "without back-tracking".

The set

$$\overline{L(\Gamma, v)} = \{ \overline{w} \mid w \in L(\Gamma, v) \},\$$

where "-" denotes free reduction, is a subgroup of F(X).

On the other hand, if H is a finitely generated subgroup of F(X) then it is easy to construct a graph Γ such that $H = \overline{L(\Gamma, v)}$ for some $v \in V(\Gamma)$.

Example. Let $H = \langle x^2, xy \rangle < F(x, y)$ and take Γ to be a bouquet of loops at a vertex v, labeled by the generators of H.

Obviously, $H = L(\Gamma, v)$.

The idea to work with X-labeled graphs rather than subgroups of F(X) was introduced by J. Stallings (1983).

Many problems for subgroups of a free group now can be restated in terms of graphs and easily solved. But graphs representing subgroups have to be folded.

An $X\mbox{-labeled graph}\ \Gamma$ is folded if it does not have subgraphs of the form

Consider the following operations called foldings

Fact. If Δ is obtained from Γ by a folding, so that $w \in V(\Delta)$ corresponds to $v \in V(\Gamma)$. Then $\overline{L(\Gamma, v)} = \overline{L(\Delta, w)}$.

Fact. For every finitely generated $H \leq F(X)$ there exists a folded X-labeled graph Γ such that $H = \overline{L(\Gamma, v)}$ for some $v \in V(\Gamma)$. We start with a bouquet of loops labeled by generators of H and perform all possible foldings.

Example: $H = \langle x, y^2, y^{-1}xy \rangle < F(x, y).$

Fact. If Γ is folded then $\overline{L(\Gamma, v)} = L(\Gamma, v)$

Let $H \leq F(X)$ and let Γ be a folded X-digraph such that $H = L(\Gamma, v)$ for some $v \in V(\Gamma)$. If $g \in F(X)$ then

$$g \in H \iff g \in L(\Gamma, v).$$

It is easy to check the last inclusion which gives a solution of the Subgroup Membership Problem.

A way to look at Stalling graphs:

1. F(X) represented by reduced words in alphabet $X \cup X^{-1}$. $F(X) \hookrightarrow R(\mathbb{Z}, X)$.

2. Graphs labeled by words in $X \cup X^{-1}$.

3. Stallings foldings, Stallings graph. In a folded graph element of a group is readable iff corresponding reduced word is readable.

4. Solution to Membership problem and numerous other problems.

Fully residually free groups and U-foldings

If G is a f.g. fully residually free group, then $G \hookrightarrow F^{\mathbb{Z}[t]}$, where $F^{\mathbb{Z}[t]}$ is Lyndon's free group.

 $F^{\mathbb{Z}[t]}$ can be defined as a union of chain of groups

$$F(X) = F_0 < F_1 < \ldots < F_n < \cdots$$

where F = F(X) is a free group on an alphabet X, and F_k is generated by F_{k-1} and formal expressions of the type

$$\{w^{\alpha} \mid w \in F_{k-1}, \ \alpha \in \mathbb{Z}[t]\}.$$

That is, every element of F_k can be viewed as a parametric word of the type

$$w_1^{\alpha_1}w_2^{\alpha_2}\cdots w_m^{\alpha_m},$$

where $m \in \mathbb{N}$, $w_i \in F_{k-1}$, and $\alpha_i \in \mathbb{Z}[t]$.

Moreover, for a specific f.g. G we can take part of this chain "that matters": $G \hookrightarrow F_n$,

$$F(X) = F_0 < F_1 < \ldots < F_n,$$

where $F_k = \langle F_{k-1}, u_k^{\alpha} | \alpha \in \mathbb{Z}[t] \rangle$ (Miasnikov, Kharlampovich).

Idea: Treat u^{α} as an infinite word $uuu \cdots uuu$.

Ordered abelian groups

Let Λ be an ordered abelian group (any $a, b \in A$ are comparable and for any $c \in \Lambda$: $a \leq b \Rightarrow a + c \leq b + c$).

Examples.

- 1. archimedean case: $\Lambda = \mathbb{R}, \ \Lambda = \mathbb{Z}$ with usual order.
- 2. non-archimedean case: $\Lambda=\mathbb{Z}^2$ with the right lexicographic order

$$(a,b) < (c,d) \iff b < d \text{ or } b = d \text{ and } a < c.$$

In particular,

$$(0,1) > (n,0)$$
 for every $n \in \mathbb{Z}$.

For $\alpha, \beta \in \Lambda$ the closed segment $[\alpha, \beta]$ is defined by

$$[\alpha,\beta] = \{\gamma \in \Lambda \mid \alpha \le \gamma \le \beta \}.$$

Example. $\Lambda = \mathbb{Z}^2$, [(-2, -1), (3, 1)]

Infinite words

Let Λ be a discretely ordered abelian group (contains a minimal positive element 1_{Λ}) and $X = \{x_i \mid i \in I\}$ be a set.

A Λ -word is a function of the type

$$w: [1_\Lambda, \alpha] \to X^{\pm},$$

where $\alpha \geq 0$. The element α is called the length |w| of w.

By ε we denote the empty Λ -word (when $\alpha = 0$).

 $w \text{ is reduced} \iff \text{no subwords } xx^{-1}, x^{-1}x \ (x \in X).$

 $R(\Lambda, X) =$ the set of all reduced Λ -words.

In "linear" notation

Concatenation of $\Lambda\text{-words}$

We write $u \circ v$ instead of uv in the case when uv is reduced.

Multiplication of $\Lambda\text{-words}$

Multiplication of Λ -words

Let $u, v \in R(\Lambda, X)$.

Suppose u and v can be represented in the form

$$u = \tilde{u} \circ c^{-1}, v = c \circ \tilde{v},$$

where $c \in R(\Lambda, X)$ is of maximal possible length.

Then define

$$u * v = \tilde{u} \circ \tilde{v}.$$

The decomposition of u and v above exists only if u^{-1} and v have the maximal common initial part defined on a closed segment.

Example. $u, v \in R(\mathbb{Z}^2, X)$

The common initial part of u^{-1} and v is

 $\begin{array}{cccc} X & X & X & ---- \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{array}$

which is not defined on a closed segment. Hence, u * v is not defined.

Cyclic decomposition

 $v \in R(\Lambda, X)$ is cyclically reduced if $v(1_{\Lambda})^{-1} \neq v(|v|)$.

 $v \in R(\Lambda, X)$ admits a cyclic decomposition if

 $v = c^{-1} \circ u \circ c,$

where $c, u \in R(A, X)$ and u is cyclically reduced.

Example. $u \in R(\mathbb{Z}^2, X)$ does not admit a cyclic decomposition

$$\mathbf{U} : \mathbf{v}^{-1} \quad \mathbf{x}^{-1} \quad \cdots \quad \mathbf{v} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \cdots \quad \mathbf{v} \quad \mathbf{x} \quad \mathbf{x}$$
$$\mathbf{U} : \mathbf{v}^{-1} \quad \mathbf{v}^{-1} \quad \cdots \quad \mathbf{v} \quad \mathbf{v}^{-1} \quad \mathbf{v}^{-$$

Torsion

 $R(\Lambda, X)$ has elements of order 2.

Example. $u \in R(\mathbb{Z}^2, X)$

has order 2.

Fact. Let $u \in R(\Lambda, X)$. If u * u is defined then either u admits a cyclic decomposition (thus, has infinite order), or has order 2.

$F^{\mathbb{Z}[t]}$ as a group of infinite words

Recall that a f.g. fully residually free G embeds into F_n ,

$$F(X) = F_0 < F_1 < \ldots < F_n,$$

where $F_k = \langle F_{k-1}, u_k^{\alpha} | \alpha \in \mathbb{Z}[t] \rangle$.

Theorem. (Miasnikov, Remeslennikov, Serbin) There exists an embedding

$$\phi: F_n \hookrightarrow R(\mathbb{Z}^N, X).$$

Moreover, this embedding is effective and representation of elements of $F^{\mathbb{Z}[t]}$ by infinite words introduces "nice" normal forms on $F^{\mathbb{Z}[t]}$.

(in fact, $\phi: F^{\mathbb{Z}[t]} \hookrightarrow R^*(\mathbb{Z}[t], X)$.)

Example. Let $X = \{x, y\}, F = F(X)$. If $u \in F$ is cyclically reduced then

$$G = \langle F, s \mid s^{-1}us = u \rangle$$

is embeddable into $R(\mathbb{Z}^2, X)$.

Indeed, $F \subset R^*(\mathbb{Z}^2, X)$ and we define s as an "infinite power" of u $s = [uuuu \cdots)(\cdots uuuu] = u^t$

It is easy to see that

$$u \circ s = s \circ u.$$

Elements of $G = \langle F, s \mid s^{-1}us = u \rangle$ viewed as infinite words have normal forms.

If $g \in G$ then its normal form

$$\pi(g) = g_1 \circ u^{\alpha_1} \circ g_2 \circ \cdots \circ u^{\alpha_n} \circ g_{n+1},$$

where $g_i \in F$, $\alpha_i \in \mathbb{Z}^2 - \mathbb{Z}$.

Normal forms can be computed easily.

Example. Let $u = xy \in F$ and $g = (y^{-1}x^{-1}) \ s \ x^{-1} \ s^{-1} \in G$. Then, a representation of g as an infinite word is

$$g = (y^{-1}x^{-1}) * u^{t} * x^{-1} * u^{-t} = (y^{-1}x^{-1}) * (u \circ u^{t-1}) * x^{-1} * u^{-t} = (y^{-1}x^{-1}) * ((xy) \circ u^{t-1}) * x^{-1} * u^{-t} = u^{t-1} \circ x^{-1} \circ u^{-t}.$$

Generalization of Stallings' foldings to $F^{\mathbb{Z}[t]}$

Theorem. (Miasnikov, Remeslennikov, Serbin) Let G be a f.g. subgroup of $F^{\mathbb{Z}[t]}$. Then there exists a finite labeled directed graph Γ_G such that

 $g \in G$ if and only if Γ_G "accepts" $\pi(g)$.

In other words Γ_G solves the Subgroup Membership Problem in $F^{\mathbb{Z}[t]}$. Moreover, Γ_G can be constructed effectively, given generators of G.

Edges of Γ_G are labeled by letters from the alphabet

$$\{X \cup X^{-1}\} \cup \{u^{\alpha} \mid u \in U, \alpha \in \mathbb{Z}[t]\},\$$

where U is a special subset of $F^{\mathbb{Z}[t]}$.

Graphs labeled by X and u_i^{α} . U-foldings.

1. A $g \in G$ represented by its reduced form $\pi(g)$. $G \hookrightarrow R(\mathbb{Z}^N, X)$.

2. Graphs labeled by special infinite words.

3. U-foldings, U-folded graphs. In U-folded graph an element is readable iff its normal form is readable.

4. Solution to Membership problem and numerous other problems (2004-2008):

Miasnikov, Remeslennikov, Serbin. Membership problem.

Kharlampovich, Miasnikov, Remeslennikov, Serbin. Intersection, Houson property, conjugacy, normality, malnormality.

Serbin, N. Finite index, Greenberg-Stallings, commensurator.

Proof of Subgroup Separability in terms of U-graphs is not known.

Can we organize Stallings-like graph technique for arbitrary f.g. subgroups of $R^*(\mathbb{Z}^n, X)$?

Λ -trees

Let Λ be an ordered abelian group, for example \mathbb{Z}^n with right lexicographic order.

The following definition is due to Morgan and Shalen (1984). A Λ -tree is a geodesic Λ -metric space (X, d) such that for all $x, y, z \in X$ $[x, y] \cap [x, z] = [x, w]$ for some $w \in X$, $[x, y] \cap [y, z] = \{y\} \Rightarrow [x, z] = [x, y] \cup [y, z].$

Examples.

n = 1. \mathbb{Z} -tree is a "usual" simplicial tree. n=2. $\mathbb{Z}^2\text{-tree}$ can be viewed as a "tree of $\mathbb{Z}\text{-trees}$ ".

An isometric action of a group on a Λ -tree X is free if there are no inversions and the stabilizer of each point of X is trivial. We say that a group G is Λ -free if G admits such an action on some Λ -tree. **Alperin–Bass Program.** Find the group theoretic information carried by free action on a Λ -tree.

Problem. Describe finitely presented (finitely generated) groups acting freely on an arbitrary Λ -tree.

Two principal cases:

- Λ archimedian
- Λ non-archimedian

Archimedian case

 $\Lambda \hookrightarrow \mathbb{R}$. Groups acting on \mathbb{R} -trees are described by Rips' theorem:

Theorem. A finitely generated group acts freely on an \mathbb{R} -tree if and only if it is a free product of free abelian groups and surface groups (with exception of non- orientable groups of genus 1, 2, and 3)

Non-archimedian case

Conjecture. (Kharlampovich, Miasnikov, Serbin) A finitely presented group acting freely and regularly on Λ -tree can be embedded in a group acting freely on a \mathbb{Z}^n -tree.

\mathbb{Z}^n -free groups

Martino, O Rourke (2004), Guirardel (2004).

- 1. (MR) \mathbb{Z}^n -free groups are commutation transitive, and any abelian subgroup of a \mathbb{Z}^n -free group is free abelian of rank at most n.
- 2. (MR) \mathbb{Z}^n -free groups are coherent.
- 3. (G) \mathbb{Z}^n -free groups are hyperbolic relative to maximal abelian subgroups.
- (MR) A finitely generated Zⁿ-free group all of whose maximal abelian subgroups are cyclic is word hyperbolic (as are all its finitely generated subgroups).
- 5. (MR) Word Problem is decidable in any \mathbb{Z}^n -free group.
- 6. (MR) Class of Z^n -free (for some n) groups is closed under amalgamated products along maximal abelian subgroups.

The following is due to Chiswell and Myasnikov–Remeslennikov–Serbin $((1) \rightarrow (3))$.

Theorem. Let G be a finitely generated group. Then the following are equivalent:

- 1. there exists an embedding $G \hookrightarrow R^*(\mathbb{Z}^n, X)$,
- 2. G has a free Lyndon length function with values in \mathbb{Z}^n ,
- 3. G acts freely on \mathbb{Z}^n -tree.

Action of G on a Λ -tree is called regular if, under corresponding $G \hookrightarrow R^*(\mathbb{Z}^n, X)$,

$$\forall f,g \in G \quad com(f,g) \in G.$$

In terms of action itself: action is branch-point transitive.

Length functions

A function $l: G \to \Lambda$ is called a (Lyndon) length function on G if: (L1) $\forall g \in G: l(g) \ge 0$ and l(1) = 0; (L2) $\forall g \in G: l(g) = l(g^{-1})$; (L3) $\forall g, f, h \in G: c(g, f) > c(g, h) \to c(g, h) = c(f, h)$, where $c(g, f) = \frac{1}{2}(l(g) + l(f) - l(g^{-1}f))$.

A length function $l: G \to \Lambda$ is called free if: (L4) $\forall g, f \in G: c(g, f) \in \Lambda$. (L5) $\forall g \in G: g \neq 1 \to l(g^2) > l(g)$. If l(fg) = l(f) + l(g), we write $fg = f \circ g$. A length function $l: G \to \Lambda$ is called regular if it satisfies the regularity axiom:

(L6) $\forall g, f \in G, \exists u, g_1, f_1 \in G:$

 $g = u \circ g_1 \& f = u \circ f_1 \& l(u) = c(g, f).$

Example

Take
$$G\subseteq F(x,y)$$
, $G=y^{-1}\langle x\rangle y$. If
$$f=y^{-1}x^{100}y,\quad g=y^{-1}x^{10}y,$$

then

$$u = y^{-1}x^{10} \notin G,$$

so the free length function that F induces on G is not regular.

How to embed a group with free length function into a group with free regular length function: "cut up" elements into pieces until (L6) is satisfied.

Theorem. (Chiswell, Muller) Finitely generated group acting freely on a Λ -tree can be embedded in a group acting freely and regularly on a Λ -tree.

Theorem. (Kharlampovich, Miasnikov, Serbin) Finitely generated group acting freely on a \mathbb{Z}^n -tree can be embedded in a finitely generated group acting freely and regularly on a \mathbb{Z}^n -tree. Moreover, the embedding is (in certain sense) effective.

Theorem. (Kharlampovich, Myasnikov, Remeslennikov, Serbin) Finitely generated G has a regular free action on a Z^n -tree if and only if G can be represented as a union of a finite series of groups

$$G_1 < G_2 < \ldots < G_n = G,$$

where

- 1. G_i has a regular free action on a Z^i -tree (that is, G_1 is a free group),
- G_{i+1} is obtained from G_i by finitely many HNN-extensions in which associated subgroups are maximal abelian and length-isomorphic.

Free groups:

- 1. F(X) represented by reduced words in alphabet $X \cup X^{-1}$.
- 2. Graphs labeled by words in $X \cup X^{-1}$.
- 3. Stallings foldings, Stallings graph.
- 4. Solution to Membership problem and numerous other problems.
- F.g. fully residually free groups:
- 1. A $g \in G$ represented by its reduced form $\pi(g)$. $G \hookrightarrow R(\mathbb{Z}^N, X)$.
- 2. Graphs labeled by special infinite words.
- 3. *U*-foldings, *U*-folded graphs.
- 4. Solution to Membership problem and numerous other problems.

Good intentions.

Given finitely generated \mathbb{Z}^n -free group G,

1. based on structure theorem and Britton's lemma, define normal form of elements of G,

- 2. build (not folded) graph labeled by infinite words that recognizes G,
- 3. "fold" it so that it accepts normal forms of elements of G,
- 4. enjoy solving algorithmic problems.

Good intention #1 fails.

Normal forms similar to ones in limit groups are unreasonably technically complicated. Instead of a unique normal form, for each $g \in G$ we define an infinite set of words $\Pi(g)$.

Denote in last theorem

$$G_n = \langle G_{n-1}, T_{n-1} | w^{-1} C_w w \stackrel{\phi_w}{=} D_w, w \in T_{n-1}, \rangle.$$

As an infinite word, element w starts with "positive" infinite power of any element of C_w and ends with "positive" infinite power of any element of D_w . Example:

$$C_w = \langle xy \rangle, \ D_w = \langle zx \rangle,$$
$$w = xyxy \cdots zxzx,$$
$$(x^{-1}z^{-1}x^{-1}z^{-1} \dots y^{-1}x^{-1}y^{-1}x^{-1})xy(xyxy \cdots zxzx) = zx.$$

Define finite alphabet $\mathcal{B}(G)$ to be union $X \cup T_1 \cup \ldots \cup T_{n-1}$.

Building folded $\mathcal{B}(G)$ -graph.

Primary (short-term) goal:

build $\mathcal{B}(G)$ -graph that can be used to solve subgroup membership problem.

Long-term goal:

build $\mathcal{B}(G)$ -graph that can be reasonably used to solve other algorithmic problems.

Theorem. (Nikolaev, Serbin) For a fixed G, there exists algorithm that, given a $\mathcal{B}(G)$ -graph Γ produces Γ' , that recognizes the same group, with the following property: if there exists path p in Γ' such that

$$o(p) = v_1, e(p) = v_2, \mu(p) = g,$$

then there exists path q such that

$$o(q) = v_1, e(q) = v_2, \mu(p) \in \Pi(g).$$

The latter for a given g can be checked effectively.

Good: Solved uniform subgroup membership problem (and power problem).

Bad: Solution to other algorithmic problems (even intersection problem) will be rather involved.