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Algebraic & definable closure in free groups

Background

Definitions

Definition

Let G be a group and A a subset of G.

The algebraic closure of A,

denoted acl(A), is the set of
elements g ∈ G such that there exists a formula φ(x), with
parameters from A, such that G |= φ(g) and φ(G ) is finite.

The definable closure of A,

denoted dcl(A), is the set of
elements g ∈ G such that there exists a formula φ(x), with
parameters from A, such that G |= φ(g) and φ(G ) is a
singleton.
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Background

Question (Z. Sela, 2008): Is it true that acl(A) = dcl(A) in free
groups?

Let Γ be a torsion-free hyperbolic group and A ⊆ Γ.

acl(A) = acl(〈A〉) and dcl(A) = dcl(〈A〉).

Hence, we may
assume that A is a subgroup.

If Γ = Γ1 ∗ Γ2 and A ≤ Γ1 then acl(A) ≤ Γ1.

Similarly for dcl(A). Hence, we may assume that Γ is freely
A-indecomposable.

If A is abelian (A 6= 1), then acl(A) = dcl(A) = CΓ(A).

Hence, we may assume that A is nonabelian.
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Theorem

Let Γ be a torsion-free hyperbolic group and A a nonabelian
subgroup of Γ.
Then Γ can be constructed from acl(A) by a finite sequence of
amalgamated free products and HNN-extensions along cyclic
subgroups.
In particular, acl(A) is finitely generated, quasiconvex and
hyperbolic.
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Sketch of the proof

Lemma

Let G be an equationally noetherian group and G ∗ an elementary
extension of G . Let P be a subset of G and K a finitely generated
subgroup of G ∗ such that P ⊆ K . Then there exists a finite subset
P0 ⊆ P such that for any homomorphism f : K → G ∗, if f fixes P0

pointwise then f fixes P pointwise.
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Proposition

Let Γ be a torsion-free hyperbolic group and A a nonabelian
subgroup of Γ. Let Γ∗ be a nonprincipal ultrapower of Γ. Let
K ≤ Γ∗ be a finitely generated subgroup such that acl(A) ≤ K and
such that K is acl(A)-freely indecomposable. Then one of the
following cases holds:

(1) Let Λ be the abelian JSJ-decomposition of K relative to acl(A).
Then the vertex group containing acl(A) in Λ is exactely acl(A).
(2) There exists a finitely generated subgroup L ≤ Γ∗ such that
acl(A) ≤ L and a non-injective epimorphism f : K → L satisfying:
(2)(i) f sends acl(A) to acl(A) pointwise;
(2)(ii) if Λ is the abelian JSJ-decomposition of K relative to

acl(A), then f is injective in restriction to the vertex group
containing acl(A) in Λ.
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Proof of Corollary

We construct a sequence K = K0,K1, . . . ,Kn

of finitely generated subgroups of Γ∗, with epimorphisms
fi : Ki → Ki+1 satisfying:

(i) fi sends acl(A) to acl(A) pointwise,

(ii) either Ki+1 is a free factor of Ki and fi is just the retraction
that kills the complement, or f is injective in restriction to the
vertex group containing acl(A) in the abelian JSJ-decomposition
of Ki relative to acl(A),

(iii) if Λ is the abelian JSJ-decomposition of Kn, then the vertex
group containing acl(A) in Λ is exactely acl(A).
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We put K0 = K . Suppose that Ki is constructed. If Ki is freely
decomposable relative to acl(A), then we set Ki = Ki+1 ∗ H with
acl(A) ≤ Ki+1 and Ki+1 freely acl(A)-indecomposable. We define
fi : Ki → Ki+1 to be the retraction that kills H.
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If Ki is freely acl(A)-indecomposable, then one of the cases of
previous proposition is fulfilled. If (1) holds, then this terminates
the construction of the sequence. Otherwise, (2) holds and we get
Ki+1 ≤ Γ∗ and fi : Ki → Ki+1 satisfying (2)(i)-(ii) of the
proposition.
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Sketch of the proof

Using the desending chain condition on Γ-limit groups, the
sequence terminates.
Let Kn be the last in the sequence. Hence, the property (iii) is
satisfied. We show by inverse induction on i , that Ki satisfies the
conclusion of the corollary. Since acl(A) is exactely the vertex
group containing acl(A) in the abelian JSJ-decomposition of Kn

relative to acl(A), it follows that Kn can be constructed from
acl(A) by a sequence of free products and HNN-extensions along
abelian subgroups. Hence Kn satifies the conclusion of the
corollary. The result is by induction.
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Sketch of the proof of the proposition

Let d̄ be a finite generating tuple of K . Set

S(x̄) = {w(x̄)|K |= w(d̄) = 1}.

Using the previous lemma, we conclude that there exists a finite
conjonction of words W (x̄) such that any map f : K → Γ
satisfying Γ |= W (f (d̄)) extends to a homomorphism, which fixes
acl(A) pointwise.
Let (vi (x̄)|i ∈ N) be the list of reduced words such that
K |= vi (d̄) 6= 1.
For m ∈ N, we set

(∗) ϕm(x̄) := W (x̄) ∧
∧

0≤i≤m

vi (x̄) 6= 1.
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Then

Suppose first that there exists m ∈ N, such that for any map
f : K → Γ for which Γ |= ϕm(f (d̄)), f is an embedding.

In
that case, the vertex group B containing acl(A) in the abelian
JSJ-decomposition of K relative to acl(A), is exactely acl(A).
Thus we obtain conclusion (1) of the proposition.

Suppose that for every m ∈ N, there exists a non-injective
homomorphism f : K → Γ scuh that Γ |= ϕm(f (d̄)).

Therefore, we get a stable sequence (fn : K → Γ), where each
fn is non-injective, and with trivial stable kernel. In that case,
we take a shortening quotient. Hence we obtain conclusion
(2) of the proposition.
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Theorem (Sela)

Mod(Γ/A) has a finite index in Aut(F/A).

Definition

Let G be a group and A a subset of G. The Galois group of A,
denoted Gal(G/A), is the set of elements g ∈ G for which the
orbit {f (g)|f ∈ Aut(G/A)} is finite.

Remark. Gal(G/A) is a subgroup which contains acl(A).
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Proposition

Let G be a group and A a subgroup of G. Let Λ be an (infinite
abelian) splitting of G relative to A. If V is the vertex group
containing A then Gal(G/A) ≤ V and in particular acl(A) ≤ V .

Proof (Sketch) The proof by induction on the number of
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Proposition

Let Γ be a torison-free hyperbolic group and A a nonabelian
subgroup such that Γ is freely A-indecomposable. Then Gal(G/A)
coincides with the vertex group containing A in the cyclic
JSJ-decomposition of Γ (relative to A).

Proof Since |Aut(Γ/A) : Mod(G/A)| <∞ , there exist
automorphisms f1, . . . , fl of Γ such that for any f ∈ Aut(F/A),
there exists a modular automorphism σ ∈ Mod(Γ/A) such that
f = fi ◦ σ for some i .
Let b ∈ V . Since any σ ∈ Mod(Γ/A) fixes V pointwise, for any
automorphism f ∈ Aut(F/A) we have f (b) ∈ {f1(b), . . . , fl(b)}.
Thus b ∈ Gal(Γ/A) and V ≤ Gal(Γ/A). The inverse inclusion
follows from the previous proposition.
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Theorem

Let F be a nonabelian free group of finite rank and let A ≤ F be a
nonabelian subgroup. Then acl(A) coincides with the vertex
group containing A in the cyclic JSJ-decomposition of F relative to
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Sketch of the proof

Theorem (-O.)

Let F be a nonabelian free group of finite rank and let ā be a tuple
of F such that F is freely indecomposable relative to the subgroup
generated by ā. Let s̄ be a basis of F . Then there exists an
universal formula ϕ(x̄) such that F |= ϕ(s̄) and such that for any
endomorphism f of F , if F |= ϕ(s̄) and f fixes ā then f is an
automorphism.

Let V be the vertex group containing A in the cyclic
JSJ-decomposition of F relative to A.
Let b̄ be a finite generating set of acl(A). Let c ∈ V and let
(d̄1, d̄2) be a tuple generating F with d̄1 generates V . Then
c = w(d̄1) for some word.
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of F such that F is freely indecomposable relative to the subgroup
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Let ϕ(x̄ , ȳ) be the formula given by the above proposition with
respect to the generating tuple (d̄1, d̄2) and to the tuple b̄; that is
for any endomorphism f of F , if F |= ϕ(f (d̄1), f (d̄2)) and f fixes b̄
then f is an automorphism.
There exists a finite system S(x̄ , ȳ) of equations such that for any
(ᾱ, β̄) if F |= S(ᾱ, β̄) then the map which sends (d̄1, d̄2) to (ᾱ, β̄)
extends to an homomorphism.
Let v̄(x̄) be a tuple of words such that b̄ = v̄(d̄1).
Let

ψ(z , b̄) := ∃x̄∃ȳ(ϕ(x̄ , ȳ) ∧ z = w(x̄) ∧ S(x̄ , ȳ) ∧ b̄ = v̄(x̄)).
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ψ(z , b̄) := ∃x̄∃ȳ(ϕ(x̄ , ȳ) ∧ z = w(x̄) ∧ S(x̄ , ȳ) ∧ b̄ = v̄(x̄)).
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Let ϕ(x̄ , ȳ) be the formula given by the above proposition with
respect to the generating tuple (d̄1, d̄2) and to the tuple b̄; that is
for any endomorphism f of F , if F |= ϕ(f (d̄1), f (d̄2)) and f fixes b̄
then f is an automorphism.
There exists a finite system S(x̄ , ȳ) of equations such that for any
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extends to an homomorphism.

Let v̄(x̄) be a tuple of words such that b̄ = v̄(d̄1).
Let
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Then ψ(z , b̄) has only finitely many realizations.
Indeed, if

ψ(c ′, b̄) := ∃x̄∃ȳ(ϕ(x̄ , ȳ) ∧ c ′ = w(x̄) ∧ S(x̄ , ȳ) ∧ b̄ = v̄(x̄)),

then there exists an automorphism fixing acl(A) poinwtise, and
such that f (c) = c ′. Since V = Gal(F/A) we get that the set
{f (c)|f ∈ Aut(F/A)} is finite and thus ψ(z , b̄) has only finitely
many realizations as claimed. Thus c ∈ acl(acl(A)) = acl(A) as
required.
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Theorem

Let Γ be a free group of finite rank and A a nonabelian subgroup
of Γ. Then dcl(A) is a free factor of acl(A). Similarly dcl∃(A) is a
free factor of acl∃(A).

Proof (Sketch)
We know that acl(A) is finitely generated. Hence, by Grushko
theorem, acl(A) has a free decomposition acl(A) = K ∗ L, such
that K contains dcl(A) and it is freely dcl(A)-indecomposable. We
claim that K = dcl(A). Suppose for a contradiction that
dcl(A) < K and let a ∈ K with a 6∈ dcl(A).

Claim There exists an automorphism h of acl(A), of finite order
and fixing dcl(A) pointwise, such that h(a) 6= a.
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Proof of the Claim Since a ∈ acl(A) \ dcl(A), there exists a
formula ψ(x), with parameters from A, such that ψ(F ) is finite,
contains a and not a singleton.

Hence there exists b ∈ acl(A) such that tp(a|A) = tp(b|A) and
a 6= b. Indeed, set ψ(F ) = {a, b1, . . . , bm} and suppose towards a
contradiction that tp(a|A) 6= tp(bi |A) for all 1 ≤ i ≤ m. Thus, for
every 1 ≤ i ≤ m, there exists a formula ψi (x), with parameters
from A, such that ψi ∈ tp(bi |A) and ¬ψi ∈ tp(a|A). Thus the
formula ψ(x) ∧ ¬ψ1(x) ∧ · · · ∧ ¬ψm(x) defines a; a contradiction.
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Hence, we let b ∈ ψ(F ) such that a 6= b and tp(a|A) = tp(b|A).
There exists an elementary extension F ∗ of F and f ∈ Aut(F ∗/A)
such that f (a) = b. Let h be the restriction of f to acl(A). We
claim that h has the required properties.
Since h is the restriction of f , we get h(acl(A)) ≤ acl(A). Let
b ∈ acl(A) and let ψb(x) a formula, with parameters from A, such
that ψb(F ) is finite and contains b. Then h(ψb(F )) ≤ ψb(F ) and
since ψb(F ) is finite and h is injective we get h(ψb(F )) = ψb(F ).
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Thus h is surjetive and in particular an automorphism of acl(A).
Moreover, since for any n, hn is an automorphism of acl(A) and
hn(ψb(F )) = ψb(F ), we get that there exists n ∈ N such that hn

fixes pointwise ψb(F ).
Let {b1, . . . , bm} be a finite generating set of acl(A). Hence, we
get n1, . . . , nm such that hni (bi ) = bi . Therefore hn1···nm(x) = x for
any x ∈ acl(A) and thus h has a finite order. This completes the
proof of the claim.
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Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim.

We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K .

We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group.

Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1.

Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K .

In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .

If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable.

Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .

Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction.

Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction.

Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

Let h be the automorphism given by the above claim. We claim
that h(K ) = K . We have h(K ) ≤ acl(A) and by Grushko theorem

h(K ) = h(K )∩K g1∗· · ·∗h(K )∩K gn ∗h(K )∩Lh1∗· · ·∗h(K )∩Lhm ∗D,

where D is a free group. Since dcl(A) ≤ K ∩ h(K ), it follows that
for some i , gi = 1. Since K is dcl(A)-freely indecompsable, we find
that h(K ) = h(K ) ∩ K and thus h(K ) ≤ K . In particular
h(a) ∈ K .
If h(K ) < K , then K is freely dcl(A)-decomposable. Hence
h(K ) = K .
Since h is a notrivial automorphism of K of finite order, K is freely
dcl(A)-decomposable; a contradiction. Hence in each case, we get
a contradiction. Therefore dcl(A) = K as required.



Algebraic & definable closure in free groups

The algebraic & the definable closure

A counterexample

Theorem

Let A0 be a finite set (possibly empty) and

A = 〈A0, a, b, u|〉, H = A ∗ 〈y |〉,

v = aybyay−1by−1,

F = 〈H, t|ut = v〉.

Then F is a free group of rank |A0|+ 4 and:

If f ∈ Hom(F/A) then f ∈ Aut(F/A), and if f|H 6= 1 then
f (y) = y−1.

acl(A) = acl∃(A) = H.

dcl(A) = dcl∃(A) = A.
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Sketch of the proof

The importante propertie is the first one whose proof is technical.
Suppose that it holds.
Clearly we have

A ≤ acl∃(A) ≤ acl(A) ≤ Gal(F/A) ≤ H,

and thus to show that acl(A) = acl∃(A) = H, it is sufficient to
show that y ∈ acl∃(A). Let

ϕ(z) := ∃α(uα = azbzaz−1bz−1).

Then F |= ϕ(y). Let γ ∈ F such that F |= ϕ(γ). Then the map
defined by f (y) = γ, f (t) = α and the identity on A extends to a
homomorphism of F and thus, by the first propertie, γ = y±1.
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Hence ϕ(z) has only finitely many realizations and thus
y ∈ acl∃(A) as desired.
For the third propertie. We have

A ≤ dcl∃(A) ≤ dcl(A) ≤ H,

and thus it is sufficient to show that there exists g ∈ Aut(F/A)
such that for any γ ∈ H \ A we have g(γ) 6= γ. Let g defined on
H by g the identity on A, g(y) = y−1. Then

g(v) = ay−1by−1ayby = ay−1by−1aybyay−1by−1(ay−1by−1)−1

= dvd−1,

where d = ay−1by−1.
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Hence by extending g on F by

g(t) = td−1,

we get g ∈ Aut(F/A) with g(y) = y−1. Now if γ ∈ H \ A then
y appears in the normal form of γ and thus g(γ) 6= γ as
required.
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Theorem

Let F be a free group of rank 3 and let A be a subgroup of F . If
dcl(A) < acl(A) then there exist u, v , a, y in F such that:

(1) acl(A) = dcl(A) ∗ 〈y |〉, dcl(A) = 〈u, a|〉;
(2) F can be written as F = 〈acl(A), t|ut = v〉, where
v = α1y · · ·αpyα1y−1 · · ·αpy−1, and αi ∈ dcl(A) for all i ;
(3) Any nontrivial automorphism f ∈ Aut(F/A) satisfies
f (y) = y−1.
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