Golod-Shafarevich groups

Mikhail V. Ershov

Department of Mathematics University of Virginia

March 31, 2011

Golod-Shafarevich groups

- Motivation: class field tower problem
- Golod-Shafarevich algebras
- Golod-Shafarevich groups
- Structure of Golod-Shafarevich groups
- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

Outline

Golod-Shafarevich groups

• Motivation: class field tower problem

- Golod-Shafarevich algebras
- Golod-Shafarevich groups
- Structure of Golod-Shafarevich groups
- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

• Let *K* be a number of field.

• Let $\mathbb{H}(K)$ be the **class field** of *K*= maximal unramified abelian extension of *K*.

- Let *K* be a number of field.
- Let $\mathbb{H}(K)$ be the **class field** of K= maximal unramified abelian extension of K.

- Let *K* be a number of field.
- Let $\mathbb{H}(K)$ be the **class field** of K= maximal unramified abelian extension of K.

Definition

The class field tower

$$K = K^{(0)} \subseteq K^{(1)} \subseteq K^{(2)} \subseteq \dots$$

is defined by $K^{(i)} = \mathbb{H}(K^{(i-1)})$.

- Let *K* be a number of field.
- Let $\mathbb{H}(K)$ be the **class field** of K= maximal unramified abelian extension of K.

Definition

The class field tower

$$K = K^{(0)} \subseteq K^{(1)} \subseteq K^{(2)} \subseteq \dots$$

is defined by $K^{(i)} = \mathbb{H}(K^{(i-1)})$.

Problem (Class field tower (CFT) problem)

Does there exist K with infinite class field tower?

• Fix a prime *p*.

• Let $\mathbb{H}_p(K)$ be the *p*-class field of *K*= maximal unramified Galois extension of *K* such that $Gal(\mathbb{H}_p(K)/K)$ is an elementary abelian *p*-group.

- Let *K*_p = ∪*K*⁽ⁱ⁾_p. Then *K*_p is the max. unramified *p*-extension of *K*.
 Let *G*_{K,p} = *Gal*(*K*_p/*K*).
- Thus, to solve CFT it suffices to find *K* with $G_{K,p}$ infinite.

- Fix a prime *p*.
- Let $\mathbb{H}_p(K)$ be the *p*-class field of *K*= maximal unramified Galois extension of *K* such that $Gal(\mathbb{H}_p(K)/K)$ is an elementary abelian *p*-group.

- Let *K*_p = ∪*K*⁽ⁱ⁾_p. Then *K*_p is the max. unramified *p*-extension of *K*.
 Let *G*_{K,p} = *Gal*(*K*_p/*K*).
- Thus, to solve CFT it suffices to find *K* with $G_{K,p}$ infinite.

- Fix a prime *p*.
- Let $\mathbb{H}_p(K)$ be the *p*-class field of K= maximal unramified Galois extension of K such that $Gal(\mathbb{H}_p(K)/K)$ is an elementary abelian *p*-group.

Definition

The *p*-class field tower

$$K = K_p^{(0)} \subseteq K_p^{(1)} \subseteq K_p^{(2)} \subseteq \dots$$

is defined by $K_p^{(i)} = \mathbb{H}_p(K_p^{(i-1)}).$

- Let $\widehat{K}_p = \bigcup K_p^{(i)}$. Then \widehat{K}_p is the max. unramified *p*-extension of *K*.
- Let $G_{K,p} = Gal(\widehat{K}_p/K)$.
- Thus, to solve CFT it suffices to find *K* with $G_{K,p}$ infinite.

- Fix a prime *p*.
- Let $\mathbb{H}_p(K)$ be the *p*-class field of K= maximal unramified Galois extension of K such that $Gal(\mathbb{H}_p(K)/K)$ is an elementary abelian *p*-group.

Definition

The *p*-class field tower

$$K = K_p^{(0)} \subseteq K_p^{(1)} \subseteq K_p^{(2)} \subseteq \dots$$

is defined by $K_p^{(i)} = \mathbb{H}_p(K_p^{(i-1)}).$

- Let *K*_p = ∪*K*⁽ⁱ⁾_p. Then *K*_p is the max. unramified *p*-extension of *K*.
 Let *G*_{K,p} = *Gal*(*K*_p/*K*).
- Thus, to solve CFT it suffices to find *K* with *G_{K,p}* infinite.

- Fix a prime *p*.
- Let $\mathbb{H}_p(K)$ be the *p*-class field of K= maximal unramified Galois extension of K such that $Gal(\mathbb{H}_p(K)/K)$ is an elementary abelian *p*-group.

Definition

The *p*-class field tower

$$K = K_p^{(0)} \subseteq K_p^{(1)} \subseteq K_p^{(2)} \subseteq \dots$$

is defined by $K_p^{(i)} = \mathbb{H}_p(K_p^{(i-1)}).$

- Let $\widehat{K}_p = \bigcup K_p^{(i)}$. Then \widehat{K}_p is the max. unramified *p*-extension of *K*.
- Let $G_{K,p} = Gal(\widehat{K}_p/K)$.
- Thus, to solve CFT it suffices to find *K* with $G_{K,p}$ infinite.

In his 1963 IHES paper, Shafarevich studied presentations for $G_{K,p}$ and proved that $r(G_{k,p}) \leq d(G_{k,p}) + \rho(K)$ where

- $d(G_{K,p})$ is the minimal number of generators of $G_{K,p}$
- $r(G_{K,p})$ is the minimal number of relators $G_{K,p}$
- $\rho(K)$ is the torsion-free rank of the group of units of O_K .

In his 1963 IHES paper, Shafarevich studied presentations for $G_{K,p}$ and proved that $r(G_{k,p}) \leq d(G_{k,p}) + \rho(K)$ where

- $d(G_{K,p})$ is the minimal number of generators of $G_{K,p}$
- $r(G_{K,p})$ is the minimal number of relators $G_{K,p}$
- $\rho(K)$ is the torsion-free rank of the group of units of O_K .

This result implies that

Proposition

For every p there exists a sequence $\{K_n\}$ of number fields such that

(i)
$$d(G_{K_{n},p}) \to \infty$$

(ii) $r(G_{K_{n},p}) - d(G_{K_{n},p})$ is bounded above

In his 1963 IHES paper, Shafarevich studied presentations for $G_{K,p}$ and proved that $r(G_{k,p}) \leq d(G_{k,p}) + \rho(K)$ where

- $d(G_{K,p})$ is the minimal number of generators of $G_{K,p}$
- $r(G_{K,p})$ is the minimal number of relators $G_{K,p}$
- $\rho(K)$ is the torsion-free rank of the group of units of O_K .

This result implies that

Proposition

For every *p* there exists a sequence $\{K_n\}$ of number fields such that (i) $d(G_{K-n}) \to \infty$

(ii)
$$r(G_{K_n,p}) - d(G_{K_n,p})$$
 is bounded above

Theorem (Golod-Shafarevich 1964)

If G is a finite p-group, then $r(G) \ge (d(G) - 1)^2/4$.

In his 1963 IHES paper, Shafarevich studied presentations for $G_{K,p}$ and proved that $r(G_{k,p}) \leq d(G_{k,p}) + \rho(K)$ where

- $d(G_{K,p})$ is the minimal number of generators of $G_{K,p}$
- $r(G_{K,p})$ is the minimal number of relators $G_{K,p}$
- $\rho(K)$ is the torsion-free rank of the group of units of O_K .

This result implies that

Proposition

For every p there exists a sequence $\{K_n\}$ of number fields such that

(i)
$$d(G_{K_{n},p}) \to \infty$$

(ii) $r(G_{K_{n},p}) - d(G_{K_{n},p})$ is bounded above

Theorem (Golod-Shafarevich 1964)

If G is a finite p-group, then $r(G) \ge (d(G) - 1)^2/4$. Therefore, CFT problem has positive solution.

Mikhail V. Ershov (UVA)

Outline

Golod-Shafarevich groups

• Motivation: class field tower problem

Golod-Shafarevich algebras

- Golod-Shafarevich groups
- Structure of Golod-Shafarevich groups
- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

Let $U = \{u_1, \ldots, u_d\}$ be a finite set and *K* a field.

Golod-Shafarevich groups Golod-Shafarevich algebras

Golod-Shafarevich algebras: graded case

Let $U = \{u_1, \ldots, u_d\}$ be a finite set and *K* a field.

•
$$K\langle U\rangle = K\langle u_1,\ldots,u_d\rangle = \oplus_{n=0}^{\infty} K\langle U\rangle_n.$$

- *R* a subset of $K\langle U \rangle$ consisting of homogeneous elements of positive degree
- *I* the ideal of $K\langle U \rangle$ generated by *R*.
- $A = K\langle U \rangle / I$

Let $U = \{u_1, \ldots, u_d\}$ be a finite set and *K* a field.

•
$$K\langle U\rangle = K\langle u_1, \ldots, u_d\rangle = \oplus_{n=0}^{\infty} K\langle U\rangle_n.$$

- *R* a subset of *K*(*U*) consisting of homogeneous elements of positive degree
- *I* the ideal of $K\langle U \rangle$ generated by *R*.
- $A = K\langle U \rangle / I$

Let $U = \{u_1, \ldots, u_d\}$ be a finite set and *K* a field.

•
$$K\langle U\rangle = K\langle u_1, \ldots, u_d\rangle = \oplus_{n=0}^{\infty} K\langle U\rangle_n.$$

- *R* a subset of *K*(*U*) consisting of homogeneous elements of positive degree
- *I* the ideal of $K\langle U \rangle$ generated by *R*.
- $A = K\langle U \rangle / I$

Then

$$I = \bigoplus_{n=0}^{\infty} I_n \quad \text{where} \quad I_n = I \cap K \langle U \rangle_n$$
$$A = \bigoplus_{n=0}^{\infty} A_n \quad \text{where} \quad A_n = K \langle U \rangle_n / I_n.$$

Let r_n = |{r ∈ R : deg(r) = n}| and a_n = dim_KA_n.
 H_R(t) = Σ_{n=1}[∞] r_ntⁿ and H_A(t) = Σ_{n=0}[∞] a_ntⁿ

• Let
$$r_n = |\{r \in R : deg(r) = n\}|$$
 and $a_n = \dim_K A_n$.
• $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$

Theorem (Golod-Shafarevich inequality: graded case)

 $(1 - dt + H_R(t))H_A(t) \ge 1$ as power series

• Let $r_n = |\{r \in R : deg(r) = n\}|$ and $a_n = \dim_K A_n$. • $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$

Theorem (Golod-Shafarevich inequality: graded case)

 $(1 - dt + H_R(t))H_A(t) \ge 1$ as power series

Corollary

Assume there exists $\tau \in (0, 1)$ s.t. $1 - d\tau + H_R(\tau) < 0$ (***). Then $\dim_K A = \infty$.

• Let $r_n = |\{r \in R : deg(r) = n\}|$ and $a_n = \dim_K A_n$. • $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$

Theorem (Golod-Shafarevich inequality: graded case)

 $(1 - dt + H_R(t))H_A(t) \ge 1$ as power series

Corollary

Assume there exists
$$\tau \in (0, 1)$$
 s.t. $1 - d\tau + H_R(\tau) < 0$ (***)
Then dim_K $A = \infty$.

Definition

- The condition (***) is called the **GS condition**.
- A graded algebra *B* is called a **GS algebra** if it has a presentation satisfying the GS condition.

Mikhail V. Ershov (UVA)

Golod-Shafarevich groups

• Let *B* be a graded algebra over *K* with $\dim_K B < \infty$.

- Let $\langle U|R \rangle$ be a minimal presentation of *B*. Then $r_1 = 0$ (no degree 1 relators).
- Hence for any $\tau \in (0, 1)$ we have

$$0 \leqslant 1 - d\tau + H_R(\tau) \leqslant 1 - d\tau + |R|\tau^2.$$

- Let *B* be a graded algebra over *K* with dim_{*K*} $B < \infty$.
- Let $\langle U|R \rangle$ be a minimal presentation of *B*. Then $r_1 = 0$ (no degree 1 relators).
- Hence for any $\tau \in (0, 1)$ we have

$$0 \leqslant 1 - d\tau + H_R(\tau) \leqslant 1 - d\tau + |R|\tau^2.$$

- Let *B* be a graded algebra over *K* with dim_{*K*} $B < \infty$.
- Let $\langle U|R \rangle$ be a minimal presentation of *B*. Then $r_1 = 0$ (no degree 1 relators).
- Hence for any $\tau \in (0, 1)$ we have

$$0 \leq 1 - d\tau + H_R(\tau) \leq 1 - d\tau + |R|\tau^2.$$

- Let *B* be a graded algebra over *K* with dim_{*K*} $B < \infty$.
- Let $\langle U|R \rangle$ be a minimal presentation of *B*. Then $r_1 = 0$ (no degree 1 relators).
- Hence for any $\tau \in (0, 1)$ we have

$$0 \leq 1 - d\tau + H_R(\tau) \leq 1 - d\tau + |R|\tau^2.$$

- Let $K\langle \langle U \rangle \rangle = K\langle \langle u_1, \dots, u_d \rangle \rangle$ (power series)
- For $f \in K\langle \langle U \rangle \rangle$ let deg(f) be the smallest integer n s.t. f involves a monomial of degree n. Let $K\langle \langle U \rangle \rangle_n = \{f \in K\langle \langle U \rangle \rangle : deg(f) \ge n\}$.
- Let *R* be a subset of $K\langle \langle U \rangle \rangle$ consisting of elements of pos. degree
- *I* the closure of the ideal of $K\langle \langle U \rangle \rangle$ generated by *R*.

• $A = K\langle \langle U \rangle \rangle / I$

•
$$r_n = |\{r \in R : deg(r) = n\}|,$$

- $A_n = \pi(K\langle \langle U \rangle \rangle_n / K\langle \langle U \rangle \rangle_{n+1})$, where $\pi : K\langle \langle U \rangle \rangle \to A$ is the natural projection, and $a_n = \dim_K A_n$,
- $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$.

- Let $K\langle \langle U \rangle \rangle = K\langle \langle u_1, \dots, u_d \rangle \rangle$ (power series)
- For *f* ∈ *K*⟨⟨*U*⟩⟩ let *deg*(*f*) be the smallest integer *n* s.t. *f* involves a monomial of degree *n*. Let *K*⟨⟨*U*⟩⟩_n = {*f* ∈ *K*⟨⟨*U*⟩⟩ : *deg*(*f*) ≥ *n*}.
- Let *R* be a subset of $K\langle \langle U \rangle \rangle$ consisting of elements of pos. degree
- *I* the closure of the ideal of $K\langle \langle U \rangle \rangle$ generated by *R*.
- $A = K\langle \langle U \rangle \rangle / I$
- $r_n = |\{r \in R : deg(r) = n\}|,$
- $A_n = \pi(K\langle \langle U \rangle \rangle_n / K\langle \langle U \rangle \rangle_{n+1})$, where $\pi : K\langle \langle U \rangle \rangle \to A$ is the natural projection, and $a_n = \dim_K A_n$,
- $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$.

- Let $K\langle \langle U \rangle \rangle = K\langle \langle u_1, \dots, u_d \rangle \rangle$ (power series)
- For *f* ∈ *K*⟨⟨*U*⟩⟩ let *deg*(*f*) be the smallest integer *n* s.t. *f* involves a monomial of degree *n*. Let *K*⟨⟨*U*⟩⟩_n = {*f* ∈ *K*⟨⟨*U*⟩⟩ : *deg*(*f*) ≥ *n*}.
- Let *R* be a subset of $K\langle \langle U \rangle \rangle$ consisting of elements of pos. degree
- *I* the closure of the ideal of $K\langle \langle U \rangle \rangle$ generated by *R*.
- $A = K\langle\langle U \rangle\rangle/I$

•
$$r_n = |\{r \in R : deg(r) = n\}|,$$

- $A_n = \pi(K\langle \langle U \rangle \rangle_n / K\langle \langle U \rangle \rangle_{n+1})$, where $\pi : K\langle \langle U \rangle \rangle \to A$ is the natural projection, and $a_n = \dim_K A_n$,
- $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$.

- Let $K\langle \langle U \rangle \rangle = K\langle \langle u_1, \dots, u_d \rangle \rangle$ (power series)
- For *f* ∈ *K*⟨⟨*U*⟩⟩ let *deg*(*f*) be the smallest integer *n* s.t. *f* involves a monomial of degree *n*. Let *K*⟨⟨*U*⟩⟩_n = {*f* ∈ *K*⟨⟨*U*⟩⟩ : *deg*(*f*) ≥ *n*}.
- Let *R* be a subset of $K\langle \langle U \rangle \rangle$ consisting of elements of pos. degree
- *I* the closure of the ideal of $K\langle \langle U \rangle \rangle$ generated by *R*.

• $A = K\langle\langle U \rangle\rangle/I$

•
$$r_n = |\{r \in R : deg(r) = n\}|,$$

- $A_n = \pi(K\langle \langle U \rangle \rangle_n / K\langle \langle U \rangle \rangle_{n+1})$, where $\pi : K\langle \langle U \rangle \rangle \to A$ is the natural projection, and $a_n = \dim_K A_n$,
- $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$.

- Let $K\langle \langle U \rangle \rangle = K\langle \langle u_1, \dots, u_d \rangle \rangle$ (power series)
- For *f* ∈ *K*⟨⟨*U*⟩⟩ let *deg*(*f*) be the smallest integer *n* s.t. *f* involves a monomial of degree *n*. Let *K*⟨⟨*U*⟩⟩_n = {*f* ∈ *K*⟨⟨*U*⟩⟩ : *deg*(*f*) ≥ *n*}.
- Let *R* be a subset of $K\langle \langle U \rangle \rangle$ consisting of elements of pos. degree
- *I* the closure of the ideal of $K\langle \langle U \rangle \rangle$ generated by *R*.

• $A = K\langle\langle U \rangle\rangle/I$

•
$$r_n = |\{r \in R : deg(r) = n\}|,$$

- $A_n = \pi(K\langle \langle U \rangle \rangle_n / K\langle \langle U \rangle \rangle_{n+1})$, where $\pi : K\langle \langle U \rangle \rangle \to A$ is the natural projection, and $a_n = \dim_K A_n$,
- $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $H_A(t) = \sum_{n=0}^{\infty} a_n t^n$.

Theorem (Golod-Shafarevich inequality: non-graded case)

$$\frac{(1-dt+H_R(t))H_A(t)}{1-t} \ge \frac{1}{1-t} \text{ as power series}$$

Mikhail V. Ershov (UVA)

Outline

Golod-Shafarevich groups

- Motivation: class field tower problem
- Golod-Shafarevich algebras

Golod-Shafarevich groups

- Structure of Golod-Shafarevich groups
- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

Golod-Shafarevich groups Golod-Shafarevich groups Zassenhaus degree function on free groups

• Fix a prime *p* (for the rest of the talk).

- Let $X = \{x_1, \ldots, x_d\}$ be a finite set and F(X) the free group on X.
- Let $U = \{u_1, ..., u_d\}$ and consider the **Magnus embedding** of F(X) into $\mathbb{F}_p(\langle U \rangle)^*$ given by

 $x_i \mapsto 1 + u_i$.

• For $f \in F(X)$ set D(f) = deg(f-1)

- Fix a prime *p* (for the rest of the talk).
- Let $X = \{x_1, ..., x_d\}$ be a finite set and F(X) the free group on X.
- Let $U = \{u_1, ..., u_d\}$ and consider the **Magnus embedding** of F(X) into $\mathbb{F}_p(\langle U \rangle)^*$ given by

 $x_i \mapsto 1 + u_i$.

• For $f \in F(X)$ set D(f) = deg(f-1)

- Fix a prime *p* (for the rest of the talk).
- Let $X = \{x_1, ..., x_d\}$ be a finite set and F(X) the free group on X.
- Let $U = \{u_1, ..., u_d\}$ and consider the **Magnus embedding** of F(X) into $\mathbb{F}_p\langle \langle U \rangle \rangle^*$ given by

$$x_i \mapsto 1 + u_i$$
.

• For $f \in F(X)$ set D(f) = deg(f-1)

- Fix a prime *p* (for the rest of the talk).
- Let $X = \{x_1, ..., x_d\}$ be a finite set and F(X) the free group on X.
- Let $U = \{u_1, ..., u_d\}$ and consider the **Magnus embedding** of F(X) into $\mathbb{F}_p(\langle U \rangle)^*$ given by

$$x_i \mapsto 1 + u_i$$
.

• For $f \in F(X)$ set D(f) = deg(f-1)

- Fix a prime *p* (for the rest of the talk).
- Let $X = \{x_1, ..., x_d\}$ be a finite set and F(X) the free group on X.
- Let $U = \{u_1, ..., u_d\}$ and consider the **Magnus embedding** of F(X) into $\mathbb{F}_p\langle \langle U \rangle \rangle^*$ given by

$$x_i \mapsto 1 + u_i$$
.

• For $f \in F(X)$ set D(f) = deg(f-1)

Basic properties of the degree function *D***.**

- $D(f) \ge 1$ for any $f \in F(X)$
- $D([f,g]) \ge D(f) + D(g)$ for any $f,g \in F(X)$ where $[f,g] = f^{-1}g^{-1}fg$
- $D(f^p) = p \cdot D(f)$ for any $f \in F(X)$.

Golod-Shafarevich groups

Definition

A f.g. group *G* is a **GS group** if it has a presentation $\langle X|R \rangle$ with the following property: there exists $0 < \tau < 1$ such that

 $1-|X|\tau+H_R(\tau)<0$

where $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $r_n = |\{r \in R : D(r) = n\}|$.

Golod-Shafarevich groups

Definition

A f.g. group *G* is a **GS group** if it has a presentation $\langle X|R \rangle$ with the following property: there exists $0 < \tau < 1$ such that

$$1-|X|\tau+H_R(\tau)<0$$

where $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $r_n = |\{r \in R : D(r) = n\}|$.

Remark: Similarly, one defines GS pro-*p* groups. The only difference is that D(f) has to be defined for $f \in F(X)_{\hat{p}}$, the **free pro-***p* **group on** *X*. This causes no problem since $F(X)_{\hat{p}}$ can be realized as the closure of F(X) inside $\mathbb{F}_p\langle\langle u_1, \ldots, u_n\rangle\rangle$.

Golod-Shafarevich groups

Definition

A f.g. group *G* is a **GS group** if it has a presentation $\langle X|R \rangle$ with the following property: there exists $0 < \tau < 1$ such that

$$1-|X|\tau+H_R(\tau)<0$$

where $H_R(t) = \sum_{n=1}^{\infty} r_n t^n$ and $r_n = |\{r \in R : D(r) = n\}|$.

Remark: Similarly, one defines GS pro-*p* groups. The only difference is that D(f) has to be defined for $f \in F(X)_{\hat{p}}$, the **free pro-***p* **group on** *X*. This causes no problem since $F(X)_{\hat{p}}$ can be realized as the closure of F(X) inside $\mathbb{F}_p\langle\langle u_1, \ldots, u_n\rangle\rangle$.

Theorem (Golod-Shafarevich)

Let G be a Golod-Shafarevich group. Then the pro-p completion of G is infinite. In particular, G itself is infinite.

Mikhail V. Ershov (UVA)

Proof: connection with Golod-Shafarevich algebras

Golod-Shafarevich groups Golod-Shafarevich groups

• If *G* is a f.g. group, consider its completed group algebra

 $\mathbb{F}_p[[G]] = \varprojlim \mathbb{F}_p[G/N]$

- Assume now that *G* is a GS group. Then one can show that $\mathbb{F}_p[[G]]$ is a GS algebra (in the non-graded sense).
- By GS inequality $\mathbb{F}_p[[G]]$ is infinite, so *G* is infinite. Moreover, *G* must have infinitely many normal subgroups of *p*-power index, so its pro-*p* completion is infinite.
- The same argument shows that GS pro-*p* groups are infinite.
- One can say much more: GS groups are "big" in many different ways.

• If *G* is a f.g. group, consider its completed group algebra

 $\mathbb{F}_p[[G]] = \varprojlim \mathbb{F}_p[G/N]$

- Assume now that *G* is a GS group. Then one can show that **F**_{*p*}[[*G*]] is a GS algebra (in the non-graded sense).
- By GS inequality $\mathbb{F}_p[[G]]$ is infinite, so *G* is infinite. Moreover, *G* must have infinitely many normal subgroups of *p*-power index, so its pro-*p* completion is infinite.
- The same argument shows that GS pro-*p* groups are infinite.
- One can say much more: GS groups are "big" in many different ways.

• If *G* is a f.g. group, consider its completed group algebra

 $\mathbb{F}_p[[G]] = \varprojlim \mathbb{F}_p[G/N]$

- Assume now that *G* is a GS group. Then one can show that $\mathbb{F}_p[[G]]$ is a GS algebra (in the non-graded sense).
- By GS inequality $\mathbb{F}_p[[G]]$ is infinite, so *G* is infinite. Moreover, *G* must have infinitely many normal subgroups of *p*-power index, so its pro-*p* completion is infinite.
- The same argument shows that GS pro-*p* groups are infinite.
- One can say much more: GS groups are "big" in many different ways.

• If *G* is a f.g. group, consider its completed group algebra

 $\mathbb{F}_p[[G]] = \varprojlim \mathbb{F}_p[G/N]$

- Assume now that *G* is a GS group. Then one can show that $\mathbb{F}_p[[G]]$ is a GS algebra (in the non-graded sense).
- By GS inequality $\mathbb{F}_p[[G]]$ is infinite, so *G* is infinite. Moreover, *G* must have infinitely many normal subgroups of *p*-power index, so its pro-*p* completion is infinite.
- The same argument shows that GS pro-*p* groups are infinite.
- One can say much more: GS groups are "big" in many different ways.

• If *G* is a f.g. group, consider its completed group algebra

 $\mathbb{F}_p[[G]] = \varprojlim \mathbb{F}_p[G/N]$

- Assume now that *G* is a GS group. Then one can show that $\mathbb{F}_p[[G]]$ is a GS algebra (in the non-graded sense).
- By GS inequality $\mathbb{F}_p[[G]]$ is infinite, so *G* is infinite. Moreover, *G* must have infinitely many normal subgroups of *p*-power index, so its pro-*p* completion is infinite.
- The same argument shows that GS pro-*p* groups are infinite.
- One can say much more: GS groups are "big" in many different ways.

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Theorem (Golod, 1964)

The General Burnside Problem has negative solution.

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Theorem (Golod, 1964)

The General Burnside Problem has negative solution.

Proof.

- Let $F = F(x_1, x_2)$. Enumerate all elements of $F: f_1, f_2, f_3, \ldots$
- Let $G = \langle X | R \rangle$ where $X = \{x_1, x_2\}$ and $R = \{f_1^{p^{n_1}}, f_2^{p^{n_2}}, \ldots\}$ for some integers n_1, n_2, \ldots By construction *G* is torsion.
- To make *G* infinite, it suffices to ensure that *G* is GS.
- Note that $1 |X|\tau + H_R(\tau) \leq 1 2\tau + \sum_{i=1}^{\infty} \tau^{p^{n_i}}$

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Theorem (Golod, 1964)

The General Burnside Problem has negative solution.

Proof.

- Let $F = F(x_1, x_2)$. Enumerate all elements of $F: f_1, f_2, f_3, \ldots$
- Let $G = \langle X | R \rangle$ where $X = \{x_1, x_2\}$ and $R = \{f_1^{p^{n_1}}, f_2^{p^{n_2}}, \ldots\}$ for some integers n_1, n_2, \ldots By construction *G* is torsion.
- To make *G* infinite, it suffices to ensure that *G* is GS.
- Note that $1 |X|\tau + H_R(\tau) \leq 1 2\tau + \sum_{i=1}^{\infty} \tau^{p^{n_i}}$

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Theorem (Golod, 1964)

The General Burnside Problem has negative solution.

Proof.

- Let $F = F(x_1, x_2)$. Enumerate all elements of $F: f_1, f_2, f_3, \ldots$
- Let $G = \langle X | R \rangle$ where $X = \{x_1, x_2\}$ and $R = \{f_1^{p^{n_1}}, f_2^{p^{n_2}}, \ldots\}$ for some integers n_1, n_2, \ldots By construction *G* is torsion.
- To make *G* infinite, it suffices to ensure that *G* is GS.

• Note that $1 - |X|\tau + H_R(\tau) \leq 1 - 2\tau + \sum_{i=1}^{\infty} \tau^{p^{n_i}}$

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Theorem (Golod, 1964)

The General Burnside Problem has negative solution.

Proof.

- Let $F = F(x_1, x_2)$. Enumerate all elements of $F: f_1, f_2, f_3, \ldots$
- Let $G = \langle X | R \rangle$ where $X = \{x_1, x_2\}$ and $R = \{f_1^{p^{n_1}}, f_2^{p^{n_2}}, \ldots\}$ for some integers n_1, n_2, \ldots By construction *G* is torsion.
- To make *G* infinite, it suffices to ensure that *G* is GS.
- Note that $1 |X|\tau + H_R(\tau) \le 1 2\tau + \sum_{i=1}^{\infty} \tau^{p^{n_i}}$

Problem (General Burnside Problem, 1902)

Let G be a f.g. torsion group. Does G have to be finite?

Theorem (Golod, 1964)

The General Burnside Problem has negative solution.

Proof.

- Let $F = F(x_1, x_2)$. Enumerate all elements of $F: f_1, f_2, f_3, \ldots$
- Let $G = \langle X | R \rangle$ where $X = \{x_1, x_2\}$ and $R = \{f_1^{p^{n_1}}, f_2^{p^{n_2}}, \ldots\}$ for some integers n_1, n_2, \ldots By construction *G* is torsion.
- To make *G* infinite, it suffices to ensure that *G* is GS.
- Note that $1 |X|\tau + H_R(\tau) \leq 1 2\tau + \sum_{i=1}^{\infty} \tau^{p^{n_i}} < 0$ whenever $1/2 < \tau < 1$ and $\{n_i\}$ are large enough, so we can make *G* a GS group.

Outline

Golod-Shafarevich groups

- Motivation: class field tower problem
- Golod-Shafarevich algebras
- Golod-Shafarevich groups

• Structure of Golod-Shafarevich groups

- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

Quotients of Golod-Shafarevich groups

If *G* is a GS group and (P) is some group-theoretic property, one can often construct a quotient of *G* which has (P) and is also GS (in particular, it is infinite).

Quotients of Golod-Shafarevich groups

If *G* is a GS group and (P) is some group-theoretic property, one can often construct a quotient of *G* which has (P) and is also GS (in particular, it is infinite).

Theorem (Wilson, 1991)

Every GS group has a torsion quotient which is also GS.

Theorem (E-Jaikin, 2012)

Every GS group has a LERF quotient which is also GS.

Theorem (Myasnikov-Osin, 2012)

Every recursively presented GS group has a quotient which is a Dehn monster and is also GS.

Golod-Shafarevich groups Structure of Golod-Shafarevich groups

Growth and subgroups of Golod-Shafarevich groups

Proposition (Bartholdi-Grigorchuk, 2000)

GS groups have uniformly exponential growth.

Golod-Shafarevich groups Structure of Golod-Shafarevich groups

Growth and subgroups of Golod-Shafarevich groups

Proposition (Bartholdi-Grigorchuk, 2000)

GS groups have uniformly exponential growth.

Since GS groups may be torsion, they need not contain non-abelian free subgroups.

Problem

Let G be a **finitely presented** *GS group. Does G contain a non-abelian free subgroup?*

Golod-Shafarevich groups Structure of Golod-Shafarevich groups

Growth and subgroups of Golod-Shafarevich groups

Proposition (Bartholdi-Grigorchuk, 2000)

GS groups have uniformly exponential growth.

Since GS groups may be torsion, they need not contain non-abelian free subgroups.

Problem

Let G be a **finitely presented** *GS group. Does G contain a non-abelian free subgroup?*

Theorem (Zelmanov, 2000)

Let G be a GS pro-p group. Then G contains a non-abelian free pro-p subgroup.

- If G is free non-abelian, then log log(a_n(G)) ~ log(n) (exponential growth)
- If G is *p*-adic analytic, then log log(a_n(G)) ~ log log(n) (polynomial growth)
- (Shalev, 1992) If *G* is non-*p*-adic analytic, then $\log \log(a_n(G)) \ge (2 \varepsilon) \log \log(n)$ for infinitely many *n*.
- (Jaikin, 2011) If *G* is GS, then there is $\alpha > 0$ s.t. $\log \log(a_n(G)) \ge \log(n)^{\alpha}$ for infinitely many *n*.

- If *G* is free non-abelian, then log log(*a_n*(*G*)) ~ log(*n*) (exponential growth)
- If G is *p*-adic analytic, then log log(a_n(G)) ~ log log(n) (polynomial growth)
- (Shalev, 1992) If *G* is non-*p*-adic analytic, then $\log \log(a_n(G)) \ge (2 \varepsilon) \log \log(n)$ for infinitely many *n*.
- (Jaikin, 2011) If *G* is GS, then there is $\alpha > 0$ s.t. $\log \log(a_n(G)) \ge \log(n)^{\alpha}$ for infinitely many *n*.

- If *G* is free non-abelian, then log log(*a_n*(*G*)) ~ log(*n*) (exponential growth)
- If *G* is *p*-adic analytic, then $\log \log(a_n(G)) \sim \log \log(n)$ (polynomial growth)
- (Shalev, 1992) If *G* is non-*p*-adic analytic, then $\log \log(a_n(G)) \ge (2 \varepsilon) \log \log(n)$ for infinitely many *n*.
- (Jaikin, 2011) If *G* is GS, then there is $\alpha > 0$ s.t. $\log \log(a_n(G)) \ge \log(n)^{\alpha}$ for infinitely many *n*.

- If *G* is free non-abelian, then log log(*a_n*(*G*)) ~ log(*n*) (exponential growth)
- If G is *p*-adic analytic, then log log(a_n(G)) ~ log log(n) (polynomial growth)
- (Shalev, 1992) If *G* is non-*p*-adic analytic, then $\log \log(a_n(G)) \ge (2 \varepsilon) \log \log(n)$ for infinitely many *n*.
- (Jaikin, 2011) If *G* is GS, then there is $\alpha > 0$ s.t. $\log \log(a_n(G)) \ge \log(n)^{\alpha}$ for infinitely many *n*.

- If *G* is free non-abelian, then log log(*a_n*(*G*)) ~ log(*n*) (exponential growth)
- If G is *p*-adic analytic, then log log(a_n(G)) ~ log log(n) (polynomial growth)
- (Shalev, 1992) If *G* is non-*p*-adic analytic, then $\log \log(a_n(G)) \ge (2 \varepsilon) \log \log(n)$ for infinitely many *n*.
- (Jaikin, 2011) If *G* is GS, then there is $\alpha > 0$ s.t. $\log \log(a_n(G)) \ge \log(n)^{\alpha}$ for infinitely many *n*.

If *G* is a f.g. pro-*p* group, let $a_n(G)$ be the number of subgroups of index *n* in *G* (note that $a_n(G) = 0$ unless $n = p^k$).

- If *G* is free non-abelian, then log log(*a_n*(*G*)) ~ log(*n*) (exponential growth)
- If G is *p*-adic analytic, then log log(a_n(G)) ~ log log(n) (polynomial growth)
- (Shalev, 1992) If *G* is non-*p*-adic analytic, then $\log \log(a_n(G)) \ge (2 \varepsilon) \log \log(n)$ for infinitely many *n*.
- (Jaikin, 2011) If *G* is GS, then there is $\alpha > 0$ s.t. $\log \log(a_n(G)) \ge \log(n)^{\alpha}$ for infinitely many *n*.

Problem

Does there exist a GS group G

(a) with subexponential subgroup growth?

(b) s.t.
$$\log \log(a_n(G)) \sim \log(n)^{\alpha}$$
 where $\alpha < 1$?

Outline

Golod-Shafarevich groups

- Motivation: class field tower problem
- Golod-Shafarevich algebras
- Golod-Shafarevich groups
- Structure of Golod-Shafarevich groups
- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

- A (2008) There exist GS groups with Kazhdan's property (T).
- *B* (2011) Every GS group has an infinite quotient with property (*T*). In particular, GS groups are never amenable.
- Part B "confirms" the general philosophy that GS groups should be "big".
- For the same reason Part A is somewhat surprising since groups with property (*T*) should not be "big".
- Despite this contrast, the proof of Part B uses Part A.
- Part A has "negative applications" in topology, but "positive applications" in group theory.

- A (2008) There exist GS groups with Kazhdan's property (T).
- *B* (2011) Every GS group has an infinite quotient with property (*T*). In particular, GS groups are never amenable.
- Part B "confirms" the general philosophy that GS groups should be "big".
- For the same reason Part A is somewhat surprising since groups with property (*T*) should not be "big".
- Despite this contrast, the proof of Part B uses Part A.
- Part A has "negative applications" in topology, but "positive applications" in group theory.

- A (2008) There exist GS groups with Kazhdan's property (T).
- *B* (2011) Every GS group has an infinite quotient with property (*T*). In particular, GS groups are never amenable.
- Part B "confirms" the general philosophy that GS groups should be "big".
- For the same reason Part A is somewhat surprising since groups with property (*T*) should not be "big".
- Despite this contrast, the proof of Part B uses Part A.
- Part A has "negative applications" in topology, but "positive applications" in group theory.

- A (2008) There exist GS groups with Kazhdan's property (T).
- *B* (2011) Every GS group has an infinite quotient with property (*T*). In particular, GS groups are never amenable.
- Part B "confirms" the general philosophy that GS groups should be "big".
- For the same reason Part A is somewhat surprising since groups with property (*T*) should not be "big".
- Despite this contrast, the proof of Part B uses Part A.
- Part A has "negative applications" in topology, but "positive applications" in group theory.

Golod-Shafarevich groups and Kazhdan's property (T)

Theorem (E)

- A (2008) There exist GS groups with Kazhdan's property (T).
- *B* (2011) Every GS group has an infinite quotient with property (*T*). In particular, GS groups are never amenable.
- Part B "confirms" the general philosophy that GS groups should be "big".
- For the same reason Part A is somewhat surprising since groups with property (*T*) should not be "big".
- Despite this contrast, the proof of Part B uses Part A.
- Part A has "negative applications" in topology, but "positive applications" in group theory.

Let *M* be a compact orientable 3-manifold and $G = \pi_1(M)$. Then *G* has a presentation $\langle X|R \rangle$ with |X| = |R|.

This condition implies that *G* is GS provided that $d(G_{\hat{p}}) \ge 5$.

Let *M* be a compact orientable 3-manifold and $G = \pi_1(M)$. Then *G* has a presentation $\langle X|R \rangle$ with |X| = |R|.

This condition implies that *G* is GS provided that $d(G_{p}) \ge 5$.

Proposition (Lubotzky, 1983)

If M is hyperbolic, then $G = \pi_1(M)$ *has a finite index GS subgroup.*

Let *M* be a compact orientable 3-manifold and $G = \pi_1(M)$. Then *G* has a presentation $\langle X|R \rangle$ with |X| = |R|.

This condition implies that *G* is GS provided that $d(G_p) \ge 5$.

Proposition (Lubotzky, 1983)

If M is hyperbolic, then $G = \pi_1(M)$ *has a finite index GS subgroup.*

Lubotzky (1983) used this result to prove that fundamental groups of compact orientable hyperbolic 3-manifolds (which are just cocompact torsion-free lattices in $SL_2(\mathbb{C})$) do not have CSP. This was a major open problem known as Serre conjecture.

Conjecture (Lubotzky-Sarnak, late 1980's)

- By [Lackenby-Long-Reid, 2008] Lubotzky-Sarnak conjecture would imply virtually Haken conjecture for arithmetic hyperbolic 3-manifolds.
- Lubotzky and Zelmanov conjectured that GS groups may never have property (τ). If true, this would have implied Lubotzky-Sarnak conjecture.
- ALAS, GS groups may have property (*τ*) (even (*T*)) by Theorem A above.

Conjecture (Lubotzky-Sarnak, late 1980's)

- By [Lackenby-Long-Reid, 2008] Lubotzky-Sarnak conjecture would imply virtually Haken conjecture for arithmetic hyperbolic 3-manifolds.
- Lubotzky and Zelmanov conjectured that GS groups may never have property (τ). If true, this would have implied Lubotzky-Sarnak conjecture.
- ALAS, GS groups may have property (*τ*) (even (*T*)) by Theorem A above.

Conjecture (Lubotzky-Sarnak, late 1980's)

- By [Lackenby-Long-Reid, 2008] Lubotzky-Sarnak conjecture would imply virtually Haken conjecture for arithmetic hyperbolic 3-manifolds.
- Lubotzky and Zelmanov conjectured that GS groups may never have property (τ). If true, this would have implied Lubotzky-Sarnak conjecture.
- ALAS, GS groups may have property (*τ*) (even (*T*)) by Theorem A above.

Conjecture (Lubotzky-Sarnak, late 1980's)

- By [Lackenby-Long-Reid, 2008] Lubotzky-Sarnak conjecture would imply virtually Haken conjecture for arithmetic hyperbolic 3-manifolds.
- Lubotzky and Zelmanov conjectured that GS groups may never have property (τ). If true, this would have implied Lubotzky-Sarnak conjecture.
- ALAS, GS groups may have property (τ) (even (T)) by Theorem A above.

Corollary (E, 2008)

There exist f.g. **residually finite** *torsion non-amenable groups.*

- Let *G* be a GS group with property (*T*).
- *G* has a torsion quotient *G*′ which is still GS. *G*′ also has (*T*) being a quotient of *G*.
- *G'* need not be residually finite, but the image of *G'* in its pro-*p* completion, call it *G''*, is residually finite.
- G'' is infinite (since G' is GS) and has (T), hence non-amenable.

Corollary (E, 2008)

There exist f.g. **residually finite** *torsion non-amenable groups.*

Proof.

• Let *G* be a GS group with property (*T*).

- *G* has a torsion quotient *G*' which is still GS. *G*' also has (*T*) being a quotient of *G*.
- *G'* need not be residually finite, but the image of *G'* in its pro-*p* completion, call it *G''*, is residually finite.
- G'' is infinite (since G' is GS) and has (T), hence non-amenable.

Corollary (E, 2008)

There exist f.g. **residually finite** *torsion non-amenable groups.*

- Let *G* be a GS group with property (*T*).
- *G* has a torsion quotient *G*′ which is still GS. *G*′ also has (*T*) being a quotient of *G*.
- *G'* need not be residually finite, but the image of *G'* in its pro-*p* completion, call it *G''*, is residually finite.
- G'' is infinite (since G' is GS) and has (T), hence non-amenable.

Corollary (E, 2008)

There exist f.g. **residually finite** *torsion non-amenable groups.*

- Let *G* be a GS group with property (T).
- *G* has a torsion quotient *G*′ which is still GS. *G*′ also has (*T*) being a quotient of *G*.
- *G'* need not be residually finite, but the image of *G'* in its pro-*p* completion, call it *G''*, is residually finite.
- G'' is infinite (since G' is GS) and has (T), hence non-amenable.

Corollary (E, 2008)

There exist f.g. **residually finite** *torsion non-amenable groups.*

- Let *G* be a GS group with property (T).
- *G* has a torsion quotient *G*′ which is still GS. *G*′ also has (*T*) being a quotient of *G*.
- *G'* need not be residually finite, but the image of *G'* in its pro-*p* completion, call it *G''*, is residually finite.
- G'' is infinite (since G' is GS) and has (T), hence non-amenable.

Corollary (E, 2008)

There exist f.g. **residually finite** *torsion non-amenable groups.*

Proof.

- Let *G* be a GS group with property (T).
- *G* has a torsion quotient *G*′ which is still GS. *G*′ also has (*T*) being a quotient of *G*.
- *G'* need not be residually finite, but the image of *G'* in its pro-*p* completion, call it *G''*, is residually finite.
- G'' is infinite (since G' is GS) and has (T), hence non-amenable.

Other examples of residually finite torsion non-amenable groups were constructed by Osin (2011) and Puchta (2011).

Golod-Shafarevich groups Further applications of Golod-Shafarevich groups

Constructing residually finite "almost Tarski monsters"

Theorem (Ol'shanskii, 1980)

For every sufficiently large prime p there is an infinite group G in which every **proper** *subgroup has order p.*

Such groups are called **Tarski monsters**.

Constructing residually finite "almost Tarski monsters"

Theorem (Ol'shanskii, 1980)

For every sufficiently large prime p there is an infinite group G in which every **proper** *subgroup has order p.*

Such groups are called **Tarski monsters**.

If *G* is residually finite, how close can *G* be to being a Tarski monster.

Constructing residually finite "almost Tarski monsters"

Theorem (Ol'shanskii, 1980)

For every sufficiently large prime p there is an infinite group G in which every **proper** *subgroup has order p.*

Such groups are called **Tarski monsters**.

If *G* is residually finite, how close can *G* be to being a Tarski monster.

Problem

Does there exist an infinite f.g. residually finite group in which every subgroup is either finite or of finite index?

Constructing residually finite "almost Tarski monsters"

Theorem (Ol'shanskii, 1980)

For every sufficiently large prime p there is an infinite group G in which every **proper** *subgroup has order p.*

Such groups are called **Tarski monsters**.

If *G* is residually finite, how close can *G* be to being a Tarski monster.

Problem

Does there exist an infinite f.g. residually finite group in which every subgroup is either finite or of finite index?

Theorem (E-Jaikin, 2012)

Every GS group has a quotient G s.t.

• *G* is an infinite residually finite torsion group

• every **finitely generated** subgroup of *G* is either finite or of finite index.

Let (P) and (Q) be group-theoretic properties. Suppose that

- (i) (*Q*) is preserved by quotients
- (ii) There exists a GS group with (Q)
- (iii) Every GS group has an infinite quotient with (P).

Let (*P*) and (*Q*) be group-theoretic properties. Suppose that (i) (*Q*) is preserved by quotients

- (ii) There exists a GS group with (Q)
- (iii) Every GS group has an infinite quotient with (P).

Let (P) and (Q) be group-theoretic properties. Suppose that

- (i) (Q) is preserved by quotients
- (ii) There exists a GS group with (Q)

(iii) Every GS group has an infinite quotient with (P).

Let (P) and (Q) be group-theoretic properties. Suppose that

- (i) (Q) is preserved by quotients
- (ii) There exists a GS group with (Q)
- (iii) Every GS group has an infinite quotient with (*P*).

Let (P) and (Q) be group-theoretic properties. Suppose that

- (i) (Q) is preserved by quotients
- (ii) There exists a GS group with (Q)
- (iii) Every GS group has an infinite quotient with (*P*).

Then there exists an infinite group which has both (P) and (Q).

Let (P) and (Q) be group-theoretic properties. Suppose that

- (i) (Q) is preserved by quotients
- (ii) There exists a GS group with (Q)
- (iii) Every GS group has an infinite quotient with (*P*).

Then there exists an infinite group which has both (P) and (Q).

Example (EJ)

There exists an infinite group which is LERF and has property (T).

```
Here (P) = \text{LERF} and (Q) = (T).
```

Outline

Golod-Shafarevich groups

- Motivation: class field tower problem
- Golod-Shafarevich algebras
- Golod-Shafarevich groups
- Structure of Golod-Shafarevich groups
- Further applications of Golod-Shafarevich groups
- Generalized Golod-Shafarevich groups

The definition of GS groups can be restated as follows: *G* is GS if there exists a presentation ⟨*X*|*R*⟩ of *G* and *τ* ∈ (0, 1) s.t.

1 - W(X) + W(R) < 0

- Recall that $D(s) = \deg(s 1)$ where F(X) sits inside $\mathbb{F}_p\langle\langle u_1, \dots, u_n\rangle\rangle$ via the Magnus embedding.
- Now we want to allow more general *D* and *W*. Define a degree function *d* on $\mathbb{F}_p\langle\langle u_1, \ldots, u_n \rangle\rangle$ by choosing $d(u_1), \ldots, d(u_n) \in \mathbb{R}_{>0}$ arbitrarily and then extending to $\mathbb{F}_p\langle\langle u_1, \ldots, u_n \rangle\rangle$ in a canonical way.
- Then define *D* and *W* as before using *d* instead of the standard degree function.
- Any function *W* obtained in this way will be called a **weight function**.

 The definition of GS groups can be restated as follows: G is GS if there exists a presentation ⟨X|R⟩ of G and τ ∈ (0, 1) s.t.

1 - W(X) + W(R) < 0

- Recall that $D(s) = \deg(s 1)$ where F(X) sits inside $\mathbb{F}_p\langle\langle u_1, \ldots, u_n \rangle\rangle$ via the Magnus embedding.
- Now we want to allow more general *D* and *W*. Define a degree function *d* on $\mathbb{F}_p\langle\langle u_1, \ldots, u_n \rangle\rangle$ by choosing $d(u_1), \ldots, d(u_n) \in \mathbb{R}_{>0}$ arbitrarily and then extending to $\mathbb{F}_p\langle\langle u_1, \ldots, u_n \rangle\rangle$ in a canonical way.
- Then define *D* and *W* as before using *d* instead of the standard degree function.
- Any function W obtained in this way will be called a **weight function**.

The definition of GS groups can be restated as follows: *G* is GS if there exists a presentation ⟨*X*|*R*⟩ of *G* and *τ* ∈ (0, 1) s.t.

1 - W(X) + W(R) < 0

- Recall that $D(s) = \deg(s 1)$ where F(X) sits inside $\mathbb{F}_p\langle\langle u_1, \ldots, u_n \rangle\rangle$ via the Magnus embedding.
- Now we want to allow more general *D* and *W*. Define a degree function *d* on F_p⟨⟨u₁,...,u_n⟩⟩ by choosing *d*(u₁),...,*d*(u_n) ∈ ℝ_{>0} arbitrarily and then extending to F_p⟨⟨u₁,...,u_n⟩⟩ in a canonical way.
- Then define *D* and *W* as before using *d* instead of the standard degree function.
- Any function W obtained in this way will be called a **weight function**.

 The definition of GS groups can be restated as follows: G is GS if there exists a presentation ⟨X|R⟩ of G and τ ∈ (0, 1) s.t.

1 - W(X) + W(R) < 0

- Recall that $D(s) = \deg(s 1)$ where F(X) sits inside $\mathbb{F}_p\langle\langle u_1, \ldots, u_n\rangle\rangle$ via the Magnus embedding.
- Now we want to allow more general *D* and *W*. Define a degree function *d* on F_p⟨⟨u₁,...,u_n⟩⟩ by choosing *d*(u₁),...,*d*(u_n) ∈ ℝ_{>0} arbitrarily and then extending to F_p⟨⟨u₁,...,u_n⟩⟩ in a canonical way.
- Then define *D* and *W* as before using *d* instead of the standard degree function.
- Any function *W* obtained in this way will be called a **weight function**.

The definition of GS groups can be restated as follows: *G* is GS if there exists a presentation ⟨*X*|*R*⟩ of *G* and *τ* ∈ (0, 1) s.t.

1 - W(X) + W(R) < 0

- Recall that $D(s) = \deg(s 1)$ where F(X) sits inside $\mathbb{F}_p\langle\langle u_1, \ldots, u_n\rangle\rangle$ via the Magnus embedding.
- Now we want to allow more general *D* and *W*. Define a degree function *d* on F_p⟨⟨u₁,...,u_n⟩⟩ by choosing *d*(u₁),...,*d*(u_n) ∈ ℝ_{>0} arbitrarily and then extending to F_p⟨⟨u₁,...,u_n⟩⟩ in a canonical way.
- Then define *D* and *W* as before using *d* instead of the standard degree function.
- Any function *W* obtained in this way will be called a **weight function**.

Definition

A group *G* is called a **generalized GS group (GGS group)** if it has a presentation $\langle X|R \rangle$ such that 1 - W(X) + W(R) < 0 for some weight function *W*.

Definition

A group *G* is called a **generalized GS group (GGS group)** if it has a presentation $\langle X|R \rangle$ such that 1 - W(X) + W(R) < 0 for some weight function *W*.

Why do we need this generalization?

Definition

A group *G* is called a **generalized GS group (GGS group)** if it has a presentation $\langle X|R \rangle$ such that 1 - W(X) + W(R) < 0 for some weight function *W*.

Why do we need this generalization?

Proposition (E,2011)

Definition

A group *G* is called a **generalized GS group (GGS group)** if it has a presentation $\langle X|R \rangle$ such that 1 - W(X) + W(R) < 0 for some weight function *W*.

Why do we need this generalization?

Proposition (E,2011)

- The analogous statement about GS groups is likely false.
- This proposition plays a key role in the proof of the existence of infinite Kazhdan quotients of GS groups as well as the construction of residually finite "almost Tarski monsters".
- It can also be used to prove that GS groups are infinite without using GS inequality.

Definition

A group *G* is called a **generalized GS group (GGS group)** if it has a presentation $\langle X|R \rangle$ such that 1 - W(X) + W(R) < 0 for some weight function *W*.

Why do we need this generalization?

Proposition (E,2011)

- The analogous statement about GS groups is likely false.
- This proposition plays a key role in the proof of the existence of infinite Kazhdan quotients of GS groups as well as the construction of residually finite "almost Tarski monsters".
- It can also be used to prove that GS groups are infinite without using GS inequality.

Definition

A group *G* is called a **generalized GS group (GGS group)** if it has a presentation $\langle X|R \rangle$ such that 1 - W(X) + W(R) < 0 for some weight function *W*.

Why do we need this generalization?

Proposition (E,2011)

- The analogous statement about GS groups is likely false.
- This proposition plays a key role in the proof of the existence of infinite Kazhdan quotients of GS groups as well as the construction of residually finite "almost Tarski monsters".
- It can also be used to prove that GS groups are infinite without using GS inequality.

Golod-Shafarevich groups Generalized Golod-Shafarevich groups

Golod-Shafarevich condition and weighted deficiency

Definition

Let *G* be a f.g. group. The **deficiency of** *G* is defined by

$$def(G) = \sup\{|X| - |R| : G = \langle X|R \rangle\}.$$

Golod-Shafarevich condition and weighted deficiency

Definition

Let *G* be a f.g. group. The **deficiency of** *G* is defined by

$$def(G) = \sup\{|X| - |R| : G = \langle X|R \rangle\}.$$

Definition

Let *G* be a f.g. group. The **weighted deficiency of** *G* is defined as

 $\sup\{W(X) - W(R) - 1 : G = \langle X|R \rangle \text{ and } W \text{ is a weight function}\}.$

Golod-Shafarevich condition and weighted deficiency

Definition

Let *G* be a f.g. group. The **deficiency of** *G* is defined by

$$def(G) = \sup\{|X| - |R| : G = \langle X|R \rangle\}.$$

Definition

Let *G* be a f.g. group. The **weighted deficiency of** *G* is defined as

 $\sup\{W(X) - W(R) - 1 : G = \langle X|R \rangle$ and *W* is a weight function $\}$.

Thus, generalized GS groups = group of positive weighted deficiency, and they also generalize groups of deficiency > 1.

Baumslag-Pride theorem

Theorem (Baumslag-Pride 1978)

If G is a group of deficiency > 1, then G is **large**, that is, G has a finite index subgroup which homomorphically maps onto a non-abelian free group.

Baumslag-Pride theorem

Theorem (Baumslag-Pride 1978)

If G is a group of deficiency > 1, then G is **large**, that is, G has a finite index subgroup which homomorphically maps onto a non-abelian free group.

Problem

Find a counterpart of the Baumslag-Pride Theorem for generalized GS groups (considered as groups of positive weighted deficiency).