Subgroup Distortion in Wreath Products of Cyclic Groups

Tara Davis

Group Theory International Webinar

March 3, 2011

T. Davis (Vanderbilt University)

Distortion in $A \mathbf{wr} \mathbb{Z}$

Outline

1 Introduction and Background

- Subgroup Distortion
- Wreath Products

2 Word Metric in Wreath Products and Applications to Distortion

3 Main Theorem

- 4 Motivation
- 5 Outline of the Proof of the Main Theorem
 - Structure of Some Subgroups
 - Distortion of Polynomials
 - Describing specific distorted subgroups

Subgroup Distortion

Definition (Gromov)

For a finitely generated group $G = \langle T \rangle$ and a f.g. subgroup $H = \langle S \rangle$, the distortion function of H in G is

$$\Delta_H^G(I) = \max\{|w|_S : w \in H, |w|_T \le I\}.$$

Subgroup Distortion

Definition (Gromov)

For a finitely generated group $G = \langle T \rangle$ and a f.g. subgroup $H = \langle S \rangle$, the distortion function of H in G is

$$\Delta_H^G(I) = \max\{|w|_S : w \in H, |w|_T \le I\}.$$

• For $f,g:\mathbb{N}\to\mathbb{N}$, we say that $f\preceq g$ if there exists an integer C>0 such that

$$f(I) \leq Cg(CI) + CI$$

for all $l \geq 0$.

• The cyclic subgroup $H = \langle c \rangle_{\infty}$ of $\mathcal{H}^3 = \langle a, b, c | [a, b] = c, [a, c] = [b, c] = 1 \rangle$ has quadratic distortion.

< □ > < / P >

• The cyclic subgroup $H = \langle c \rangle_{\infty}$ of $\mathcal{H}^3 = \langle a, b, c | [a, b] = c, [a, c] = [b, c] = 1 \rangle$ has quadratic distortion.

$$c^{l^2} = [a^l, b^l]$$

۲

< □ > < / P >

• The cyclic subgroup $H = \langle c \rangle_{\infty}$ of $\mathcal{H}^3 = \langle a, b, c | [a, b] = c, [a, c] = [b, c] = 1 \rangle$ has quadratic distortion.

$$c^{\prime^2} = [a^\prime, b^\prime]$$

• The cyclic subgroup $H = \langle a \rangle_{\infty}$ of BS(1,2) = $\langle a, b | bab^{-1} = a^2 \rangle$ has exponential distortion.

۲

イロト 不得 トイヨト イヨト 二日

• The cyclic subgroup $H = \langle c \rangle_{\infty}$ of $\mathcal{H}^3 = \langle a, b, c | [a, b] = c, [a, c] = [b, c] = 1 \rangle$ has quadratic distortion.

$$c^{\prime^2} = [a^\prime, b^\prime]$$

• The cyclic subgroup $H = \langle a \rangle_{\infty}$ of BS(1,2) = $\langle a, b | bab^{-1} = a^2 \rangle$ has exponential distortion.

$$a^{2'}=b^{\prime}ab^{-\prime}$$

۲

۲

Let A and B be any groups.

• The wreath product $A \le B$ is the semidirect product $W\lambda B$, where W is the direct product $\bigoplus_{g \in B} A_g$, of isomorphic copies A_g of the group A.

Let A and B be any groups.

- The wreath product $A \le B$ is the semidirect product $W\lambda B$, where W is the direct product $\bigoplus_{g \in B} A_g$, of isomorphic copies A_g of the group A.
- We view elements of W as functions from B to A with finite support.

Let A and B be any groups.

- The wreath product $A \le B$ is the semidirect product $W\lambda B$, where W is the direct product $\bigoplus_{g \in B} A_g$, of isomorphic copies A_g of the group A.
- We view elements of W as functions from B to A with finite support.
- The (left) action ∘ of B on W by automorphisms is given by: (g ∘ w)(x) = w(xg), for any w ∈ W, g ∈ B and x ∈ B.

Let A and B be any groups.

- The wreath product $A \le B$ is the semidirect product $W\lambda B$, where W is the direct product $\bigoplus_{g \in B} A_g$, of isomorphic copies A_g of the group A.
- We view elements of W as functions from B to A with finite support.
- The (left) action ∘ of B on W by automorphisms is given by: (g ∘ w)(x) = w(xg), for any w ∈ W, g ∈ B and x ∈ B.
- For $g_1, g_2 \in B, w_1, w_2 \in W$ we have that $(w_1g_1)(w_2g_2) = (w_1(g_1 \circ w_2))(g_1g_2).$

• Let $A = \langle a \rangle \cong \mathbb{Z}$ and $B = \langle b \rangle \cong \mathbb{Z}$, and consider G = A wr B.

æ

ヘロア 人間ア 人間ア 人間ア

- Let $A = \langle a \rangle \cong \mathbb{Z}$ and $B = \langle b \rangle \cong \mathbb{Z}$, and consider G = A wr B.
- The group G has presentation given by generators and defining relations $\mathbb{Z} \text{ wr } \mathbb{Z} = \langle a, b | [a, b^n a b^{-n}] \rangle.$

- Let $A = \langle a \rangle \cong \mathbb{Z}$ and $B = \langle b \rangle \cong \mathbb{Z}$, and consider G = A wr B.
- The group G has presentation given by generators and defining relations $\mathbb{Z} \text{ wr } \mathbb{Z} = \langle a, b | [a, b^n a b^{-n}] \rangle$.
- *G* is the simplest example of a finitely generated (though not finitely presented) group containing a free abelian group of infinite rank.

- Let $A = \langle a \rangle \cong \mathbb{Z}$ and $B = \langle b \rangle \cong \mathbb{Z}$, and consider G = A wr B.
- The group G has presentation given by generators and defining relations $\mathbb{Z} \text{ wr } \mathbb{Z} = \langle a, b | [a, b^n a b^{-n}] \rangle$.
- *G* is the simplest example of a finitely generated (though not finitely presented) group containing a free abelian group of infinite rank.
- The group W is a free module with one generator a over the group ring ℤ[⟨b⟩].

Word Metric [Cleary, Taback]

• Arbitrary element of $A \operatorname{wr} \mathbb{Z}$ may be written in a normal form as

$$(b^{\iota_1} \circ u_1) \cdots (b^{\iota_N} \circ u_N) (b^{-\epsilon_1} \circ v_1) \cdots (b^{-\epsilon_M} \circ v_M) b^t$$

where $0 \leq \iota_1 < \cdots < \iota_N, 0 < \epsilon_1 < \cdots < \epsilon_M$, and $u_1, \ldots, u_N, v_1, \ldots, v_M$ are elements in $A - \{1\}$.

Word Metric [Cleary, Taback]

• Arbitrary element of $A \operatorname{wr} \mathbb{Z}$ may be written in a normal form as

$$(b^{\iota_1} \circ u_1) \cdots (b^{\iota_N} \circ u_N) (b^{-\epsilon_1} \circ v_1) \cdots (b^{-\epsilon_M} \circ v_M) b^t$$

- where $0 \leq \iota_1 < \cdots < \iota_N, 0 < \epsilon_1 < \cdots < \epsilon_M$, and $u_1, \ldots, u_N, v_1, \ldots, v_M$ are elements in $A \{1\}$.
- The length is given by the formula

$$\sum_{i=1}^{N} |u_i|_{\mathcal{A}} + \sum_{i=1}^{M} |v_i|_{\mathcal{A}} + \min\{2\epsilon_M + \iota_N + |t - \iota_N|, 2\iota_N + \epsilon_M + |t + \epsilon_M|\}.$$

• Example in
$$\mathbb{Z} \text{ wr } \mathbb{Z} = gp\langle a, b \rangle$$
.

문 🛌 문

- Example in \mathbb{Z} wr $\mathbb{Z} = gp\langle a, b \rangle$.
- Consider the element $(b^5 \circ a^{-3})(b^{-1} \circ a^4)(b^{-2} \circ a^2)b^3$.

< D > < A </p>

- Example in $\mathbb{Z} \text{ wr } \mathbb{Z} = gp\langle a, b \rangle$.
- Consider the element $(b^5 \circ a^{-3})(b^{-1} \circ a^4)(b^{-2} \circ a^2)b^3$.
- Its length equals the sum of lengths of a^{-3} , a^4 and a^2 in $\langle a \rangle$ plus $\min\{2\epsilon_2 + \iota_1 + |t \iota_1|, 2\iota_1 + \epsilon_2 + |t + \epsilon_2|\} = 2\epsilon_2 + \iota_1 + |t \iota_1|.$

- Example in $\mathbb{Z} \text{ wr } \mathbb{Z} = gp\langle a, b \rangle$.
- Consider the element $(b^5 \circ a^{-3})(b^{-1} \circ a^4)(b^{-2} \circ a^2)b^3$.
- Its length equals the sum of lengths of a^{-3} , a^4 and a^2 in $\langle a \rangle$ plus $\min\{2\epsilon_2 + \iota_1 + |t \iota_1|, 2\iota_1 + \epsilon_2 + |t + \epsilon_2|\} = 2\epsilon_2 + \iota_1 + |t \iota_1|.$
- This equals 3 + 4 + 2 + 11 and is recognized by

$$(b^{-1}a^4b)(b^{-2}a^2b^2)(b^5a^{-3}b^{-5})b^3 = b^{-1}a^4b^{-1}a^2b^7a^{-3}b^{-2}$$

- Example in $\mathbb{Z} \text{ wr } \mathbb{Z} = gp\langle a, b \rangle$.
- Consider the element $(b^5 \circ a^{-3})(b^{-1} \circ a^4)(b^{-2} \circ a^2)b^3$.
- Its length equals the sum of lengths of a^{-3} , a^4 and a^2 in $\langle a \rangle$ plus $\min\{2\epsilon_2 + \iota_1 + |t \iota_1|, 2\iota_1 + \epsilon_2 + |t + \epsilon_2|\} = 2\epsilon_2 + \iota_1 + |t \iota_1|.$
- This equals 3 + 4 + 2 + 11 and is recognized by

$$(b^{-1}a^4b)(b^{-2}a^2b^2)(b^5a^{-3}b^{-5})b^3 = b^{-1}a^4b^{-1}a^2b^7a^{-3}b^{-2}$$

 The minimum corresponds to a path in the Cayley graph of ⟨b⟩ which starts at 1, passes b⁻¹, b⁻², b⁵ and ends at b³.

Let $A = \langle S \rangle$ and B be arbitrary finitely generated groups.

 Any u = wg ∈ A wr B can be expressed in canonical form as (b₁ ∘ a₁)...(b_r ∘ a_r)g where g ∈ B, 1 ≠ a_j ∈ A, b_j ∈ B and for i ≠ j we have b_i ≠ b_j.

Let $A = \langle S \rangle$ and B be arbitrary finitely generated groups.

- Any u = wg ∈ A wr B can be expressed in canonical form as (b₁ ∘ a₁)...(b_r ∘ a_r)g where g ∈ B, 1 ≠ a_j ∈ A, b_j ∈ B and for i ≠ j we have b_i ≠ b_j.
- Consider the set *P* of paths in the Cayley graph Cay(*B*) which start at 1, go through every vertex b_1, \ldots, b_r and end at *g*.

Let $A = \langle S \rangle$ and B be arbitrary finitely generated groups.

- Any u = wg ∈ A wr B can be expressed in canonical form as (b₁ ∘ a₁)...(b_r ∘ a_r)g where g ∈ B, 1 ≠ a_j ∈ A, b_j ∈ B and for i ≠ j we have b_i ≠ b_j.
- Consider the set *P* of paths in the Cayley graph Cay(*B*) which start at 1, go through every vertex b_1, \ldots, b_r and end at *g*.

Let

$$\operatorname{reach}(u) = \min\{||p|| : p \in P\}.$$

Let $A = \langle S \rangle$ and B be arbitrary finitely generated groups.

- Any u = wg ∈ A wr B can be expressed in canonical form as (b₁ ∘ a₁)...(b_r ∘ a_r)g where g ∈ B, 1 ≠ a_j ∈ A, b_j ∈ B and for i ≠ j we have b_i ≠ b_j.
- Consider the set *P* of paths in the Cayley graph Cay(*B*) which start at 1, go through every vertex b_1, \ldots, b_r and end at *g*.

Let

$$\mathsf{reach}(u) = \min\{||p|| : p \in P\}.$$

• Define the norm of any such representative w of W by

$$||w||_A = \sum_{j=1}^r |a_j|_S.$$

Word Metric/Applications

Theorem

For any element $u = wg \in A \ wr \ B$, we have that

$$|wg|_{S,T} = ||w||_A + \operatorname{reach}(u)$$

where $u = (b_1 \circ a_1) \dots (b_r \circ a_r)g$ is the canonical form above.

Word Metric/Applications

Theorem

For any element $u = wg \in A \ wr \ B$, we have that

$$|wg|_{S,T} = ||w||_A + \operatorname{reach}(u)$$

where $u = (b_1 \circ a_1) \dots (b_r \circ a_r)g$ is the canonical form above.

• As an application of the formula, we can show that the group $\mathbb{Z}_2 \text{ wr } \mathbb{Z}^2$ contains distorted subgroups.

Word Metric/Applications

Theorem

For any element $u = wg \in A \ wr \ B$, we have that

$$|wg|_{S,T} = ||w||_A + \operatorname{reach}(u)$$

where $u = (b_1 \circ a_1) \dots (b_r \circ a_r)g$ is the canonical form above.

- As an application of the formula, we can show that the group $\mathbb{Z}_2 \ \mathrm{wr} \ \mathbb{Z}^2$ contains distorted subgroups.
- This is interesting in contrast to the case of $\mathbb{Z}_2 \ \mathrm{wr} \ \mathbb{Z}$ which has no effects of subgroup distortion.

Distortion in $\mathbb{Z}_2 \text{ wr } \mathbb{Z}^2$

• Let $G = \mathbb{Z}_2$ wr $\mathbb{Z}^2 = gp\langle a, b, c \rangle = W\lambda \mathbb{Z}^2$.

< 注 → 注

< □ ▶ < 🗇 ▶

Distortion in $\mathbb{Z}_2 \text{ wr } \mathbb{Z}^2$

- Let $G = \mathbb{Z}_2 \text{ wr } \mathbb{Z}^2 = \operatorname{gp}\langle a, b, c \rangle = W\lambda \mathbb{Z}^2.$
- $W = \bigoplus_{g \in \mathbb{Z}^2} \langle g \circ a \rangle$ is a free module over $\mathbb{Z}_2[\mathbb{Z}^2]$. Therefore, we may think of W as being the Laurent polynomial ring in two variables, say, x for b and y for c.

Distortion in $\mathbb{Z}_2 \text{ wr } \mathbb{Z}^2$

- Let $G = \mathbb{Z}_2 \text{ wr } \mathbb{Z}^2 = \operatorname{gp}\langle a, b, c \rangle = W\lambda \mathbb{Z}^2.$
- W = ⊕ ⟨g ∘ a⟩ is a free module over Z₂[Z²]. Therefore, we may think of W as being the Laurent polynomial ring in two variables, say, x for b and y for c.
- Let $H = \operatorname{gp}\langle b, c, w \rangle$ where w = [a, b] = (1 x)a.

Distortion in \mathbb{Z}_2 wr \mathbb{Z}^2

- Let $G = \mathbb{Z}_2 \text{ wr } \mathbb{Z}^2 = \operatorname{gp}\langle a, b, c \rangle = W\lambda \mathbb{Z}^2.$
- W = ⊕ ⟨g ∘ a⟩ is a free module over Z₂[Z²]. Therefore, we may think of W as being the Laurent polynomial ring in two variables, say, x for b and y for c.
- Let $H = gp\langle b, c, w \rangle$ where w = [a, b] = (1 x)a.
- Then $H \cong G$.

Word Metric in Wreath Products and Applications to Distortion

Distortion in \mathbb{Z}_2 wr \mathbb{Z}^2

Let

$$f_l(x) = \sum_{i=0}^{l-1} x^i$$
 and $g_l(x) = (1-x)f_l(x)$.

문 🛌 문

Distortion in \mathbb{Z}_2 wr \mathbb{Z}^2

Let

$$f_l(x) = \sum_{i=0}^{l-1} x^i$$
 and $g_l(x) = (1-x)f_l(x)$.

• The element $f_l(x)f_l(y)w \in H$ is in canonical form, when written in the additive group notation as $\sum_{i,j=0}^{l-1} b^i c^j \circ w$.
Let

$$f_l(x) = \sum_{i=0}^{l-1} x^i$$
 and $g_l(x) = (1-x)f_l(x)$.

- The element $f_l(x)f_l(y)w \in H$ is in canonical form, when written in the additive group notation as $\sum_{i,j=0}^{l-1} b^i c^j \circ w$.
- Its length in H is at least $l^2 + l^2$ since the support of it has cardinality l^2 , and the length of arbitrary loop going through l^2 different vertices is at least l^2 .

• We have that

$$f_l(x)f_l(y)w = (1-x)f_l(x)f_l(y)a = g_l(x)f_l(y)a = \left[\sum_{i=0}^{l-1} (y^i - y^i x^l)\right]a.$$

æ

We have that

$$f_l(x)f_l(y)w = (1-x)f_l(x)f_l(y)a = g_l(x)f_l(y)a = \left[\sum_{i=0}^{l-1}(y^i - y^ix^l)\right]a.$$

• Therefore, $|f_l(x)f_l(y)w|_G = 2l + 2(l-1) + 2l$.

æ

We have that

$$f_l(x)f_l(y)w = (1-x)f_l(x)f_l(y)a = g_l(x)f_l(y)a = \left[\sum_{i=0}^{l-1} (y^i - y^i x^l)\right]a.$$

- Therefore, $|f_l(x)f_l(y)w|_G = 2l + 2(l-1) + 2l$.
- This is because the shortest path in $Cay(\mathbb{Z}^2)$ starting at 1, passing through $1, c, \ldots, c^{l-1}$ and $b^l, cb^l, \ldots, c^{l-1}b^l$ and ending at 1 is given by traversing the perimeter of the rectangle, and so gives the length of 2(l-1) + 2l.

We have that

$$f_l(x)f_l(y)w = (1-x)f_l(x)f_l(y)a = g_l(x)f_l(y)a = \left[\sum_{i=0}^{l-1} (y^i - y^i x^l)\right]a.$$

- Therefore, $|f_l(x)f_l(y)w|_G = 2l + 2(l-1) + 2l$.
- This is because the shortest path in $Cay(\mathbb{Z}^2)$ starting at 1, passing through $1, c, \ldots, c^{l-1}$ and $b^l, cb^l, \ldots, c^{l-1}b^l$ and ending at 1 is given by traversing the perimeter of the rectangle, and so gives the length of 2(l-1) + 2l.
- Therefore the subgroup *H* is at least quadratically distorted.

Main Theorem

Theorem

Let A be a finitely generated abelian group.

 For any finitely generated subgroup H ≤ A wr Z there exists m ∈ N such that the distortion of H in A wr Z is

$$\Delta_H^{A wr \mathbb{Z}}(I) \approx I^m.$$

- 2 If A is finite, then m = 1; that is, all subgroups are undistorted.
- If A is infinite, then for every m ∈ N, there is a 2-generated subnormal subgroup H of A wr Z having distortion function

$$\Delta_H^{A wr \mathbb{Z}}(I) \approx I^m.$$

• What effects of subgroup distortion are possible in free solvable groups?

- What effects of subgroup distortion are possible in free solvable groups?
- The membership problem for free solvable groups of length greater than two is undecidable. [Umirbaev]

- What effects of subgroup distortion are possible in free solvable groups?
- The membership problem for free solvable groups of length greater than two is undecidable. [Umirbaev]
- Distortion in free metabelian groups is similar to that in wreath products because if k ≥ 2 then Z wr Z ≤ S_{k,2} ≤ Z^k wr Z^k.

- What effects of subgroup distortion are possible in free solvable groups?
- The membership problem for free solvable groups of length greater than two is undecidable. [Umirbaev]
- Distortion in free metabelian groups is similar to that in wreath products because if k ≥ 2 then Z wr Z ≤ S_{k,2} ≤ Z^k wr Z^k.
- Every finitely generated abelian subgroup of Z^k wr Z is undistorted.
 [Guba, Sapir]

More Motivation

• There are distorted embeddings from the group $\mathbb Z \ {\rm wr} \ \mathbb Z$ into itself as a normal subgroup.

1≣ ▶

More Motivation

- There are distorted embeddings from the group $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$ into itself as a normal subgroup.
- For example, the map defined on generators by b → b, a → [a, b] extends to an embedding, and the image is a quadratically distorted subgroup.

More Motivation

- There are distorted embeddings from the group $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$ into itself as a normal subgroup.
- For example, the map defined on generators by b → b, a → [a, b] extends to an embedding, and the image is a quadratically distorted subgroup.
- Thus there is a distorted embedding of $\mathbb{Z} \le \mathbb{Z}$ into Thompson's group *F*.

- There are distorted embeddings from the group $\mathbb Z \ {\rm wr} \ \mathbb Z$ into itself as a normal subgroup.
- For example, the map defined on generators by b → b, a → [a, b] extends to an embedding, and the image is a quadratically distorted subgroup.
- Thus there is a distorted embedding of $\mathbb{Z} \text{ wr } \mathbb{Z}$ into Thompson's group *F*.
- The group Z wr Z is the smallest metabelian group which embedds to itself as a normal distorted subgroup: For any metabelian group G, if there is an embedding φ : G → G such that φ(G) ≤ G and φ(G) is a distorted subgroup in G, then there exists some subgroup H of G for which H ≅ Z wr Z.

イロト 不同 トイヨト イヨト

From now on A is finitely generated abelian and $\mathbb{Z} = \langle b \rangle$.

 Any finitely generated subgroup in A wr Z = Wλ⟨b⟩ can be generated by elements w₁b^t, w₂,..., w_s where w_i ∈ W.

Image: A mathematical states and a mathem

From now on A is finitely generated abelian and $\mathbb{Z} = \langle b \rangle$.

- Any finitely generated subgroup in A wr Z = Wλ⟨b⟩ can be generated by elements w₁b^t, w₂,..., w_s where w_i ∈ W.
- It turns out that having b as a generator is more convenient for computations than w₁b^t.

From now on A is finitely generated abelian and $\mathbb{Z} = \langle b \rangle$.

- Any finitely generated subgroup in A wr Z = Wλ⟨b⟩ can be generated by elements w₁b^t, w₂,..., w_s where w_i ∈ W.
- It turns out that having b as a generator is more convenient for computations than w₁b^t.
- We call H ≤ A wr Z "a subgroup with b" if the generators of H may be given by b, w₁,..., w_s for w_i ∈ W.

From now on A is finitely generated abelian and $\mathbb{Z} = \langle b \rangle$.

- Any finitely generated subgroup in A wr Z = Wλ⟨b⟩ can be generated by elements w₁b^t, w₂,..., w_s where w_i ∈ W.
- It turns out that having b as a generator is more convenient for computations than w₁b^t.
- We call H ≤ A wr Z "a subgroup with b" if the generators of H may be given by b, w₁,..., w_s for w_i ∈ W.
- If H is a f.g. subgroup of A wr Z not contained in W, then the distortion of H in A wr Z is equivalent to the distortion of a subgroup H' in A^t wr Z with b.

• Consider $G = A \text{ wr } \mathbb{Z} = A \text{ wr } \langle b \rangle$.

э

- Consider $G = A \text{ wr } \mathbb{Z} = A \text{ wr } \langle b \rangle$.
- Let H be a finitely generated subgroup of G.

- Consider $G = A \operatorname{wr} \mathbb{Z} = A \operatorname{wr} \langle b \rangle$.
- Let H be a finitely generated subgroup of G.
- Then there exists r so that the distortion of H in G is equivalent to that of a finitely generated subgroup in Z^r wr Z.

- Consider $G = A \operatorname{wr} \mathbb{Z} = A \operatorname{wr} \langle b \rangle$.
- Let H be a finitely generated subgroup of G.
- Then there exists *r* so that the distortion of *H* in *G* is equivalent to that of a finitely generated subgroup in $\mathbb{Z}^r \text{ wr } \mathbb{Z}$.
- Therefore, it suffices to study subgroups H of $\mathbb{Z}^r \text{ wr } \mathbb{Z}$ with b.

• Consider $G = \mathbb{Z}^r$ wr $\mathbb{Z} = gp\langle a_1, \ldots, a_r, b \rangle$.

æ

注▶ ★ 注▶ -

Image: A matrix and a matrix

- Consider $G = \mathbb{Z}^r$ wr $\mathbb{Z} = gp\langle a_1, \ldots, a_r, b \rangle$.
- We call a subgroup *H* of *G* "special" if *H* can be generated by elements *b*, *w*₁,..., *w_k* where each *w_i* is in the normal closure of only one *a_i*.

- Consider $G = \mathbb{Z}^r$ wr $\mathbb{Z} = gp\langle a_1, \ldots, a_r, b \rangle$.
- We call a subgroup *H* of *G* "special" if *H* can be generated by elements *b*, *w*₁,..., *w*_k where each *w*_i is in the normal closure of only one *a*_i.
- Let H ≤ Z^r wr Z be a special subgroup with generators b, w₁,..., w_k. Then H is isomorphic to Z^k wr Z.

- Consider $G = \mathbb{Z}^r$ wr $\mathbb{Z} = gp\langle a_1, \ldots, a_r, b \rangle$.
- We call a subgroup *H* of *G* "special" if *H* can be generated by elements *b*, *w*₁,..., *w*_k where each *w*_i is in the normal closure of only one *a*_i.
- Let H ≤ Z^r wr Z be a special subgroup with generators b, w₁,..., w_k. Then H is isomorphic to Z^k wr Z.
- Let H be a subgroup of Z^r wr Z with b. Then the distortion of H in Z^r wr Z is equivalent to the distortion of a special subgroup.

Structure of Some Subgroups

"Tame" Subgroups

• We now move our focus to certain 2-generated subgroups of $\mathbb{Z} \text{ wr } \mathbb{Z}$.

æ

< ≣ >

- We now move our focus to certain 2-generated subgroups of $\mathbb Z \ {\rm wr} \ \mathbb Z.$
- We call a subgroup of Z wr Z generated by b and w = h(x)a ∈ W where h(x) ∈ Z[x] has nonzero constant term a "tame" subgroup.

- \bullet We now move our focus to certain 2-generated subgroups of $\mathbb Z \ {\rm wr} \ \mathbb Z.$
- We call a subgroup of Z wr Z generated by b and w = h(x)a ∈ W where h(x) ∈ Z[x] has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^r$ wr $\mathbb{Z} = G$ be a special subgroup.

- \bullet We now move our focus to certain 2-generated subgroups of $\mathbb Z \ {\rm wr} \ \mathbb Z.$
- We call a subgroup of $\mathbb{Z} \text{ wr } \mathbb{Z}$ generated by b and $w = h(x)a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^r$ wr $\mathbb{Z} = G$ be a special subgroup.
- Let $H_i = gp\langle b, w_i \rangle$ and $G_i = gp\langle b, a_i \rangle$ for $i = 1, \dots, k$.

- $\bullet\,$ We now move our focus to certain 2-generated subgroups of $\mathbb Z\,\,\mathrm{wr}\,\,\mathbb Z.$
- We call a subgroup of Z wr Z generated by b and w = h(x)a ∈ W where h(x) ∈ Z[x] has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^r$ wr $\mathbb{Z} = G$ be a special subgroup.
- Let $H_i = gp\langle b, w_i \rangle$ and $G_i = gp\langle b, a_i \rangle$ for $i = 1, \dots, k$.
- Then we have that

$$\Delta_{H}^{G}(I) \approx \max\{\Delta_{H_{i}}^{G_{i}}(I)\}_{i=1,\ldots,k}.$$

- $\bullet\,$ We now move our focus to certain 2-generated subgroups of $\mathbb Z\,\,\mathrm{wr}\,\,\mathbb Z.$
- We call a subgroup of $\mathbb{Z} \text{ wr } \mathbb{Z}$ generated by b and $w = h(x)a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^r$ wr $\mathbb{Z} = G$ be a special subgroup.
- Let $H_i = gp\langle b, w_i \rangle$ and $G_i = gp\langle b, a_i \rangle$ for $i = 1, \dots, k$.
- Then we have that

$$\Delta_{H}^{G}(I) \approx \max\{\Delta_{H_{i}}^{G_{i}}(I)\}_{i=1,\ldots,k}.$$

• Further, we may assume without loss of generality that each *H_i* is a tame subgroup.

Distortion of a Polynomial

• In order to understand distortion in tame subgroups of $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$, we will introduce the notion of the distortion of a polynomial.

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$, we will introduce the notion of the distortion of a polynomial.
- Let *R* be a commutative ring with a real norm, and consider the polynomial ring *R*[*x*].

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$, we will introduce the notion of the distortion of a polynomial.
- Let *R* be a commutative ring with a real norm, and consider the polynomial ring *R*[*x*].
- We will define a function $S : R[x] \to \mathbb{R}^+$ which takes any $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ to $S(f) = \sum_{i=0}^{n} |a_i|$.
Distortion of a Polynomial

- In order to understand distortion in tame subgroups of $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$, we will introduce the notion of the distortion of a polynomial.
- Let *R* be a commutative ring with a real norm, and consider the polynomial ring *R*[*x*].
- We will define a function $S : R[x] \to \mathbb{R}^+$ which takes any $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ to $S(f) = \sum_{i=0}^{n} |a_i|$.
- For any h ∈ R[x], we define the distortion of the polynomial h from N to N by

$$\Delta_{h,c}(I) = \max\{S(f) : \deg(f) \leq cI, \text{ and } S(hf) \leq cI\}.$$

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of $\mathbb{Z} \ \mathrm{wr} \ \mathbb{Z}$, we will introduce the notion of the distortion of a polynomial.
- Let *R* be a commutative ring with a real norm, and consider the polynomial ring *R*[*x*].
- We will define a function $S : R[x] \to \mathbb{R}^+$ which takes any $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ to $S(f) = \sum_{i=0}^{n} |a_i|$.
- For any h ∈ R[x], we define the distortion of the polynomial h from N to N by

$$\Delta_{h,c}(l) = \max\{S(f) : \deg(f) \le cl, \text{ and } S(hf) \le cl\}.$$

 The distortion does not depend on the constant c, up to equivalence, and so we will consider Δ_h(l).

(日)

• The following fact makes concrete our motivation for studying distortion of polynomials.

- The following fact makes concrete our motivation for studying distortion of polynomials.
- Let *H* be a tame subgroup, where $H = \langle b, w \rangle \leq \mathbb{Z} \text{ wr } \mathbb{Z}$ where w = h(x)a for $h \in \mathbb{Z}[x]$.

- The following fact makes concrete our motivation for studying distortion of polynomials.
- Let *H* be a tame subgroup, where $H = \langle b, w \rangle \leq \mathbb{Z} \text{ wr } \mathbb{Z}$ where w = h(x)a for $h \in \mathbb{Z}[x]$.

Then

$$\Delta_h(I) \approx \Delta_H^{\mathbb{Z} \text{ wr } \mathbb{Z}}(I).$$

- The following fact makes concrete our motivation for studying distortion of polynomials.
- Let *H* be a tame subgroup, where $H = \langle b, w \rangle \leq \mathbb{Z} \text{ wr } \mathbb{Z}$ where w = h(x)a for $h \in \mathbb{Z}[x]$.
- Then

$$\Delta_h(I) \approx \Delta_H^{\mathbb{Z} \text{ wr } \mathbb{Z}}(I).$$

• So we would like to be able to explicitly compute the distortion of any polynomial.

• Although we are motivated by studying groups, we are currently only discussing polynomials.

- Although we are motivated by studying groups, we are currently only discussing polynomials.
- Given any polynomial $h \in \mathbb{Z}[x]$, we are able to compute the equivalence class of its distortion function.

- Although we are motivated by studying groups, we are currently only discussing polynomials.
- Given any polynomial $h \in \mathbb{Z}[x]$, we are able to compute the equivalence class of its distortion function.
- The distortion of h with respect to the ring of polynomials over Z, R, or C is bounded from below by I^{κ+1}, up to equivalence, where h has a complex root of multiplicity κ and modulus one.

- Although we are motivated by studying groups, we are currently only discussing polynomials.
- Given any polynomial $h \in \mathbb{Z}[x]$, we are able to compute the equivalence class of its distortion function.
- The distortion of h with respect to the ring of polynomials over Z, R, or C is bounded from below by I^{κ+1}, up to equivalence, where h has a complex root of multiplicity κ and modulus one.
- Obtaining upper bounds requires linear algebra, but it can be shown that $\Delta_h(l) \approx l^{\kappa+1}$ where κ is the maximal multiplicity of any complex root of h with modulus one.

Computing Subgroup Distortion

 Any finitely generated subgroup H of A wr Z where A is finitely generated abelian has distortion equivalent to the distortion of a tame subgroup of Z wr Z.

Computing Subgroup Distortion

- Any finitely generated subgroup H of A wr Z where A is finitely generated abelian has distortion equivalent to the distortion of a tame subgroup of Z wr Z.
- This implies that the distortion of *H* is equivalent to the distortion of a certain polynomial (given by a generator of the tame subgroup.)

Computing Subgroup Distortion

- Any finitely generated subgroup H of A wr Z where A is finitely generated abelian has distortion equivalent to the distortion of a tame subgroup of Z wr Z.
- This implies that the distortion of *H* is equivalent to the distortion of a certain polynomial (given by a generator of the tame subgroup.)
- This proves that the distortion of H is equivalent to a polynomial.

Describing 2-generated distorted subgroups in $\mathbb Z \ {\rm wr} \ \mathbb Z$

 We can explicitly describe the distorted 2-generated subgroups H having distortion Δ^ℤ_H ^{wr ℤ}(I) ≈ I^m.

Describing 2-generated distorted subgroups in $\mathbb Z \ {\rm wr} \ \mathbb Z$

- We can explicitly describe the distorted 2-generated subgroups H having distortion Δ^ℤ_H ^{wr ℤ}(I) ≈ I^m.
- Let $m \in \mathbb{N}$. Let $H = \langle b, w \rangle \leq \mathbb{Z} \ \mathrm{wr} \ \mathbb{Z} = \langle a, b \rangle$ where

$$w = (1-x)^{m-1}a.$$

Describing 2-generated distorted subgroups in $\mathbb Z \ {\rm wr} \ \mathbb Z$

- We can explicitly describe the distorted 2-generated subgroups H having distortion Δ^Z_H ^{wr Z}(I) ≈ I^m.
- Let $m \in \mathbb{N}$. Let $H = \langle b, w \rangle \leq \mathbb{Z} \ \mathrm{wr} \ \mathbb{Z} = \langle a, b \rangle$ where

$$w=(1-x)^{m-1}a.$$

• The subgroup

$$H = \langle b, [\cdots [a, b], b], \cdots, b] \rangle,$$

where the commutator is (m-1)-fold.

Thank you!

æ