Subgroup Distortion in Wreath Products of Cyclic Groups

Tara Davis

Group Theory International Webinar

March 3, 2011

Outline

(1) Introduction and Background

- Subgroup Distortion
- Wreath Products
(2) Word Metric in Wreath Products and Applications to Distortion
(3) Main Theorem
(4) Motivation
(5) Outline of the Proof of the Main Theorem
- Structure of Some Subgroups
- Distortion of Polynomials
- Describing specific distorted subgroups

Subgroup Distortion

Definition (Gromov)

For a finitely generated group $G=\langle T\rangle$ and a f.g. subgroup $H=\langle S\rangle$, the distortion function of H in G is

$$
\Delta_{H}^{G}(I)=\max \left\{|w|_{S}: w \in H,|w|_{T} \leq I\right\} .
$$

Subgroup Distortion

Definition (Gromov)

For a finitely generated group $G=\langle T\rangle$ and a f.g. subgroup $H=\langle S\rangle$, the distortion function of H in G is

$$
\Delta_{H}^{G}(I)=\max \left\{|w|_{S}: w \in H,|w|_{T} \leq I\right\} .
$$

- For $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we say that $f \preceq g$ if there exists an integer $C>0$ such that

$$
f(I) \leq C g(C l)+C l
$$

for all $I \geq 0$.

Examples of Subgroup Distortion

- The cyclic subgroup $H=\langle c\rangle_{\infty}$ of $\mathcal{H}^{3}=\langle a, b, c \mid[a, b]=c,[a, c]=[b, c]=1\rangle$ has quadratic distortion.

Examples of Subgroup Distortion

- The cyclic subgroup $H=\langle c\rangle_{\infty}$ of $\mathcal{H}^{3}=\langle a, b, c \mid[a, b]=c,[a, c]=[b, c]=1\rangle$ has quadratic distortion.

$$
c^{\prime^{2}}=\left[a^{\prime}, b^{\prime}\right]
$$

Examples of Subgroup Distortion

- The cyclic subgroup $H=\langle c\rangle_{\infty}$ of $\mathcal{H}^{3}=\langle a, b, c \mid[a, b]=c,[a, c]=[b, c]=1\rangle$ has quadratic distortion.

$$
c^{\prime^{2}}=\left[a^{\prime}, b^{\prime}\right]
$$

- The cyclic subgroup $H=\langle a\rangle_{\infty}$ of $\mathrm{BS}(1,2)=\left\langle a, b \mid b a b^{-1}=a^{2}\right\rangle$ has exponential distortion.

Examples of Subgroup Distortion

- The cyclic subgroup $H=\langle c\rangle_{\infty}$ of $\mathcal{H}^{3}=\langle a, b, c \mid[a, b]=c,[a, c]=[b, c]=1\rangle$ has quadratic distortion.

$$
c^{\prime^{2}}=\left[a^{\prime}, b^{\prime}\right]
$$

- The cyclic subgroup $H=\langle a\rangle_{\infty}$ of $\operatorname{BS}(1,2)=\left\langle a, b \mid b a b^{-1}=a^{2}\right\rangle$ has exponential distortion.

$$
a^{2^{1}}=b^{\prime} a b^{-1}
$$

Wreath Products

Let A and B be any groups.

- The wreath product A wr B is the semidirect product $W \lambda B$, where W is the direct product $\oplus_{g \in B} A_{g}$, of isomorphic copies A_{g} of the group A.

Wreath Products

Let A and B be any groups.

- The wreath product A wr B is the semidirect product $W \lambda B$, where W is the direct product $\oplus_{g \in B} A_{g}$, of isomorphic copies A_{g} of the group A.
- We view elements of W as functions from B to A with finite support.

Wreath Products

Let A and B be any groups.

- The wreath product A wr B is the semidirect product $W \lambda B$, where W is the direct product $\oplus_{g \in B} A_{g}$, of isomorphic copies A_{g} of the group A.
- We view elements of W as functions from B to A with finite support.
- The (left) action \circ of B on W by automorphisms is given by: $(g \circ w)(x)=w(x g)$, for any $w \in W, g \in B$ and $x \in B$.

Wreath Products

Let A and B be any groups.

- The wreath product A wr B is the semidirect product $W \lambda B$, where W is the direct product $\oplus_{g \in B} A_{g}$, of isomorphic copies A_{g} of the group A.
- We view elements of W as functions from B to A with finite support.
- The (left) action \circ of B on W by automorphisms is given by: $(g \circ w)(x)=w(x g)$, for any $w \in W, g \in B$ and $x \in B$.
- For $g_{1}, g_{2} \in B, w_{1}, w_{2} \in W$ we have that $\left(w_{1} g_{1}\right)\left(w_{2} g_{2}\right)=\left(w_{1}\left(g_{1} \circ w_{2}\right)\right)\left(g_{1} g_{2}\right)$.

Example: \mathbb{Z} wr \mathbb{Z}

- Let $A=\langle a\rangle \cong \mathbb{Z}$ and $B=\langle b\rangle \cong \mathbb{Z}$, and consider $G=A$ wr B.

Example: \mathbb{Z} wr \mathbb{Z}

- Let $A=\langle a\rangle \cong \mathbb{Z}$ and $B=\langle b\rangle \cong \mathbb{Z}$, and consider $G=A$ wr B.
- The group G has presentation given by generators and defining relations \mathbb{Z} wr $\mathbb{Z}=\left\langle a, b \mid\left[a, b^{n} a b^{-n}\right]\right\rangle$.

Example: \mathbb{Z} wr \mathbb{Z}

- Let $A=\langle a\rangle \cong \mathbb{Z}$ and $B=\langle b\rangle \cong \mathbb{Z}$, and consider $G=A$ wr B.
- The group G has presentation given by generators and defining relations \mathbb{Z} wr $\mathbb{Z}=\left\langle a, b \mid\left[a, b^{n} a b^{-n}\right]\right\rangle$.
- G is the simplest example of a finitely generated (though not finitely presented) group containing a free abelian group of infinite rank.

Example: \mathbb{Z} wr \mathbb{Z}

- Let $A=\langle a\rangle \cong \mathbb{Z}$ and $B=\langle b\rangle \cong \mathbb{Z}$, and consider $G=A$ wr B.
- The group G has presentation given by generators and defining relations \mathbb{Z} wr $\mathbb{Z}=\left\langle a, b \mid\left[a, b^{n} a b^{-n}\right]\right\rangle$.
- G is the simplest example of a finitely generated (though not finitely presented) group containing a free abelian group of infinite rank.
- The group W is a free module with one generator a over the group ring $\mathbb{Z}[\langle b\rangle]$.

Word Metric [Cleary, Taback]

- Arbitrary element of A wr \mathbb{Z} may be written in a normal form as

$$
\left(b^{\iota_{1}} \circ u_{1}\right) \cdots\left(b^{\iota_{N}} \circ u_{N}\right)\left(b^{-\epsilon_{1}} \circ v_{1}\right) \cdots\left(b^{-\epsilon_{M}} \circ v_{M}\right) b^{t}
$$

where $0 \leq \iota_{1}<\cdots<\iota_{N}, 0<\epsilon_{1}<\cdots<\epsilon_{M}$, and $u_{1}, \ldots, u_{N}, v_{1}, \ldots, v_{M}$ are elements in $A-\{1\}$.

Word Metric [Cleary, Taback]

- Arbitrary element of A wr \mathbb{Z} may be written in a normal form as

$$
\left(b^{\iota_{1}} \circ u_{1}\right) \cdots\left(b^{\iota_{N}} \circ u_{N}\right)\left(b^{-\epsilon_{1}} \circ v_{1}\right) \cdots\left(b^{-\epsilon_{M}} \circ v_{M}\right) b^{t}
$$

where $0 \leq \iota_{1}<\cdots<\iota_{N}, 0<\epsilon_{1}<\cdots<\epsilon_{M}$, and $u_{1}, \ldots, u_{N}, v_{1}, \ldots, v_{M}$ are elements in $A-\{1\}$.

- The length is given by the formula

$$
\sum_{i=1}^{N}\left|u_{i}\right|_{A}+\sum_{i=1}^{M}\left|v_{i}\right|_{A}+\min \left\{2 \epsilon_{M}+\iota_{N}+\left|t-\iota_{N}\right|, 2 \iota_{N}+\epsilon_{M}+\left|t+\epsilon_{M}\right|\right\}
$$

Word Metric Example

- Example in \mathbb{Z} wr $\mathbb{Z}=\operatorname{gp}\langle a, b\rangle$.

Word Metric Example

- Example in \mathbb{Z} wr $\mathbb{Z}=\operatorname{gp}\langle a, b\rangle$.
- Consider the element $\left(b^{5} \circ a^{-3}\right)\left(b^{-1} \circ a^{4}\right)\left(b^{-2} \circ a^{2}\right) b^{3}$.

Word Metric Example

- Example in \mathbb{Z} wr $\mathbb{Z}=\operatorname{gp}\langle a, b\rangle$.
- Consider the element $\left(b^{5} \circ a^{-3}\right)\left(b^{-1} \circ a^{4}\right)\left(b^{-2} \circ a^{2}\right) b^{3}$.
- Its length equals the sum of lengths of a^{-3}, a^{4} and a^{2} in $\langle a\rangle$ plus $\min \left\{2 \epsilon_{2}+\iota_{1}+\left|t-\iota_{1}\right|, 2 \iota_{1}+\epsilon_{2}+\left|t+\epsilon_{2}\right|\right\}=2 \epsilon_{2}+\iota_{1}+\left|t-\iota_{1}\right|$.

Word Metric Example

- Example in \mathbb{Z} wr $\mathbb{Z}=\operatorname{gp}\langle a, b\rangle$.
- Consider the element $\left(b^{5} \circ a^{-3}\right)\left(b^{-1} \circ a^{4}\right)\left(b^{-2} \circ a^{2}\right) b^{3}$.
- Its length equals the sum of lengths of a^{-3}, a^{4} and a^{2} in $\langle a\rangle$ plus $\min \left\{2 \epsilon_{2}+\iota_{1}+\left|t-\iota_{1}\right|, 2 \iota_{1}+\epsilon_{2}+\left|t+\epsilon_{2}\right|\right\}=2 \epsilon_{2}+\iota_{1}+\left|t-\iota_{1}\right|$.
- This equals $3+4+2+11$ and is recognized by

$$
\left(b^{-1} a^{4} b\right)\left(b^{-2} a^{2} b^{2}\right)\left(b^{5} a^{-3} b^{-5}\right) b^{3}=b^{-1} a^{4} b^{-1} a^{2} b^{7} a^{-3} b^{-2} .
$$

Word Metric Example

- Example in \mathbb{Z} wr $\mathbb{Z}=\operatorname{gp}\langle a, b\rangle$.
- Consider the element $\left(b^{5} \circ a^{-3}\right)\left(b^{-1} \circ a^{4}\right)\left(b^{-2} \circ a^{2}\right) b^{3}$.
- Its length equals the sum of lengths of a^{-3}, a^{4} and a^{2} in $\langle a\rangle$ plus $\min \left\{2 \epsilon_{2}+\iota_{1}+\left|t-\iota_{1}\right|, 2 \iota_{1}+\epsilon_{2}+\left|t+\epsilon_{2}\right|\right\}=2 \epsilon_{2}+\iota_{1}+\left|t-\iota_{1}\right|$.
- This equals $3+4+2+11$ and is recognized by

$$
\left(b^{-1} a^{4} b\right)\left(b^{-2} a^{2} b^{2}\right)\left(b^{5} a^{-3} b^{-5}\right) b^{3}=b^{-1} a^{4} b^{-1} a^{2} b^{7} a^{-3} b^{-2}
$$

- The minimum corresponds to a path in the Cayley graph of $\langle b\rangle$ which starts at 1 , passes b^{-1}, b^{-2}, b^{5} and ends at b^{3}.

Word Metric

Let $A=\langle S\rangle$ and B be arbitrary finitely generated groups.

- Any $u=w g \in A$ wr B can be expressed in canonical form as $\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ where $g \in B, 1 \neq a_{j} \in A, b_{j} \in B$ and for $i \neq j$ we have $b_{i} \neq b_{j}$.

Word Metric

Let $A=\langle S\rangle$ and B be arbitrary finitely generated groups.

- Any $u=w g \in A$ wr B can be expressed in canonical form as $\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ where $g \in B, 1 \neq a_{j} \in A, b_{j} \in B$ and for $i \neq j$ we have $b_{i} \neq b_{j}$.
- Consider the set P of paths in the Cayley graph Cay (B) which start at 1 , go through every vertex b_{1}, \ldots, b_{r} and end at g.

Word Metric

Let $A=\langle S\rangle$ and B be arbitrary finitely generated groups.

- Any $u=w g \in A$ wr B can be expressed in canonical form as $\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ where $g \in B, 1 \neq a_{j} \in A, b_{j} \in B$ and for $i \neq j$ we have $b_{i} \neq b_{j}$.
- Consider the set P of paths in the Cayley graph Cay (B) which start at 1 , go through every vertex b_{1}, \ldots, b_{r} and end at g.
- Let

$$
\operatorname{reach}(u)=\min \{\|p\|: p \in P\}
$$

Word Metric

Let $A=\langle S\rangle$ and B be arbitrary finitely generated groups.

- Any $u=w g \in A$ wr B can be expressed in canonical form as $\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ where $g \in B, 1 \neq a_{j} \in A, b_{j} \in B$ and for $i \neq j$ we have $b_{i} \neq b_{j}$.
- Consider the set P of paths in the Cayley graph Cay (B) which start at 1 , go through every vertex b_{1}, \ldots, b_{r} and end at g.
- Let

$$
\operatorname{reach}(u)=\min \{\|p\|: p \in P\}
$$

- Define the norm of any such representative w of W by

$$
\|w\|_{A}=\sum_{j=1}^{r}\left|a_{j}\right| s
$$

Word Metric/Applications

Theorem

For any element $u=w g \in A$ wr B, we have that

$$
|w g|_{S, T}=\|w\|_{A}+\operatorname{reach}(u)
$$

where $u=\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ is the canonical form above.

Word Metric/Applications

Theorem

For any element $u=w g \in A$ wr B, we have that

$$
|w g|_{S, T}=\|w\|_{A}+\operatorname{reach}(u)
$$

where $u=\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ is the canonical form above.

- As an application of the formula, we can show that the group \mathbb{Z}_{2} wr \mathbb{Z}^{2} contains distorted subgroups.

Word Metric/Applications

Theorem

For any element $u=w g \in A$ wr B, we have that

$$
|w g|_{S, T}=\|w\|_{A}+\operatorname{reach}(u)
$$

where $u=\left(b_{1} \circ a_{1}\right) \ldots\left(b_{r} \circ a_{r}\right) g$ is the canonical form above.

- As an application of the formula, we can show that the group \mathbb{Z}_{2} wr \mathbb{Z}^{2} contains distorted subgroups.
- This is interesting in contrast to the case of \mathbb{Z}_{2} wr \mathbb{Z} which has no effects of subgroup distortion.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let $G=\mathbb{Z}_{2}$ wr $\mathbb{Z}^{2}=\operatorname{gp}\langle a, b, c\rangle=W \lambda \mathbb{Z}^{2}$.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let $G=\mathbb{Z}_{2} \mathrm{wr} \mathbb{Z}^{2}=\operatorname{gp}\langle a, b, c\rangle=W \lambda \mathbb{Z}^{2}$.
- $W=\bigoplus\langle g \circ a\rangle$ is a free module over $\mathbb{Z}_{2}\left[\mathbb{Z}^{2}\right]$. Therefore, we may $g \in \mathbb{Z}^{2}$
think of W as being the Laurent polynomial ring in two variables, say, x for b and y for c.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let $G=\mathbb{Z}_{2} \mathrm{wr} \mathbb{Z}^{2}=\operatorname{gp}\langle a, b, c\rangle=W \lambda \mathbb{Z}^{2}$.
- $W=\bigoplus\langle g \circ a\rangle$ is a free module over $\mathbb{Z}_{2}\left[\mathbb{Z}^{2}\right]$. Therefore, we may $g \in \mathbb{Z}^{2}$
think of W as being the Laurent polynomial ring in two variables, say, x for b and y for c.
- Let $H=\operatorname{gp}\langle b, c, w\rangle$ where $w=[a, b]=(1-x) a$.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let $G=\mathbb{Z}_{2} \mathrm{wr} \mathbb{Z}^{2}=\operatorname{gp}\langle a, b, c\rangle=W \lambda \mathbb{Z}^{2}$.
- $W=\bigoplus\langle g \circ a\rangle$ is a free module over $\mathbb{Z}_{2}\left[\mathbb{Z}^{2}\right]$. Therefore, we may $g \in \mathbb{Z}^{2}$
think of W as being the Laurent polynomial ring in two variables, say, x for b and y for c.
- Let $H=\operatorname{gp}\langle b, c, w\rangle$ where $w=[a, b]=(1-x) a$.
- Then $H \cong G$.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let

$$
f_{l}(x)=\sum_{i=0}^{l-1} x^{i} \text { and } g_{l}(x)=(1-x) f_{l}(x)
$$

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let

$$
f_{l}(x)=\sum_{i=0}^{l-1} x^{i} \text { and } g_{l}(x)=(1-x) f_{l}(x)
$$

- The element $f_{l}(x) f_{l}(y) w \in H$ is in canonical form, when written in the additive group notation as $\sum_{i, j=0}^{l-1} b^{i} c^{j} \circ w$.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- Let

$$
f_{l}(x)=\sum_{i=0}^{I-1} x^{i} \text { and } g_{l}(x)=(1-x) f_{l}(x)
$$

- The element $f_{l}(x) f_{l}(y) w \in H$ is in canonical form, when written in the additive group notation as $\sum_{i, j=0}^{l-1} b^{i} c^{j} \circ w$.
- Its length in H is at least $I^{2}+I^{2}$ since the support of it has cardinality I^{2}, and the length of arbitrary loop going through I^{2} different vertices is at least l^{2}.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

The I^{2} vertices (left) and the rectangle with perimeter $2 I+2(I-1)$ (right)

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- We have that

$$
f_{l}(x) f_{l}(y) w=(1-x) f_{l}(x) f_{l}(y) a=g_{l}(x) f_{l}(y) a=\left[\sum_{i=0}^{l-1}\left(y^{i}-y^{i} x^{\prime}\right)\right] a .
$$

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- We have that

$$
f_{l}(x) f_{l}(y) w=(1-x) f_{l}(x) f_{l}(y) a=g_{l}(x) f_{l}(y) a=\left[\sum_{i=0}^{l-1}\left(y^{i}-y^{i} x^{\prime}\right)\right] a .
$$

- Therefore, $\left|f_{l}(x) f_{l}(y) w\right|_{G}=2 l+2(I-1)+2 l$.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- We have that

$$
f_{l}(x) f_{l}(y) w=(1-x) f_{l}(x) f_{l}(y) a=g_{l}(x) f_{l}(y) a=\left[\sum_{i=0}^{l-1}\left(y^{i}-y^{i} x^{\prime}\right)\right] a .
$$

- Therefore, $\left|f_{l}(x) f_{l}(y) w\right|_{G}=2 l+2(I-1)+2 l$.
- This is because the shortest path in $\operatorname{Cay}\left(\mathbb{Z}^{2}\right)$ starting at 1 , passing through $1, c, \ldots, c^{I-1}$ and $b^{\prime}, c b^{\prime}, \ldots, c^{l-1} b^{\prime}$ and ending at 1 is given by traversing the perimeter of the rectangle, and so gives the length of $2(I-1)+2 I$.

Distortion in \mathbb{Z}_{2} wr \mathbb{Z}^{2}

- We have that

$$
f_{l}(x) f_{l}(y) w=(1-x) f_{l}(x) f_{l}(y) a=g_{l}(x) f_{l}(y) a=\left[\sum_{i=0}^{l-1}\left(y^{i}-y^{i} x^{\prime}\right)\right] a .
$$

- Therefore, $\left|f_{l}(x) f_{l}(y) w\right|_{G}=2 l+2(I-1)+2 l$.
- This is because the shortest path in $\operatorname{Cay}\left(\mathbb{Z}^{2}\right)$ starting at 1 , passing through $1, c, \ldots, c^{I-1}$ and $b^{\prime}, c b^{\prime}, \ldots, c^{l-1} b^{\prime}$ and ending at 1 is given by traversing the perimeter of the rectangle, and so gives the length of $2(I-1)+2 I$.
- Therefore the subgroup H is at least quadratically distorted.

Main Theorem

Theorem

Let A be a finitely generated abelian group.
(1) For any finitely generated subgroup $H \leq A$ wr \mathbb{Z} there exists $m \in \mathbb{N}$ such that the distortion of H in $A w r \mathbb{Z}$ is

$$
\Delta_{H}^{A} w r \mathbb{Z}_{(I)} \approx I^{m} .
$$

(2) If A is finite, then $m=1$; that is, all subgroups are undistorted.
(3) If A is infinite, then for every $m \in \mathbb{N}$, there is a 2-generated subnormal subgroup H of A wr \mathbb{Z} having distortion function

$$
\Delta_{H}^{A} w r \mathbb{Z}(I) \approx I^{m}
$$

Free Metabelian Groups

- What effects of subgroup distortion are possible in free solvable groups?

Free Metabelian Groups

- What effects of subgroup distortion are possible in free solvable groups?
- The membership problem for free solvable groups of length greater than two is undecidable. [Umirbaev]

Free Metabelian Groups

- What effects of subgroup distortion are possible in free solvable groups?
- The membership problem for free solvable groups of length greater than two is undecidable. [Umirbaev]
- Distortion in free metabelian groups is similar to that in wreath products because if $k \geq 2$ then \mathbb{Z} wr $\mathbb{Z} \leq S_{k, 2} \leq \mathbb{Z}^{k}$ wr \mathbb{Z}^{k}.

Free Metabelian Groups

- What effects of subgroup distortion are possible in free solvable groups?
- The membership problem for free solvable groups of length greater than two is undecidable. [Umirbaev]
- Distortion in free metabelian groups is similar to that in wreath products because if $k \geq 2$ then \mathbb{Z} wr $\mathbb{Z} \leq S_{k, 2} \leq \mathbb{Z}^{k}$ wr \mathbb{Z}^{k}.
- Every finitely generated abelian subgroup of \mathbb{Z}^{k} wr \mathbb{Z} is undistorted. [Guba, Sapir]

More Motivation

- There are distorted embeddings from the group \mathbb{Z} wr \mathbb{Z} into itself as a normal subgroup.

More Motivation

- There are distorted embeddings from the group \mathbb{Z} wr \mathbb{Z} into itself as a normal subgroup.
- For example, the map defined on generators by $b \mapsto b, a \mapsto[a, b]$ extends to an embedding, and the image is a quadratically distorted subgroup.

More Motivation

- There are distorted embeddings from the group \mathbb{Z} wr \mathbb{Z} into itself as a normal subgroup.
- For example, the map defined on generators by $b \mapsto b, a \mapsto[a, b]$ extends to an embedding, and the image is a quadratically distorted subgroup.
- Thus there is a distorted embedding of \mathbb{Z} wr \mathbb{Z} into Thompson's group F.

More Motivation

- There are distorted embeddings from the group \mathbb{Z} wr \mathbb{Z} into itself as a normal subgroup.
- For example, the map defined on generators by $b \mapsto b, a \mapsto[a, b]$ extends to an embedding, and the image is a quadratically distorted subgroup.
- Thus there is a distorted embedding of \mathbb{Z} wr \mathbb{Z} into Thompson's group F.
- The group \mathbb{Z} wr \mathbb{Z} is the smallest metabelian group which embedds to itself as a normal distorted subgroup: For any metabelian group G, if there is an embedding $\phi: G \rightarrow G$ such that $\phi(G) \unlhd G$ and $\phi(G)$ is a distorted subgroup in G, then there exists some subgroup H of G for which $H \cong \mathbb{Z}$ wr \mathbb{Z}.

Subgroups "with b"

From now on A is finitely generated abelian and $\mathbb{Z}=\langle b\rangle$.

- Any finitely generated subgroup in A wr $\mathbb{Z}=W \lambda\langle b\rangle$ can be generated by elements $w_{1} b^{t}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$.

Subgroups "with b"

From now on A is finitely generated abelian and $\mathbb{Z}=\langle b\rangle$.

- Any finitely generated subgroup in A wr $\mathbb{Z}=W \lambda\langle b\rangle$ can be generated by elements $w_{1} b^{t}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$.
- It turns out that having b as a generator is more convenient for computations than $w_{1} b^{t}$.

Subgroups "with b"

From now on A is finitely generated abelian and $\mathbb{Z}=\langle b\rangle$.

- Any finitely generated subgroup in A wr $\mathbb{Z}=W \lambda\langle b\rangle$ can be generated by elements $w_{1} b^{t}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$.
- It turns out that having b as a generator is more convenient for computations than $w_{1} b^{t}$.
- We call $H \leq A$ wr \mathbb{Z} "a subgroup with b" if the generators of H may be given by b, w_{1}, \ldots, w_{s} for $w_{i} \in W$.

Subgroups "with b"

From now on A is finitely generated abelian and $\mathbb{Z}=\langle b\rangle$.

- Any finitely generated subgroup in A wr $\mathbb{Z}=W \lambda\langle b\rangle$ can be generated by elements $w_{1} b^{t}, w_{2}, \ldots, w_{s}$ where $w_{i} \in W$.
- It turns out that having b as a generator is more convenient for computations than $w_{1} b^{t}$.
- We call $H \leq A$ wr \mathbb{Z} "a subgroup with b " if the generators of H may be given by b, w_{1}, \ldots, w_{s} for $w_{i} \in W$.
- If H is a f.g. subgroup of A wr \mathbb{Z} not contained in W, then the distortion of H in A wr \mathbb{Z} is equivalent to the distortion of a subgroup H^{\prime} in A^{t} wr \mathbb{Z} with b.

Reducing to the Case where A is free abelian

- Consider $G=A$ wr $\mathbb{Z}=A$ wr $\langle b\rangle$.

Reducing to the Case where A is free abelian

- Consider $G=A$ wr $\mathbb{Z}=A$ wr $\langle b\rangle$.
- Let H be a finitely generated subgroup of G.

Reducing to the Case where A is free abelian

- Consider $G=A$ wr $\mathbb{Z}=A$ wr $\langle b\rangle$.
- Let H be a finitely generated subgroup of G.
- Then there exists r so that the distortion of H in G is equivalent to that of a finitely generated subgroup in \mathbb{Z}^{r} wr \mathbb{Z}.

Reducing to the Case where A is free abelian

- Consider $G=A$ wr $\mathbb{Z}=A$ wr $\langle b\rangle$.
- Let H be a finitely generated subgroup of G.
- Then there exists r so that the distortion of H in G is equivalent to that of a finitely generated subgroup in \mathbb{Z}^{r} wr \mathbb{Z}.
- Therefore, it suffices to study subgroups H of \mathbb{Z}^{r} wr \mathbb{Z} with b.

"Special" Subgroups

- Consider $G=\mathbb{Z}^{r}$ wr $\mathbb{Z}=\operatorname{gp}\left\langle a_{1}, \ldots, a_{r}, b\right\rangle$.

"Special" Subgroups

- Consider $G=\mathbb{Z}^{r}$ wr $\mathbb{Z}=\operatorname{gp}\left\langle a_{1}, \ldots, a_{r}, b\right\rangle$.
- We call a subgroup H of G "special" if H can be generated by elements b, w_{1}, \ldots, w_{k} where each w_{i} is in the normal closure of only one a_{i}.

"Special" Subgroups

- Consider $G=\mathbb{Z}^{r}$ wr $\mathbb{Z}=\operatorname{gp}\left\langle a_{1}, \ldots, a_{r}, b\right\rangle$.
- We call a subgroup H of G "special" if H can be generated by elements b, w_{1}, \ldots, w_{k} where each w_{i} is in the normal closure of only one a_{i}.
- Let $H \leq \mathbb{Z}^{r}$ wr \mathbb{Z} be a special subgroup with generators b, w_{1}, \ldots, w_{k}. Then H is isomorphic to \mathbb{Z}^{k} wr \mathbb{Z}.

"Special" Subgroups

- Consider $G=\mathbb{Z}^{r}$ wr $\mathbb{Z}=\operatorname{gp}\left\langle a_{1}, \ldots, a_{r}, b\right\rangle$.
- We call a subgroup H of G "special" if H can be generated by elements b, w_{1}, \ldots, w_{k} where each w_{i} is in the normal closure of only one a_{i}.
- Let $H \leq \mathbb{Z}^{r}$ wr \mathbb{Z} be a special subgroup with generators b, w_{1}, \ldots, w_{k}. Then H is isomorphic to \mathbb{Z}^{k} wr \mathbb{Z}.
- Let H be a subgroup of \mathbb{Z}^{r} wr \mathbb{Z} with b. Then the distortion of H in \mathbb{Z}^{r} wr \mathbb{Z} is equivalent to the distortion of a special subgroup.

"Tame" Subgroups

- We now move our focus to certain 2-generated subgroups of \mathbb{Z} wr \mathbb{Z}.

"Tame" Subgroups

- We now move our focus to certain 2-generated subgroups of \mathbb{Z} wr \mathbb{Z}.
- We call a subgroup of \mathbb{Z} wr \mathbb{Z} generated by b and $w=h(x) a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.

"Tame" Subgroups

- We now move our focus to certain 2-generated subgroups of \mathbb{Z} wr \mathbb{Z}.
- We call a subgroup of \mathbb{Z} wr \mathbb{Z} generated by b and $w=h(x) a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^{r}$ wr $\mathbb{Z}=G$ be a special subgroup.

"Tame" Subgroups

- We now move our focus to certain 2-generated subgroups of \mathbb{Z} wr \mathbb{Z}.
- We call a subgroup of \mathbb{Z} wr \mathbb{Z} generated by b and $w=h(x) a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^{r}$ wr $\mathbb{Z}=G$ be a special subgroup.
- Let $H_{i}=\operatorname{gp}\left\langle b, w_{i}\right\rangle$ and $G_{i}=\operatorname{gp}\left\langle b, a_{i}\right\rangle$ for $i=1, \ldots, k$.

"Tame" Subgroups

- We now move our focus to certain 2-generated subgroups of \mathbb{Z} wr \mathbb{Z}.
- We call a subgroup of \mathbb{Z} wr \mathbb{Z} generated by b and $w=h(x) a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^{r}$ wr $\mathbb{Z}=G$ be a special subgroup.
- Let $H_{i}=\operatorname{gp}\left\langle b, w_{i}\right\rangle$ and $G_{i}=\operatorname{gp}\left\langle b, a_{i}\right\rangle$ for $i=1, \ldots, k$.
- Then we have that

$$
\Delta_{H}^{G}(I) \approx \max \left\{\Delta_{H_{i}}^{G_{i}}(I)\right\}_{i=1, \ldots, k}
$$

"Tame" Subgroups

- We now move our focus to certain 2-generated subgroups of \mathbb{Z} wr \mathbb{Z}.
- We call a subgroup of \mathbb{Z} wr \mathbb{Z} generated by b and $w=h(x) a \in W$ where $h(x) \in \mathbb{Z}[x]$ has nonzero constant term a "tame" subgroup.
- Let $H \leq \mathbb{Z}^{r}$ wr $\mathbb{Z}=G$ be a special subgroup.
- Let $H_{i}=\operatorname{gp}\left\langle b, w_{i}\right\rangle$ and $G_{i}=\operatorname{gp}\left\langle b, a_{i}\right\rangle$ for $i=1, \ldots, k$.
- Then we have that

$$
\Delta_{H}^{G}(I) \approx \max \left\{\Delta_{H_{i}}^{G_{i}}(I)\right\}_{i=1, \ldots, k} .
$$

- Further, we may assume without loss of generality that each H_{i} is a tame subgroup.

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of \mathbb{Z} wr \mathbb{Z}, we will introduce the notion of the distortion of a polynomial.

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of \mathbb{Z} wr \mathbb{Z}, we will introduce the notion of the distortion of a polynomial.
- Let R be a commutative ring with a real norm, and consider the polynomial ring $R[x]$.

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of \mathbb{Z} wr \mathbb{Z}, we will introduce the notion of the distortion of a polynomial.
- Let R be a commutative ring with a real norm, and consider the polynomial ring $R[x]$.
- We will define a function $S: R[x] \rightarrow \mathbb{R}^{+}$which takes any $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ to $S(f)=\sum_{i=0}^{n}\left|a_{i}\right|$.

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of \mathbb{Z} wr \mathbb{Z}, we will introduce the notion of the distortion of a polynomial.
- Let R be a commutative ring with a real norm, and consider the polynomial ring $R[x]$.
- We will define a function $S: R[x] \rightarrow \mathbb{R}^{+}$which takes any $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ to $S(f)=\sum_{i=0}^{n}\left|a_{i}\right|$.
- For any $h \in R[x]$, we define the distortion of the polynomial h from \mathbb{N} to \mathbb{N} by

$$
\Delta_{h, c}(I)=\max \{S(f): \operatorname{deg}(f) \leq c l, \text { and } S(h f) \leq c l\} .
$$

Distortion of a Polynomial

- In order to understand distortion in tame subgroups of $\mathbb{Z} \mathrm{wr} \mathbb{Z}$, we will introduce the notion of the distortion of a polynomial.
- Let R be a commutative ring with a real norm, and consider the polynomial ring $R[x]$.
- We will define a function $S: R[x] \rightarrow \mathbb{R}^{+}$which takes any $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ to $S(f)=\sum_{i=0}^{n}\left|a_{i}\right|$.
- For any $h \in R[x]$, we define the distortion of the polynomial h from \mathbb{N} to \mathbb{N} by

$$
\Delta_{h, c}(I)=\max \{S(f): \operatorname{deg}(f) \leq c l, \text { and } S(h f) \leq c l\} .
$$

- The distortion does not depend on the constant c, up to equivalence, and so we will consider $\Delta_{h}(I)$.

Connections Between Subgroup and Polynomial Distortion

- The following fact makes concrete our motivation for studying distortion of polynomials.

Connections Between Subgroup and Polynomial Distortion

- The following fact makes concrete our motivation for studying distortion of polynomials.
- Let H be a tame subgroup, where $H=\langle b, w\rangle \leq \mathbb{Z}$ wr \mathbb{Z} where $w=h(x) a$ for $h \in \mathbb{Z}[x]$.

Connections Between Subgroup and Polynomial Distortion

- The following fact makes concrete our motivation for studying distortion of polynomials.
- Let H be a tame subgroup, where $H=\langle b, w\rangle \leq \mathbb{Z}$ wr \mathbb{Z} where $w=h(x) a$ for $h \in \mathbb{Z}[x]$.
- Then

$$
\Delta_{h}(I) \approx \Delta_{H}^{\mathbb{Z}} \text { wr } \mathbb{Z}(I)
$$

Connections Between Subgroup and Polynomial Distortion

- The following fact makes concrete our motivation for studying distortion of polynomials.
- Let H be a tame subgroup, where $H=\langle b, w\rangle \leq \mathbb{Z}$ wr \mathbb{Z} where $w=h(x) a$ for $h \in \mathbb{Z}[x]$.
- Then

$$
\Delta_{h}(I) \approx \Delta_{H}^{\mathbb{Z}} \mathrm{wr}^{\mathbb{Z}}(I) .
$$

- So we would like to be able to explicitly compute the distortion of any polynomial.

Computing Polynomial Distortion

- Although we are motivated by studying groups, we are currently only discussing polynomials.

Computing Polynomial Distortion

- Although we are motivated by studying groups, we are currently only discussing polynomials.
- Given any polynomial $h \in \mathbb{Z}[x]$, we are able to compute the equivalence class of its distortion function.

Computing Polynomial Distortion

- Although we are motivated by studying groups, we are currently only discussing polynomials.
- Given any polynomial $h \in \mathbb{Z}[x]$, we are able to compute the equivalence class of its distortion function.
- The distortion of h with respect to the ring of polynomials over \mathbb{Z}, \mathbb{R}, or \mathbb{C} is bounded from below by $I^{\kappa+1}$, up to equivalence, where h has a complex root of multiplicity κ and modulus one.

Computing Polynomial Distortion

- Although we are motivated by studying groups, we are currently only discussing polynomials.
- Given any polynomial $h \in \mathbb{Z}[x]$, we are able to compute the equivalence class of its distortion function.
- The distortion of h with respect to the ring of polynomials over \mathbb{Z}, \mathbb{R}, or \mathbb{C} is bounded from below by $I^{\kappa+1}$, up to equivalence, where h has a complex root of multiplicity κ and modulus one.
- Obtaining upper bounds requires linear algebra, but it can be shown that $\Delta_{h}(I) \approx I^{\kappa+1}$ where κ is the maximal multiplicity of any complex root of h with modulus one.

Computing Subgroup Distortion

- Any finitely generated subgroup H of A wr \mathbb{Z} where A is finitely generated abelian has distortion equivalent to the distortion of a tame subgroup of \mathbb{Z} wr \mathbb{Z}.

Computing Subgroup Distortion

- Any finitely generated subgroup H of A wr \mathbb{Z} where A is finitely generated abelian has distortion equivalent to the distortion of a tame subgroup of \mathbb{Z} wr \mathbb{Z}.
- This implies that the distortion of H is equivalent to the distortion of a certain polynomial (given by a generator of the tame subgroup.)

Computing Subgroup Distortion

- Any finitely generated subgroup H of A wr \mathbb{Z} where A is finitely generated abelian has distortion equivalent to the distortion of a tame subgroup of \mathbb{Z} wr \mathbb{Z}.
- This implies that the distortion of H is equivalent to the distortion of a certain polynomial (given by a generator of the tame subgroup.)
- This proves that the distortion of H is equivalent to a polynomial.

Describing 2-generated distorted subgroups in \mathbb{Z} wr \mathbb{Z}

- We can explicitly describe the distorted 2-generated subgroups H having distortion $\Delta_{H}^{\mathbb{Z}}$ wr $\mathbb{Z}(I) \approx I^{m}$.

Describing 2-generated distorted subgroups in \mathbb{Z} wr \mathbb{Z}

- We can explicitly describe the distorted 2-generated subgroups H having distortion $\Delta_{H}^{\mathbb{Z}}$ wr $\mathbb{Z}(I) \approx I^{m}$.
- Let $m \in \mathbb{N}$. Let $H=\langle b, w\rangle \leq \mathbb{Z}$ wr $\mathbb{Z}=\langle a, b\rangle$ where

$$
w=(1-x)^{m-1} a .
$$

Describing 2-generated distorted subgroups in \mathbb{Z} wr \mathbb{Z}

- We can explicitly describe the distorted 2-generated subgroups H having distortion $\Delta_{H}^{\mathbb{Z}}$ wr $\mathbb{Z}(I) \approx I^{m}$.
- Let $m \in \mathbb{N}$. Let $H=\langle b, w\rangle \leq \mathbb{Z}$ wr $\mathbb{Z}=\langle a, b\rangle$ where

$$
w=(1-x)^{m-1} a .
$$

- The subgroup

$$
H=\langle b,[\cdots[a, b], b], \cdots, b]\rangle
$$

where the commutator is $(m-1)$-fold.

Thank you!

