Homogeneity of the free group

Chloé Perin

Université de Strasbourg

February 17th, 2011

Chloé Perin Homogeneity of the free group

Theme:

Problems about (free and hyperbolic) groups coming from first order logic.

э

Theme:

Problems about (free and hyperbolic) groups coming from first order logic.

First-order logic on a group G: studying **first-order formulas** on G, which should be thought of as "generalized equations".

- First-order formulas
- Background: Tarski problem
- Homogeneity
- Homogeneity of \mathbb{F}_k : some idea of the proof
- A small detour: elementary embeddings
- Non-homogeneity of surface groups.

The simplest example of a first order formula on groups is an equation.

Examples

$$xyx^{-1}y^{-1} = 1$$

$$z^2y^{-1} = 1$$

Chloé Perin Homogeneity of the free group

The simplest example of a first order formula on groups is an equation. But we also allow:

• inequations;

$$xyx^{-1}y^{-1} = 1$$

 $z^2y^{-1} \neq 1$

The simplest example of a first order formula on groups is an equation. But we also allow:

- inequations;
- conjunction and disjunction of equations and inequations;

$$xyx^{-1}y^{-1} = 1 \text{ and } x \neq 1$$

 $z^2y^{-1} \neq 1 \text{ or } z^3 = 1$

The simplest example of a first order formula on groups is an equation. But we also allow:

- inequations;
- conjunction and disjunction of equations and inequations;
- using quantifiers on the variables.

$$\forall y \quad xyx^{-1}y^{-1} = 1 \text{ and } x \neq 1 \\ \exists z \quad z^2y^{-1} \neq 1 \text{ or } z^3 = 1$$

Important: the variables x, y, ... always represent elements of the group. They cannot represent integers, or subsets of the group.

Examples

The following are **NOT** first-order formulas:

•
$$\forall x \exists n x^n = 1;$$

•
$$\exists n \exists x_1 \exists y_1 \ldots \exists x_n \exists y_n \ z = [x_1, y_1] \ldots [x_n, y_n];$$

•
$$\forall H \leq G \; (\forall x \; xHx^{-1} = H) \Rightarrow (H = 1 \text{ or } H = G).$$

Consider the formula $\exists x \exists y \ z = [x, y]$. Its "truth value" on a group *G* depends on the value we assign to the variable *z*. Consider the formula $\exists x \exists y \ z = [x, y]$. Its "truth value" on a group *G* depends on the value we assign to the variable *z*.

Definition

A variable z that appears in a formula ϕ is said to be free in ϕ if neither $\forall z$ nor $\exists z$ appear before it. If a first-order formula ϕ has free variables x_1, \ldots, x_n , we will denote it $\phi(x_1, \ldots, x_n)$. A first order formula without free variables is also called a **sentence**.

Definition

Given a group G and a sentence ϕ , we say G satisfies ϕ if ϕ is true on G. We then write $G \models \phi$.

Exemple: ϕ : $\forall x \forall y xyx^{-1}y^{-1} = 1$.

A first order formula without free variables is also called a **sentence**.

Definition

Given a group G and a sentence ϕ , we say G satisfies ϕ if ϕ is true on G. We then write $G \models \phi$.

Exemple:
$$\phi$$
 : $\forall x \forall y xyx^{-1}y^{-1} = 1$.

G a group. Some properties of G can be expressed by first-order sentences (e.g. abelianity), some others cannot. **Question:** How much can we say about a group just with first-order sentences?

- First-order formulas
- Background: Tarski problem
- Homogeneity
- Homogeneity of \mathbb{F}_k : some idea of the proof
- Elementary embeddings
- Non-homogeneity of surface groups.

Definition

The first-order theory of a group G is the set Th(G) of sentences satisfied by G.

If $G_1 \simeq G_2$, then $\operatorname{Th}(G_1) = \operatorname{Th}(G_2)$. Conversely?

Definition

The first-order theory of a group G is the set Th(G) of sentences satisfied by G.

If $G_1 \simeq G_2$, then $\operatorname{Th}(G_1) = \operatorname{Th}(G_2)$. Conversely?

- If G_1 is finite, then $G_1 \simeq G_2$.
- If G_1 finitely generated abelian and G_2 finitely generated then $G_1 \simeq G_2$.

Definition

The first-order theory of a group G is the set Th(G) of sentences satisfied by G.

If $G_1 \simeq G_2$, then $\operatorname{Th}(G_1) = \operatorname{Th}(G_2)$. Conversely?

- If G_1 is finite, then $G_1 \simeq G_2$.
- If G_1 finitely generated abelian and G_2 finitely generated then $G_1 \simeq G_2$.

Question: If $G_1 = \mathbb{F}_k$ the free group of rank k, and G_2 finitely generated? Is G_2 free as well? If it is free, does it have the same rank?

Tarski problem (1945): Do free groups of different rank have the same first-order theory?

Theorem (Kharlampovich-Myasnikov, Sela)

 $\operatorname{Th}(\mathbb{F}_k) = \operatorname{Th}(\mathbb{F}_m)$ for all $m, k \geq 2$.

The techniques used by Sela are mostly geometric.

Theorem (Kharlampovich-Myasnikov, Sela)

 $\operatorname{Th}(\mathbb{F}_k) = \operatorname{Th}(\mathbb{F}_m)$ for all $m, k \geq 2$.

The techniques used by Sela are mostly geometric.

Theorem (Kharlampovich-Myasnikov, Sela)

Let Σ be a closed surface with $\chi(\Sigma) < -1$. Then $\operatorname{Th}(\pi_1(\Sigma)) = \operatorname{Th}(\mathbb{F}_2)$. Theorem (Kharlampovich-Myasnikov, Sela)

 $\operatorname{Th}(\mathbb{F}_k) = \operatorname{Th}(\mathbb{F}_m)$ for all $m, k \geq 2$.

The techniques used by Sela are mostly geometric.

Theorem (Kharlampovich-Myasnikov, Sela)

Let Σ be a closed surface with $\chi(\Sigma) < -1$. Then $\operatorname{Th}(\pi_1(\Sigma)) = \operatorname{Th}(\mathbb{F}_2)$.

Theorem (Sela)

Let Γ be a torsion free hyperbolic group. Let G be a finitely generated group. If $\text{Th}(G) = \text{Th}(\Gamma)$, then G is torsion free hyperbolic.

- First-order formulas
- Background: Tarski problem
- Homogeneity
- Homogeneity of \mathbb{F}_k : some idea of the proof
- Elementary embeddings
- Non-homogeneity of surface groups.

We fix an element g in a group G. We are interested in the properties of g that can be expressed by a first-order formula.

$$\phi_1(g)$$
 : $\forall y \ gyg^{-1}y^{-1} = 1$
 $\phi_2(g)$: $\exists y \ g = y^2$

We fix an element g in a group G. We are interested in the properties of g that can be expressed by a first-order formula.

Examples

$$egin{array}{lll} \phi_1(g) \; : \; orall y \;\; gyg^{-1}y^{-1} = 1 \ \phi_2(g) \; : \; \exists y \;\; g = y^2 \end{array}$$

Definition

The type $tp^{G}(g)$ of g in G is the set of first-order formulas with one free variable $\phi(x)$ such that G satisfies $\phi(g)$.

We fix an element g in a group G. We are interested in the properties of g that can be expressed by a first-order formula.

Examples

$$egin{array}{lll} \phi_1(g) \; : \; orall y \;\; gyg^{-1}y^{-1} = 1 \ \phi_2(g) \; : \; \exists y \;\; g = y^2 \end{array}$$

Definition

The type $tp^{G}(g)$ of g in G is the set of first-order formulas with one free variable $\phi(x)$ such that G satisfies $\phi(g)$.

Note that if σ is an automorphism of G, then $\sigma(g)$ and g have the same type. Conversely?

Theorem (Pillay)

Let \mathbb{F}_k be the free group on a_1, \ldots, a_k . If an element u of \mathbb{F}_k has the same type as a_1 , then u is primitive, in particular there is an automorphism σ of \mathbb{F}_k with $\sigma(u) = a_1$.

□→ < □→</p>

Theorem (Pillay)

Let \mathbb{F}_k be the free group on a_1, \ldots, a_k . If an element u of \mathbb{F}_k has the same type as a_1 , then u is primitive, in particular there is an automorphism σ of \mathbb{F}_k with $\sigma(u) = a_1$.

Definition

The **type** $tp^{G}(g_1, \ldots, g_l)$ of (g_1, \ldots, g_l) in *G* is the set of first-order formulas with *l* free variables $\phi(x_1, \ldots, x_l)$ such that *G* satisfies $\phi(g_1, \ldots, g_l)$.

Theorem (Pillay)

Let \mathbb{F}_k be the free group on a_1, \ldots, a_k . If an element u of \mathbb{F}_k has the same type as a_1 , then u is primitive, in particular there is an automorphism σ of \mathbb{F}_k with $\sigma(u) = a_1$.

Definition

The **type** $tp^G(g_1, \ldots, g_l)$ of (g_1, \ldots, g_l) in *G* is the set of first-order formulas with *l* free variables $\phi(x_1, \ldots, x_l)$ such that *G* satisfies $\phi(g_1, \ldots, g_l)$.

Definition

A countable group G is **homogeneous** if for all $I \in \mathbb{N}$,

$$\operatorname{tp}^{\mathcal{G}}(g_1,\ldots,g_l) = \operatorname{tp}^{\mathcal{G}}(g'_1,\ldots,g'_l)$$

 \iff there is $\sigma \in \operatorname{Aut}(G)$ such that $\sigma(g_i) = g'_i$ for $1 \le i \le l$.

Theorem (P.-Sklinos, Ould Houcine)

The free group \mathbb{F}_k is homogeneous.

Theorem (P.-Sklinos, Ould Houcine)

The free group \mathbb{F}_k is homogeneous.

Remark: The free group has "many" automorphisms.

Theorem (P.-Sklinos, Ould Houcine)

The free group \mathbb{F}_k is homogeneous.

Remark: The free group has "many" automorphisms.

Theorem (P.-Sklinos)

The fundamental group $\pi_1(\Sigma)$ of a surface Σ of characteristic at most -3 is not homogeneous.

- First-order formulas
- Background: Tarski problem
- Homogeneity
- Homogeneity of \mathbb{F}_k : some idea of the proof
- Elementary embeddings
- Non-homogeneity of surface groups.

$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

Claim 1:

Easy to find a homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

一回 ト イヨト イヨト

$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

Claim 1:

Easy to find a homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: $u = w_u(a_1, \ldots, a_k)$. Then

$$\mathbb{F}_k \models \exists x_1 \dots x_k \ \boldsymbol{u} = w_u(x_1, \dots, x_k)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

Claim 1:

Easy to find a homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: $u = w_u(a_1, \ldots, a_k)$. Then

$$\mathbb{F}_k \models \exists x_1 \dots x_k \ u = w_u(x_1, \dots, x_k) \text{ so} \\ \mathbb{F}_k \models \exists x_1 \dots x_k \ v = w_u(x_1, \dots, x_k)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

Claim 1:

Easy to find a homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: $u = w_u(a_1, \ldots, a_k)$. Then

$$\mathbb{F}_k \models \exists x_1 \dots x_k \ u = w_u(x_1, \dots, x_k) \text{ so} \\ \mathbb{F}_k \models \exists x_1 \dots x_k \ v = w_u(x_1, \dots, x_k)$$

Take b_1, \ldots, b_k solution, and θ defined by $\theta(a_j) = b_j$.
$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

Claim 1:

Easy to find a homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: $u = w_u(a_1, \ldots, a_k)$. Then

$$\mathbb{F}_k \models \exists x_1 \dots x_k \ u = w_u(x_1, \dots, x_k) \text{ so} \\ \mathbb{F}_k \models \exists x_1 \dots x_k \ v = w_u(x_1, \dots, x_k)$$

Take b_1, \ldots, b_k solution, and θ defined by $\theta(a_j) = b_j$.

$$\begin{aligned} \theta(u) &= \theta(w_u(a_1,\ldots,a_k)) \\ &= w_u(\theta(a_1),\ldots,\theta(a_k)) \\ &= w_u(b_1,\ldots,b_k) = v. \end{aligned}$$

$$\mathbb{F}_k = \langle a_1, \dots, a_k \rangle$$
. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$.

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$. Assume moreover that \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and with respect to $\langle v \rangle$.

Claim 2:

Enough to find an **injective** homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$. Assume moreover that \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and with respect to $\langle v \rangle$.

Claim 2:

Enough to find an **injective** homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: Free groups have "relative co-Hopf property":

Theorem

An injective morphism $\mathbb{F}_k \to \mathbb{F}_k$ which fixes $\langle u \rangle$ is also surjective.

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$. Assume moreover that \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and with respect to $\langle v \rangle$.

Claim 2:

Enough to find an **injective** homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: Free groups have "relative co-Hopf property":

Theorem

An injective morphism $\mathbb{F}_k \to \mathbb{F}_k$ which fixes $\langle u \rangle$ is also surjective.

If $\theta, \theta' : \mathbb{F}_k \to \mathbb{F}_k$ injective with $\theta(u) = v$ and $\theta'(v) = u$, the homomorphism $\theta' \circ \theta$ is injective and fixes $\langle u \rangle$

(4月) (1日) (日)

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$. Assume moreover that \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and with respect to $\langle v \rangle$.

Claim 2:

Enough to find an **injective** homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ with $\theta(u) = v$.

Proof: Free groups have "relative co-Hopf property":

Theorem

An injective morphism $\mathbb{F}_k \to \mathbb{F}_k$ which fixes $\langle u \rangle$ is also surjective.

If $\theta, \theta' : \mathbb{F}_k \to \mathbb{F}_k$ injective with $\theta(u) = v$ and $\theta'(v) = u$, the homomorphism $\theta' \circ \theta$ is injective and fixes $\langle u \rangle \Rightarrow$ it is surjective, hence so is θ .

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$ and \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and to $\langle v \rangle$.

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$ and \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and to $\langle v \rangle$.

Claim 3: rank 2 case

It is easy to find an injective homomorphism $\theta : \mathbb{F}_2 \to \mathbb{F}_2$ with $\theta(u) = v$.

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle. \text{ Let } u, v \in \mathbb{F}_k \text{ such that } \operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v) \text{ and } \mathbb{F}_k \text{ freely indecomposable with respect to } \langle u \rangle, \text{ and to } \langle v \rangle.$

Claim 3: rank 2 case

It is easy to find an injective homomorphism $\theta : \mathbb{F}_2 \to \mathbb{F}_2$ with $\theta(u) = v$.

Proof: $u = w_u(a_1, a_2)$. Then $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1 \text{ and } u = w_u(x_1, x_2) \text{ so}$

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$ and \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and to $\langle v \rangle$.

Claim 3: rank 2 case

It is easy to find an injective homomorphism $\theta : \mathbb{F}_2 \to \mathbb{F}_2$ with $\theta(u) = v$.

Proof:
$$u = w_u(a_1, a_2)$$
. Then
 $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1$ and $u = w_u(x_1, x_2)$ so
 $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1$ and $v = w_u(x_1, x_2)$

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$ and \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and to $\langle v \rangle$.

Claim 3: rank 2 case

It is easy to find an injective homomorphism $\theta : \mathbb{F}_2 \to \mathbb{F}_2$ with $\theta(u) = v$.

Proof:
$$u = w_u(a_1, a_2)$$
. Then
 $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1$ and $u = w_u(x_1, x_2)$ so
 $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1$ and $v = w_u(x_1, x_2)$

Take b_1, b_2 solution, and θ defined by $\theta(a_j) = b_j$, then $\theta(u) = v$.

 $\mathbb{F}_k = \langle a_1, \ldots, a_k \rangle$. Let $u, v \in \mathbb{F}_k$ such that $\operatorname{tp}^{\mathbb{F}_k}(u) = \operatorname{tp}^{\mathbb{F}_k}(v)$ and \mathbb{F}_k freely indecomposable with respect to $\langle u \rangle$, and to $\langle v \rangle$.

Claim 3: rank 2 case

It is easy to find an injective homomorphism $\theta : \mathbb{F}_2 \to \mathbb{F}_2$ with $\theta(u) = v$.

Proof:
$$u = w_u(a_1, a_2)$$
. Then
 $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1$ and $u = w_u(x_1, x_2)$ so
 $\mathbb{F}_2 \models \exists x_1 \exists x_2 \ [x_1, x_2] \neq 1$ and $v = w_u(x_1, x_2)$
Take b_1, b_2 solution, and θ defined by $\theta(a_j) = b_j$, then $\theta(u) = v$.
 $\theta(\mathbb{F}_2) = \langle b_1, b_2 \rangle$ is free of rank 2.
 $\mathbb{F}_2 \xrightarrow{\theta} \theta(\mathbb{F}_2) \simeq \mathbb{F}_2$ but free groups are Hopfian so θ is injective.

Case where the rank is ≥ 2 ? Need to express injectivity of a morphism $\mathbb{F}_k \to \mathbb{F}_k$ in first-order...

Case where the rank is ≥ 2 ? Need to express injectivity of a morphism $\mathbb{F}_k \to \mathbb{F}_k$ in first-order...

Remark: in case k = 2, we use the following fact

 θ defined by $a_i \mapsto b_j$ injective \iff it does not kill $\{[a_1, a_2]\}$

Case where the rank is ≥ 2 ? Need to express injectivity of a morphism $\mathbb{F}_k \to \mathbb{F}_k$ in first-order...

Remark: in case k = 2, we use the following fact

 θ defined by $a_j \mapsto b_j$ injective \iff it does not kill $\{[a_1, a_2]\}$ Equivalently, if we define

$$\eta: \mathbb{F}_2 \twoheadrightarrow \mathbb{F}_2 / \langle \langle [a_1, a_2] \rangle \rangle$$

then $\theta : \mathbb{F}_k \to \mathbb{F}_k$ is injective \iff it does not factor through η .

In general case, we will use

Theorem

 $u, v \in \mathbb{F}_k$ and $\langle u \rangle$ is not contained in a proper free factor of \mathbb{F}_k . There exists a finite set of proper quotients $\eta_j : \mathbb{F}_k \twoheadrightarrow Q_j$ such that any homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ such that $\theta(u) = v$ which is not injective factors through one of the quotients η_j after precomposition by an element σ of $\operatorname{Aut}_{\langle u \rangle}(\mathbb{F}_k)$

i.e. $\theta \circ \sigma$ factors through η_j for some j.

In general case, we will use

Theorem

 $u, v \in \mathbb{F}_k$ and $\langle u \rangle$ is not contained in a proper free factor of \mathbb{F}_k . There exists a finite set of proper quotients $\eta_j : \mathbb{F}_k \twoheadrightarrow Q_j$ such that any homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ such that $\theta(u) = v$ which is not injective factors through one of the quotients η_j after precomposition by an element σ of $\operatorname{Aut}_{\langle u \rangle}(\mathbb{F}_k)$

i.e. $\theta \circ \sigma$ factors through η_j for some j.

Problem: Need now to express precomposition by an automorphism fixing u.

In general case, we will use

Theorem

 $u, v \in \mathbb{F}_k$ and $\langle u \rangle$ is not contained in a proper free factor of \mathbb{F}_k . There exists a finite set of proper quotients $\eta_j : \mathbb{F}_k \twoheadrightarrow Q_j$ such that any homomorphism $\theta : \mathbb{F}_k \to \mathbb{F}_k$ such that $\theta(u) = v$ which is not injective factors through one of the quotients η_j after precomposition by an element σ of $\operatorname{Aut}_{\langle u \rangle}(\mathbb{F}_k)$

i.e. $\theta \circ \sigma$ factors through η_j for some j.

Problem: Need now to express precomposition by an automorphism fixing u.

Idea: Use JSJ decomposition of \mathbb{F}_k with respect to $\langle u \rangle$.

- First-order formulas
- Background: Tarski problem
- Homogeneity
- Homogeneity of \mathbb{F}_k : some idea of the proof
- Elementary embeddings
- Non-homogeneity of surface groups.

Let $H \leq G$.

Question

Does an element h of H have the same properties on H and on G?

Example: $\phi(x) : \forall y \ xyx^{-1}y^{-1} = 1.$

It might be that $\phi(h)$ is true on H but not on $G \Rightarrow$ the type of h in G and in H can be different.

Let $H \leq G$.

Question

Does an element h of H have the same properties on H and on G?

Example: $\phi(x) : \forall y \ xyx^{-1}y^{-1} = 1.$

It might be that $\phi(h)$ is true on H but not on $G \Rightarrow$ the type of h in G and in H can be different.

Definition

The embedding of H in G is **elementary** if for any k-uple (h_1, \ldots, h_k) of H:

$$\operatorname{tp}^{G}(h_{1},\ldots,h_{k})=\operatorname{tp}^{H}(h_{1},\ldots,h_{k}).$$

Remark: \Rightarrow Th(*H*) = Th(*G*): if ϕ is a sentence satisfied by *G*, $\psi(x)$: " ϕ and x = x" is in the type of any element of *H*.

Theorem (Kharlampovich-Myasnikov, Sela)

The canonical embedding $\mathbb{F}_m \hookrightarrow \mathbb{F}_n$ for $n \ge m \ge 2$ is elementary.

Theorem (Kharlampovich-Myasnikov, Sela)

The canonical embedding $\mathbb{F}_m \hookrightarrow \mathbb{F}_n$ for $n \ge m \ge 2$ is elementary.

 $\Rightarrow \operatorname{Th}(\mathbb{F}_m) = \operatorname{Th}(\mathbb{F}_n).$

(*) *) *) *)

Theorem (Kharlampovich-Myasnikov, Sela)

The canonical embedding $\mathbb{F}_m \hookrightarrow \mathbb{F}_n$ for $n \ge m \ge 2$ is elementary.

 $\Rightarrow \operatorname{Th}(\mathbb{F}_m) = \operatorname{Th}(\mathbb{F}_n).$

Question

Elementary subgroups of surface groups?

→ < Ξ → <</p>

Elementary embeddings

Let
$$S = \pi_1(\Sigma)$$
, and $S_1 = \pi_1(\Sigma_1)$.

Elementary embeddings

Let
$$S = \pi_1(\Sigma)$$
, and $S_1 = \pi_1(\Sigma_1)$.

 $\phi(\gamma)$: $\exists x_1y_1x_2y_2 \ \gamma = [x_1, y_1][x_2, y_2]$ is true on S, but not on S_1 .

Elementary embeddings

Let
$$S = \pi_1(\Sigma)$$
, and $S_1 = \pi_1(\Sigma_1)$.

$$\phi(\gamma)$$
: $\exists x_1y_1x_2y_2 \ \gamma = [x_1, y_1][x_2, y_2]$ is true on S , but not on S_1 .

Theorem

 Σ oriented hyperbolic surface. *H* is elementary in $S = \pi_1(\Sigma)$ \iff it is a free factor of $\pi_1(\Sigma_1)$ where Σ_1 is a subsurface of Σ such that:

- Σ_1^c is connected;
- $|\chi(\Sigma_1)| \leq |\chi(\Sigma_1^c)|.$

- First-order formulas
- Background: Tarski problem
- Homogeneity
- Homogeneity of \mathbb{F}_k : some idea of the proof
- Elementary embeddings
- Non-homogeneity of surface groups

The fundamental group $\pi_1(\Sigma)$ of a surface Σ of characteristic at most -3 is not homogeneous.

The fundamental group $\pi_1(\Sigma)$ of a surface Σ of characteristic at most -3 is not homogeneous.

Consider the element α corresponding to a non-separating simple closed curve on Σ_0 .

The fundamental group $\pi_1(\Sigma)$ of a surface Σ of characteristic at most -3 is not homogeneous.

Consider the element α corresponding to a non-separating simple closed curve on Σ_0 .

Enough to find
$$a \in \pi_1(\Sigma)$$
 such that
• $\operatorname{tp}^{\pi_1(\Sigma)}(a) = \operatorname{tp}^{\pi_1(\Sigma)}(\alpha);$

< 一型

The fundamental group $\pi_1(\Sigma)$ of a surface Σ of characteristic at most -3 is not homogeneous.

Consider the element α corresponding to a non-separating simple closed curve on Σ_0 .

Enough to find $a \in \pi_1(\Sigma)$ such that

•
$$\operatorname{tp}^{\pi_1(\Sigma)}(a) = \operatorname{tp}^{\pi_1(\Sigma)}(\alpha);$$

• a does not represent a simple closed curve on the surface of Σ .

Proof of non-homogeneity of surfaces

Enough to find $a \in \pi_1(\Sigma)$ such that

- $\operatorname{tp}^{\pi_1(\Sigma)}(a) = \operatorname{tp}^{\pi_1(\Sigma)}(\alpha);$
- a does not represent a simple closed curve on the surface of Σ .

Enough to find
$$a \in \pi_1(\Sigma)$$
 such that

•
$$\operatorname{tp}^{\pi_1(\Sigma)}(a) = \operatorname{tp}^{\pi_1(\Sigma)}(\alpha);$$

• a does not represent a simple closed curve on the surface of Σ .

 $\pi_1(\Sigma_0)$ elementary in $\pi_1(\Sigma)$, so if $a \in \pi_1(\Sigma_0)$

$$tp^{\pi_1(\Sigma)}(\alpha) = tp^{\pi_1(\Sigma_0)}(\alpha) tp^{\pi_1(\Sigma)}(a) = tp^{\pi_1(\Sigma_0)}(a)$$

Proof of non-homogeneity of surfaces

Enough to find $a \in \pi_1(\Sigma_0)$ such that

- $tp^{\pi_1(\Sigma_0)}(a) = tp^{\pi_1(\Sigma_0)}(\alpha);$
- a does not represent a simple closed curve on the surface of Σ .

 $\pi_1(\Sigma_0)$ elementary in $\pi_1(\Sigma)$, so if $a \in \pi_1(\Sigma_0)$

$$tp^{\pi_1(\Sigma)}(\alpha) = tp^{\pi_1(\Sigma_0)}(\alpha) tp^{\pi_1(\Sigma)}(a) = tp^{\pi_1(\Sigma_0)}(a)$$

Proof of non-homogeneity of surfaces

Enough to find
$$a \in \pi_1(\Sigma_0)$$
 such that

•
$$\operatorname{tp}^{\pi_1(\Sigma_0)}(a) = \operatorname{tp}^{\pi_1(\Sigma_0)}(\alpha);$$

• a does not represent a simple closed curve on the surface of Σ .

Enough to find
$$a \in \pi_1(\Sigma_0)$$
 such that

•
$$\operatorname{tp}^{\pi_1(\Sigma_0)}(a) = \operatorname{tp}^{\pi_1(\Sigma_0)}(\alpha);$$

• a does not represent a simple closed curve on the surface of Σ .

 $\pi_1(\Sigma_0)$ is a free group with basis $\{\alpha, \beta, \gamma, \delta\}$, so any primitive element *a* in $\pi_1(\Sigma_0)$ has the same type as α in $\pi_1(\Sigma_0)$.

Proof of non-homogeneity of surfaces

Enough to find $a \in \pi_1(\Sigma_0)$ such that

- *a* is primitive in $\pi_1(\Sigma_0)$;
- a does not represent a simple closed curve on the surface of Σ .

 $\pi_1(\Sigma_0)$ is a free group with basis $\{\alpha, \beta, \gamma, \delta\}$, so any primitive element *a* in $\pi_1(\Sigma_0)$ has the same type as α in $\pi_1(\Sigma_0)$.

Enough to find $a \in \pi_1(\Sigma_0)$ such that

- *a* is primitive in $\pi_1(\Sigma_0)$;
- a does not represent a simple closed curve on the surface of Σ .

Enough to find $a \in \pi_1(\Sigma_0)$ such that

- *a* is primitive in $\pi_1(\Sigma_0)$;
- a does not represent a simple closed curve on the surface of Σ .

Let $P = \{a \in \pi_1(\Sigma_0) \mid a \text{ primitive in } \pi_1(\Sigma_0)\}$, and let P^{cyc} be the set of cyclically reduced elements of P.

Enough to find $a \in \pi_1(\Sigma_0)$ such that

- *a* is primitive in $\pi_1(\Sigma_0)$;
- a does not represent a simple closed curve on the surface of Σ .

Let $P = \{a \in \pi_1(\Sigma_0) \mid a \text{ primitive in } \pi_1(\Sigma_0)\}$, and let P^{cyc} be the set of cyclically reduced elements of P.

Claim: P^{cyc} grows exponentially (i.e. number of elements of P^{cyc} of length $\leq n$ grows exponentially in n).

Proof: it contains the set $\{\alpha w(\beta, \gamma, \delta) \mid w \text{ a word in } \beta, \gamma, \delta\}$.

Claim: C^{cyc} grows at most polynomially.

Claim: C^{cyc} grows at most polynomially.

Proof: Birman-Series: the size of $\{\sigma \mid \sigma \text{ is a geodesic simple closed curve on } \Sigma \text{ of length at most } L\}$ is at most polynomial in *L*.

Claim: C^{cyc} grows at most polynomially.

Proof: Birman-Series: the size of $\{\sigma \mid \sigma \text{ is a geodesic simple closed curve on } \Sigma \text{ of length at most } L\}$ is at most polynomial in *L*.

Quasi isometry between Cayley graph and universal cover + Each free homotopy class of simple closed curves has a geodesic representative

 $\Rightarrow C^{cyc}$ grows at most polynomially in $\pi_1(\Sigma)$.

Claim: C^{cyc} grows at most polynomially.

Proof: Birman-Series: the size of $\{\sigma \mid \sigma \text{ is a geodesic simple closed curve on } \Sigma \text{ of length at most } L\}$ is at most polynomial in *L*.

Quasi isometry between Cayley graph and universal cover + Each free homotopy class of simple closed curves has a geodesic representative

+ $\pi_1(\Sigma_0)$ is quasiconvex in $\pi_1(\Sigma)$

 $\Rightarrow C^{cyc}$ grows at most polynomially in $\pi_1(\Sigma)$.

Claim: C^{cyc} grows at most polynomially.

Proof: Birman-Series: the size of $\{\sigma \mid \sigma \text{ is a geodesic simple closed curve on } \Sigma \text{ of length at most } L\}$ is at most polynomial in *L*.

Quasi isometry between Cayley graph and universal cover + Each free homotopy class of simple closed curves has a geodesic representative

+ $\pi_1(\Sigma_0)$ is quasiconvex in $\pi_1(\Sigma)$

 $\Rightarrow C^{cyc}$ grows at most polynomially in $\pi_1(\Sigma_0)$.