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Problems about (free and hyperbolic) groups coming from first
order logic.
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Problems about (free and hyperbolic) groups coming from first
order logic.

First-order logic on a group G: studying first-order formulas on
G, which should be thought of as “generalized equations”.

Chloé Perin Homogeneity of the free group



Plan of the talk

First-order formulas

Background: Tarski problem

Homogeneity

Homogeneity of Fy: some idea of the proof

A small detour: elementary embeddings

Non-homogeneity of surface groups.
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First-order formulas

The simplest example of a first order formula on groups is an
equation.
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First-order formulas

The simplest example of a first order formula on groups is an
equation. But we also allow:

@ inequations;
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First-order formulas

The simplest example of a first order formula on groups is an
equation. But we also allow:

@ inequations;

@ conjunction and disjunction of equations and inequations;

xyx ty7l=1land x #1
22y t4lor3=1
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First-order formulas

The simplest example of a first order formula on groups is an
equation. But we also allow:

@ inequations;

@ conjunction and disjunction of equations and inequations;

@ using quantifiers on the variables.

Vy xyxly'=1landx#1
Jz 22y t#41or2=1
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First-order formulas

Important: the variables x, y, ... always represent elements of the
group. They cannot represent integers, or subsets of the group.

The following are NOT first-order formulas:

@ Vx dnx" =1;

e In3IxyTyr ... IxpIyn z = [x1,)1] - [Xn, ¥al;
o VH< G (VxxHx ' =H)= (H=1o0r H=G).
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First-order formulas

Consider the formula 3x3y z = [x, y].
Its "truth value" on a group G depends on the value we assign to
the variable z.
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First-order formulas

Consider the formula 3x3y z = [x, y].
Its "truth value" on a group G depends on the value we assign to
the variable z.

Definition

A variable z that appears in a formula ¢ is said to be free in ¢ if
neither Vz nor 3z appear before it.

If a first-order formula ¢ has free variables xi, . .., x,, we will
denote it ¢(x1,...,Xp).
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First-order formulas

A first order formula without free variables is also called a
sentence.

Definition

Given a group G and a sentence ¢, we say G satisfies ¢ if ¢ is true
on G. We then write G = ¢.

Exemple: ¢ : Vx Vy xyx 1y~ 1 =1.
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First-order formulas

A first order formula without free variables is also called a
sentence.

Definition

Given a group G and a sentence ¢, we say G satisfies ¢ if ¢ is true
on G. We then write G = ¢.

Exemple: ¢ : Vx Vy xyx 1y~ 1 =1.

G a group. Some properties of G can be expressed by first-order
sentences (e.g. abelianity), some others cannot.

Question: How much can we say about a group just with
first-order sentences?
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Plan of the talk

First-order formulas

Background: Tarski problem

Homogeneity

Homogeneity of Fy: some idea of the proof

Elementary embeddings

Non-homogeneity of surface groups.
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Tarski problem

Definition
The first-order theory of a group G is the set Th(G) of sentences
satisfied by G.

If Gi ~ Gy, then Th(G;) = Th(Gz). Conversely?
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Tarski problem

Definition
The first-order theory of a group G is the set Th(G) of sentences
satisfied by G.

If Gi ~ Gy, then Th(G;) = Th(Gz). Conversely?

o If Gy is finite, then G; ~ G,.
e If G; finitely generated abelian and G finitely generated then
Gl ~ Gg.
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Tarski problem

Definition

The first-order theory of a group G is the set Th(G) of sentences
satisfied by G.

If Gi ~ Gy, then Th(G;) = Th(Gz). Conversely?

o If Gy is finite, then G; ~ G,.

e If G; finitely generated abelian and G finitely generated then
Gl ~ Gg.

Question: If G; = F the free group of rank k, and G finitely
generated? Is G, free as well? If it is free, does it have the same
rank?

Tarski problem (1945): Do free groups of different rank have the
same first-order theory?
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Tarski problem

Theorem (Kharlampovich-Myasnikov, Sela)

Th(Fy) = Th(F,) for all m, k > 2.

The techniques used by Sela are mostly geometric.
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Tarski problem

Theorem (Kharlampovich-Myasnikov, Sela)

Th(Fy) = Th(F,) for all m, k > 2.

The techniques used by Sela are mostly geometric.

Theorem (Kharlampovich-Myasnikov, Sela)

Let ¥ be a closed surface with x(X) < —1.
Then Th(mi(X)) = Th(F2).
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Tarski problem

Theorem (Kharlampovich-Myasnikov, Sela)

Th(Fy) = Th(F,) for all m, k > 2.

The techniques used by Sela are mostly geometric.

Theorem (Kharlampovich-Myasnikov, Sela)

Let ¥ be a closed surface with x(X) < —1.
Then Th(mi(X)) = Th(F2).

<

Theorem (Sela)

Let I' be a torsion free hyperbolic group. Let G be a finitely
generated group. If Th(G) = Th(T), then G is torsion free
hyperbolic.
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Plan of the talk

First-order formulas

Background: Tarski problem

Homogeneity

Homogeneity of Fy: some idea of the proof

Elementary embeddings

Non-homogeneity of surface groups.
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We fix an element g in a group G. We are interested in the
properties of g that can be expressed by a first-order formula.

P(g) : Vy gygly =1

p2(g) : y g=y°
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We fix an element g in a group G. We are interested in the
properties of g that can be expressed by a first-order formula.

P(g) : Vy gygly =1

p2(g) : y g=y°

Definition

The type tp®(g) of g in G is the set of first-order formulas with
one free variable ¢(x) such that G satisfies ¢(g).
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We fix an element g in a group G. We are interested in the
properties of g that can be expressed by a first-order formula.

P(g) : Vy gygly =1

p2(g) : y g=y°

Definition

The type tp®(g) of g in G is the set of first-order formulas with
one free variable ¢(x) such that G satisfies ¢(g).

Note that if o is an automorphism of G, then o(g) and g have the
same type. Conversely?

Chloé Perin Homogeneity of the free group



Theorem (Pillay)

Let F, be the free group on as, ..., ax. If an element u of Fy has
the same type as aj, then v is primitive, in particular there is an
automorphism o of Fy with o(u) = a;.
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Theorem (Pillay)

Let F, be the free group on as, ..., ax. If an element u of Fy has
the same type as aj, then v is primitive, in particular there is an
automorphism o of Fy with o(u) = a;.

Definition

The type tp®(gi,..., &) of (g1,...,&) in G is the set of
first-order formulas with / free variables ¢(xi, ..., x)) such that G

satisfies ¢(g1, ..., &)
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Theorem (Pillay)

Let Fy be the free group on a1, ..., ax. If an element u of Fy has
the same type as aj, then v is primitive, in particular there is an
automorphism o of Fy with o(u) = a;.

Definition

The type tp®(gi,..., &) of (g1,...,&) in G is the set of
first-order formulas with / free variables ¢(xi, ..., x)) such that G

satisfies ¢(g1, ..., &)

Definition

A countable group G is homogeneous if for all / € N,

tpC(gL,---, &) = tpC(gL,---, &)
<= there is 0 € Aut(G) such that o(g;) =g/ for 1 <i < /.
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Theorem (P.-Sklinos, Ould Houcine)

The free group Fy is homogeneous.
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Homogeneity

Theorem (P.-Sklinos, Ould Houcine)

The free group Fy is homogeneous.

Remark: The free group has "many" automorphisms.

Chloé Perin Homogeneity of the free group



Homogeneity

Theorem (P.-Sklinos, Ould Houcine)

The free group Fy is homogeneous.

Remark: The free group has "many" automorphisms.

Theorem (P.-Sklinos)

The fundamental group 71(X) of a surface X of characteristic at
most —3 is not homogeneous.
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Plan of the talk

First-order formulas

Background: Tarski problem

Homogeneity

Homogeneity of F: some idea of the proof

Elementary embeddings

Non-homogeneity of surface groups.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™«(v).
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™«(v).

Easy to find a homomorphism 6 : F) — Fy with 6(u) = v.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™«(v).

Easy to find a homomorphism 6 : F) — Fy with 6(u) = v.

Proof: u= wy(a1,...,ak). Then

Fr EIxe..oxk u=wy(xi,...,xk)
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™«(v).

Easy to find a homomorphism 6 : F) — Fy with 6(u) = v.

Proof: u= wy(a1,...,ak). Then
Fr E3Ixe ... xk u= wy(xi,...,xx) so
FrbE3xi...oxx v=wy(x,...,Xxk)
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™«(v).

Easy to find a homomorphism 6 : F) — Fy with 6(u) = v.

Proof: u= wy(a1,...,ak). Then
Fr E3Ixe ... xk u= wy(xi,...,xx) so
FrbE3xi...oxx v=wy(x,...,Xxk)

Take by, ..., by solution, and @ defined by 6(a;) = b;.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™«(v).

Easy to find a homomorphism 6 : F) — Fy with 6(u) = v.

Proof: u= wy(a1,...,ak). Then
Fr E3Ixe ... xk u= wy(xi,...,xx) so
FrbE3xi...oxx v=wy(x,...,Xxk)
Take by, ..., by solution, and @ defined by 6(a;) =
O(u) = 6O(wu(a,...,ax))
= wy(0(a1),...,0(ax))
= Wu(bl,...,bk) =v.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € Fy such that tpk(u) = tp™x(v).
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ak). Let u,v € Fy such that tpk(u) = tp¥x(v).
Assume moreover that Iy freely indecomposable with respect to
(u), and with respect to (v).

Enough to find an injective homomorphism 6 : F, — F, with
O(u) = v.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ak). Let u,v € Fy such that tpk(u) = tp¥x(v).
Assume moreover that Iy freely indecomposable with respect to
(u), and with respect to (v).

Enough to find an injective homomorphism 6 : F, — F, with
O(u) = v.

Proof: Free groups have "relative co-Hopf property":

An injective morphism F, — F, which fixes (u) is also surjective.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ak). Let u,v € Fy such that tpk(u) = tp¥x(v).
Assume moreover that Iy freely indecomposable with respect to
(u), and with respect to (v).

Enough to find an injective homomorphism 6 : F, — F, with
O(u) = v.

Proof: Free groups have "relative co-Hopf property":

An injective morphism F, — F, which fixes (u) is also surjective.

If 6,0" : F — Fy injective with O(u) = v and €'(v) = u, the
homomorphism €’ o 6 is injective and fixes (u)
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ak). Let u,v € Fy such that tpk(u) = tp¥x(v).
Assume moreover that Iy freely indecomposable with respect to
(u), and with respect to (v).

Enough to find an injective homomorphism 6 : F, — F, with
O(u) = v.

Proof: Free groups have "relative co-Hopf property":

An injective morphism F, — F, which fixes (u) is also surjective.

If 6,0" : F — Fy injective with O(u) = v and €'(v) = u, the
homomorphism €’ o § is injective and fixes (u) = it is surjective,
hence so is 6.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € F such that tp"x(u) = tp™*(v) and
Fy freely indecomposable with respect to (u), and to (v).
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € F such that tp"x(u) = tp™*(v) and
Fy freely indecomposable with respect to (u), and to (v).

Claim 3: rank 2 case

It is easy to find an injective homomorphism 6 : F» — F» with
O(u) = v.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € F such that tp"x(u) = tp™*(v) and
Fy freely indecomposable with respect to (u), and to (v).

Claim 3: rank 2 case

It is easy to find an injective homomorphism 6 : F» — F» with
O(u) = v.

Proof: u = wy(a1,a2). Then
Fo = Ix13x2 [x1,x2] # 1 and u = wy(x1, x2) so
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € F such that tp"x(u) = tp™*(v) and
Fy freely indecomposable with respect to (u), and to (v).

Claim 3: rank 2 case

It is easy to find an injective homomorphism 6 : F» — F» with
O(u) = v.

Proof: u = wy(a1,a2). Then
Fo = Ix13x2 [x1,x2] # 1 and u = wy(x1, x2) so
Fy = Ixi3x0 [x1,x2] # 1 and v = wy(x1, x2)
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € F such that tp"x(u) = tp™*(v) and
Fy freely indecomposable with respect to (u), and to (v).

Claim 3: rank 2 case

It is easy to find an injective homomorphism 6 : F» — F» with
O(u) = v.

Proof: u = wy(a1,a2). Then
Fo = Ix13x2 [x1,x2] # 1 and u = wy(x1, x2) so
Fy = Ixi3x0 [x1,x2] # 1 and v = wy(x1, x2)

Take by, by solution, and 6 defined by 6(a;) = b;, then §(u) = v.
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Homogeneity of the free groups: some idea of the proof

Fy = (a1,...,ax). Let u,v € F such that tp"x(u) = tp™*(v) and
Fy freely indecomposable with respect to (u), and to (v).

Claim 3: rank 2 case

It is easy to find an injective homomorphism 6 : F» — F» with

O(u) = v.

Proof: u = wy(a1,a2). Then

Fo = Ix13x2 [x1,x2] # 1 and u = wy(x1, x2) so

Fy = Ixi3x0 [x1,x2] # 1 and v = wy(x1, x2)

Take by, by solution, and 6 defined by 6(a;) = b;, then §(u) = v.
0(F2) = (b1, by) is free of rank 2.

) . o
Fy — 0(F2) ~ F, but free groups are Hopfian so 6 is injective.
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Homogeneity of the free groups: some idea of the proof

Case where the rank is > 27 Need to express injectivity of a
morphism F, — F in first-order...
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Homogeneity of the free groups: some idea of the proof

Case where the rank is > 27 Need to express injectivity of a
morphism F, — F in first-order...

Remark: in case k = 2, we use the following fact

0 defined by aj — bj injective <= it does not kill {[a1, a2]}
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Homogeneity of the free groups: some idea of the proof

Case where the rank is > 27 Need to express injectivity of a
morphism F, — F in first-order...

Remark: in case k = 2, we use the following fact
0 defined by aj — bj injective <= it does not kill {[a1, a2]}

Equivalently, if we define

n:Fo— Fa/(([a1, 22]))

then 0 : Fy — Fy is injective <= it does not factor through 7.
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Homogeneity of the free groups: some idea of the proof

In general case, we will use

Theorem

u,v € Fy and (u) is not contained in a proper free factor of Fy.
There exists a finite set of proper quotients 7; : Fy — Q; such that
any homomorphism 6 : F; — F) such that 6(u) = v which is not
injective factors through one of the quotients 7; after
precomposition by an element o of Aut,(Fy)

i.e. § oo factors through 7; for some j.
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Homogeneity of the free groups: some idea of the proof

In general case, we will use

Theorem

u,v € Fy and (u) is not contained in a proper free factor of Fy.
There exists a finite set of proper quotients 7; : Fy — Q; such that
any homomorphism 6 : F; — F) such that 6(u) = v which is not
injective factors through one of the quotients 7; after
precomposition by an element o of Aut,(Fy)

i.e. § oo factors through 7; for some j.

Problem: Need now to express precomposition by an
automorphism fixing u.
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Homogeneity of the free groups: some idea of the proof

In general case, we will use

Theorem

u,v € Fy and (u) is not contained in a proper free factor of Fy.
There exists a finite set of proper quotients 7; : Fy — Q; such that
any homomorphism 6 : F; — F) such that 6(u) = v which is not
injective factors through one of the quotients 7; after
precomposition by an element o of Aut,(Fy)

i.e. § oo factors through 7; for some j.

Problem: Need now to express precomposition by an
automorphism fixing u.
Idea: Use JSJ decomposition of F with respect to (u).
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Plan of the talk

First-order formulas

Background: Tarski problem

Homogeneity

Homogeneity of Fy: some idea of the proof

Elementary embeddings

Non-homogeneity of surface groups.
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Elementary embeddings

Let H < G.

Does an element h of H have the same properties on H and on G?

Example: ¢(x): Vy xyx 1y 1 =1
It might be that ¢(h) is true on H but not on G = the type of h in
G and in H can be different.
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Elementary embeddings

Let H < G.

Does an element h of H have the same properties on H and on G?

Example: ¢(x): Vy xyx 1y 1 =1
It might be that ¢(h) is true on H but not on G = the type of h in
G and in H can be different.

Definition

The embedding of H in G is elementary if for any k-uple
(hl, .. .,hk) of H:

th(hb ooy hk) = tpH(hl: 000y hk)

Remark: = Th(H) = Th(G): if ¢ is a sentence satisfied by G,
P(x) "¢ and x = x" is in the type of any element of H.

Chloé Perin Homogeneity of the free group



Elementary embeddings

Theorem (Kharlampovich-Myasnikov, Sela)

The canonical embedding F,, < F,, for n > m > 2 is elementary.
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Elementary embeddings

Theorem (Kharlampovich-Myasnikov, Sela)

The canonical embedding F,, < F,, for n > m > 2 is elementary.

= Th(F,,) = Th(F,).
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Elementary embeddings

Theorem (Kharlampovich-Myasnikov, Sela)

The canonical embedding F,, < F,, for n > m > 2 is elementary.

= Th(F,,) = Th(F,).

Elementary subgroups of surface groups?
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Elementary embeddings

Let S = 7T1(Z), and §; = 71'1(21).
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Elementary embeddings

Let S = 7T1(Z), and §; = 71'1(21).

o() : Ixayixeys v = [x1, y1][x2, y2] is true on S, but not on S;.
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Elementary embeddings

Let S = 7T1(Z), and §; = 71'1(21).

N
2

o() : Ixayixeys v = [x1, y1][x2, y2] is true on S, but not on S;.

Theorem

Y oriented hyperbolic surface. H is elementary in S = 7m1(X)
<= it is a free factor of m1(X1) where ¥ is a subsurface of ©
such that:

@ XY { is connected;
° [x(Z1)l < [x(X)I-

v
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Plan of the talk

First-order formulas

Background: Tarski problem

Homogeneity

Homogeneity of Fy: some idea of the proof

Elementary embeddings

Non-homogeneity of surface groups
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Proof of non-homogeneity of surfaces

Theorem (P.-Sklinos)

The fundamental group 71(X) of a surface X of characteristic at
most —3 is not homogeneous.

(6%
o o O O
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Proof of non-homogeneity of surfaces

Theorem (P.-Sklinos)

The fundamental group 71(X) of a surface X of characteristic at
most —3 is not homogeneous.

@@@@

Consider the element « corresponding to a non-separating simple
closed curve on .
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Proof of non-homogeneity of surfaces

Theorem (P.-Sklinos)

The fundamental group 71(X) of a surface X of characteristic at
most —3 is not homogeneous.

@@@@

Consider the element « corresponding to a non-separating simple
closed curve on .

Enough to find a € 71(X) such that
o tp™(P)(a) = tp™m () (a);
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Proof of non-homogeneity of surfaces

Theorem (P.-Sklinos)

The fundamental group 71(X) of a surface X of characteristic at
most —3 is not homogeneous.

@@@@

Consider the element « corresponding to a non-separating simple
closed curve on .
Enough to find a € 71(X) such that

~ tpm(i)( a) = tpm(i)(a);

@ a does not represent a simple closed curve on the surface of X.
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Proof of non-homogeneity of surfaces

Enough to find a € m1(X) such that
o () = (p)(a)

@ a does not represent a simple closed curve on the surface of X.
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Proof of non-homogeneity of surfaces

Enough to find a € m1(X) such that
o () = (p)(a)

@ a does not represent a simple closed curve on the surface of X.

—_—

Yo
m1(Xo) elementary in m1(X), so if a € m1(Xo)

() = (o)
() = )
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Proof of non-homogeneity of surfaces

Enough to find a € such that

o tp""0/(a) =tp"' " (a);
@ a does not represent a simple closed curve on the surface of X.

_—v—/
Yo
m1(Xo) elementary in m1(X), so if a € m1(Xo)
P (a) = pm)(a)
) = pRE()
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Proof of non-homogeneity of surfaces

Enough to find a € m1(Xo) such that
o tpm(E0)(a) = tpm(=)(a);

@ a does not represent a simple closed curve on the surface of X.

Yo
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Proof of non-homogeneity of surfaces

Enough to find a € m1(Xo) such that
o tpm(E0)(a) = tpm(=)(a);

@ a does not represent a simple closed curve on the surface of X.

m1(Xo) is a free group with basis {«, 5,7,d}, so any primitive ele-
ment a in m1(Xg) has the same type as « in m1(Xp).
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Proof of non-homogeneity of surfaces

Enough to find a € m1(Xo) such that
@ ais primitive in m1(Xo);

@ a does not represent a simple closed curve on the surface of X.

m1(Xo) is a free group with basis {«, 5,7,d}, so any primitive ele-
ment a in m1(Xg) has the same type as « in m1(Xp).
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Proof of non-homogeneity of surfaces

Enough to find a € m1(Xo) such that
@ ais primitive in m1(Xo);

@ a does not represent a simple closed curve on the surface of .
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Proof of non-homogeneity of surfaces

Enough to find a € m1(Xo) such that
@ ais primitive in m1(Xo);

@ a does not represent a simple closed curve on the surface of .
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Proof of non-homogeneity of surfaces

Enough to find a € m1(Xo) such that
@ ais primitive in m1(Xo);
@ a does not represent a simple closed curve on the surface of .

Let P = {a € m1(Xo) | a primitive in m1(Xo)}, and let P< be the
set of cyclically reduced elements of P.

Claim: P9 grows exponentially (i.e: number of elements of P<¢
of length < n grows exponentially in n).

Proof: it contains the set {aw(3,v,0) | w a word in 3,v,d}.
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Proof of non-homogeneity of surfaces

Let C = {a € m1(X0) | a represents a simple closed curve on ¥y},
and let C9¢ be the set of cyclically reduced elements of P.
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Claim: C9€ grows at most polynomially.

Proof: Birman-Series: the size of
{o | o is a geodesic simple closed curve on ¥ of length at most L}
is at most polynomial in L.

Quasi isometry between Cayley graph and universal cover
+ Each free homotopy class of simple closed curves has a geodesic
representative

= CY¢ grows at most polynomially in 71 (X).
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