
The value of information in algebraic and
geometric decision problems

Maurice Chiodo
The University of Melbourne

June 8, 2010

Motivation:

The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.

So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions

-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?

-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?

-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?

-Do such results have applications elsewhere?

Motivation:
The triviality problem, of deciding whether a finite presentation of
a group defines the trivial group, is algorithmically undecidable.
So is the problem of determining if a finite presentation defines a
non-trivial free product, or determining if one finite presentation
embeds into another finite presentation (as groups).

Questions
-Is there an algorithm to produce a non-trivial element from a
finite presentation of a non-trivial group?
-Is there an algorithm to decompose a finite presentation of a
non-trivial free product into two non-trivial finitely presented
factors?
-Is there an algorithm to construct an embedding from one finitely
presented group into another in which it embeds?
-Do such results have applications elsewhere?

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.

2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).

3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:

You can’t say anything about the complement of an r.e. set!

The most common way to tackle decision problems in group theory
has been to encode the following recursion-theoretic fact into
group presentations:

There is a recursively enumerable set K which is not recursive.

However, this does not work in any obvious way for our problems.
So we take a modified approach as follows:

1. Develop stronger results in recursion theory.
2. Encode these into group presentations, incorporating some of
the existing encoding techniques (Boone, Adian-Rabin).
3. Encode these presentations into closed 4-manifolds, using an
existing construction by Markov.

The main engine for our results:
You can’t say anything about the complement of an r.e. set!

1. Recursion theory preliminaries:

We define ϕm : N → N to be the mth partial recursive function.
The mth partial recursive set Wm is then the domain of ϕm.
We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).
That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

1. Recursion theory preliminaries:
We define ϕm : N → N to be the mth partial recursive function.

The mth partial recursive set Wm is then the domain of ϕm.
We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).
That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

1. Recursion theory preliminaries:
We define ϕm : N → N to be the mth partial recursive function.
The mth partial recursive set Wm is then the domain of ϕm.

We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).
That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

1. Recursion theory preliminaries:
We define ϕm : N → N to be the mth partial recursive function.
The mth partial recursive set Wm is then the domain of ϕm.
We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).
That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

1. Recursion theory preliminaries:
We define ϕm : N → N to be the mth partial recursive function.
The mth partial recursive set Wm is then the domain of ϕm.
We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).
That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

1. Recursion theory preliminaries:
We define ϕm : N → N to be the mth partial recursive function.
The mth partial recursive set Wm is then the domain of ϕm.
We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).

That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

1. Recursion theory preliminaries:
We define ϕm : N → N to be the mth partial recursive function.
The mth partial recursive set Wm is then the domain of ϕm.
We also use Cantor’s pairing function 〈., .〉 : N × N → N,
〈x , y〉 := 1

2(x + y)(x + y + 1) + y , which is a (computable)
bijection from N × N to N.

Theorem (smn theorem)

For all m, n ∈ N, a partial function f : Nm+n → N is
partial-recursive if and only if there is a recursive function
s : Nm → N such that, for all e1, . . . , em, x1, . . . , xn ∈ N we have
that f (e1, . . . , em, x1, . . . , xn) = ϕs(e1,...,em)(〈x1, . . . , xn〉).
That is to say, a partial function f : Nk → N is partial recursive if
and only if, whenever we hold some of its variables fixed, the
remaining function is partial recursive.

Theorem (Kleene recursion theorem)

Let f : N → N be a recursive function. Then there exists n ∈ N
with ϕn = ϕf (n) (as functions).

So every recursive function f has a ‘fixed point’ on indices of
partial recursive functions.

We now have all the tools necessary to prove our recursion theory
results:

Theorem (Kleene recursion theorem)

Let f : N → N be a recursive function. Then there exists n ∈ N
with ϕn = ϕf (n) (as functions).

So every recursive function f has a ‘fixed point’ on indices of
partial recursive functions.

We now have all the tools necessary to prove our recursion theory
results:

Theorem (Kleene recursion theorem)

Let f : N → N be a recursive function. Then there exists n ∈ N
with ϕn = ϕf (n) (as functions).

So every recursive function f has a ‘fixed point’ on indices of
partial recursive functions.

We now have all the tools necessary to prove our recursion theory
results:

Theorem (Kleene recursion theorem)

Let f : N → N be a recursive function. Then there exists n ∈ N
with ϕn = ϕf (n) (as functions).

So every recursive function f has a ‘fixed point’ on indices of
partial recursive functions.

We now have all the tools necessary to prove our recursion theory
results:

Lemma (First recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
|{x0, . . . , xk} ∩Wn| ≤ 1, we have that g(n, x0, . . . , xk) halts with
output xi ∈ {x0, . . . , xk} such that xi /∈ Wn.

That is, given a recursively enumerable set Wn and k elements, at
most one of which lies in Wn, we can’t recursively pick one lying
OUTSIDE Wn.

(We say nothing about the behaviour of g when the input is not
‘valid’.)

Lemma (First recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
|{x0, . . . , xk} ∩Wn| ≤ 1, we have that g(n, x0, . . . , xk) halts with
output xi ∈ {x0, . . . , xk} such that xi /∈ Wn.

That is, given a recursively enumerable set Wn and k elements, at
most one of which lies in Wn, we can’t recursively pick one lying
OUTSIDE Wn.

(We say nothing about the behaviour of g when the input is not
‘valid’.)

Lemma (First recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
|{x0, . . . , xk} ∩Wn| ≤ 1, we have that g(n, x0, . . . , xk) halts with
output xi ∈ {x0, . . . , xk} such that xi /∈ Wn.

That is, given a recursively enumerable set Wn and k elements, at
most one of which lies in Wn, we can’t recursively pick one lying
OUTSIDE Wn.

(We say nothing about the behaviour of g when the input is not
‘valid’.)

Lemma (First recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
|{x0, . . . , xk} ∩Wn| ≤ 1, we have that g(n, x0, . . . , xk) halts with
output xi ∈ {x0, . . . , xk} such that xi /∈ Wn.

That is, given a recursively enumerable set Wn and k elements, at
most one of which lies in Wn, we can’t recursively pick one lying
OUTSIDE Wn.

(We say nothing about the behaviour of g when the input is not
‘valid’.)

Proof.

Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

Proof.
Assume such a g exists. Define f : N × N → N by

f (n,m) :=

{
0 if g(n, 0, . . . , k) = j ∈ {0, . . . , k} and m = j
↑ in all other cases

Then f is partial-recursive, since g is. By the smn theorem, there
exists a recursive function s : N → N such that f (n,m) = ϕs(n)(m)
for all m, n. Since s is recursive, the Kleene recursion theorem
shows that there must be some n′ such that ϕs(n′) = ϕn′ . Thus
f (n′,m) = ϕn′(m) for all m ∈ N. Moreover, by definition, ϕn′(m)
can halt on at most one of the cases m = 0, . . . ,m = k (if at all),
and no other values. Thus |{0, . . . , k} ∩Wn′ | ≤ 1. So
g(n′, 0, . . . , k) will halt and output j ∈ {0, . . . , k} \Wn′ (by
construction of g). But since g(n′, 0, . . . , k) halts with output j in
{0, . . . , k}, then f (n′, j) halts (by construction of f). Hence ϕn′(j)
halts (by definition of ϕn′), and so j ∈ Wn′ since Wn′ is precisely
the halting set of ϕn′ . Thus we have a contradiction, as we showed
j /∈ Wn′ , so no such g can exist.

In a very similar manner, we can prove the following:

Lemma (Second recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
{x0, . . . , xk} * Wn, we have that g(n, x0, . . . , xk) halts with output
xi ∈ {x0, . . . , xk} such that {x0, . . . , x̂i , . . . xk} * Wn.

That is, given a recursively enumerable set Wn and a finite set
F * Wn, we can’t, in general, recursively find a proper subset
A ⊂ F such that A * Wn.

In a very similar manner, we can prove the following:

Lemma (Second recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
{x0, . . . , xk} * Wn, we have that g(n, x0, . . . , xk) halts with output
xi ∈ {x0, . . . , xk} such that {x0, . . . , x̂i , . . . xk} * Wn.

That is, given a recursively enumerable set Wn and a finite set
F * Wn, we can’t, in general, recursively find a proper subset
A ⊂ F such that A * Wn.

In a very similar manner, we can prove the following:

Lemma (Second recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
{x0, . . . , xk} * Wn, we have that g(n, x0, . . . , xk) halts with output
xi ∈ {x0, . . . , xk} such that {x0, . . . , x̂i , . . . xk} * Wn.

That is, given a recursively enumerable set Wn and a finite set
F * Wn, we can’t, in general, recursively find a proper subset
A ⊂ F such that A * Wn.

In a very similar manner, we can prove the following:

Lemma (Second recursion theory result)

Fix any k > 0. Then there is no partial recursive function
g : Nk+2 → N such that, given n, x0, . . . , xk ∈ N satisfying
{x0, . . . , xk} * Wn, we have that g(n, x0, . . . , xk) halts with output
xi ∈ {x0, . . . , xk} such that {x0, . . . , x̂i , . . . xk} * Wn.

That is, given a recursively enumerable set Wn and a finite set
F * Wn, we can’t, in general, recursively find a proper subset
A ⊂ F such that A * Wn.

2. Group theory results:

From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.
2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.
2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.
2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:

1. Πm,n
∼= {e} if and only if n ∈ Wm.

2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.

2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.
2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.
2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

2. Group theory results:
From hereon, if P is a presentation of a group, the we denote by P
the group presented by P.

Theorem (Boone-Adian-Rabin)

We have an explicit algorithm that, on input of m, n ∈ N,
constructs a finite presentation Πm,n such that:
1. Πm,n

∼= {e} if and only if n ∈ Wm.
2. If Πm,n is non-trivial then it is perfect, 2-generated, torsion free,
and freely indecomposable (ie: can’t be expressed as a non-trivial
free product).

This is VERY useful to us, as it allows us to turn information
about numbers into information about groups (and vice versa).

We need one more preliminary result on free products of groups:

Theorem (Grushko-Neumann decomposition)

Let P be a finite presentation of a group that splits as a free
product A1 ∗ · · · ∗ An, with all the Ai indecomposable. Let
B1 ∗ · · · ∗ Bk be another such splitting into indecomposable groups.
Then n = k, and there exists a permutation σ ∈ Sn such that
Ai

∼= Bσ(i) for all 1 ≤ i ≤ n.

Using this, and our Πm,n presentations, we can now show:

Lemma (Encoding recursion theory into groups)

There is no algorithm that, on input of a finite presentation of the
form Q = Πn,a ∗ Πn,b ∗ Πn,c , where |{a, b, c} ∩Wn| ≤ 1, outputs
two finite presentations A,B of non-trivial groups such that
Q ∼= A ∗ B.

Theorem (Grushko-Neumann decomposition)

Let P be a finite presentation of a group that splits as a free
product A1 ∗ · · · ∗ An, with all the Ai indecomposable. Let
B1 ∗ · · · ∗ Bk be another such splitting into indecomposable groups.
Then n = k, and there exists a permutation σ ∈ Sn such that
Ai

∼= Bσ(i) for all 1 ≤ i ≤ n.

Using this, and our Πm,n presentations, we can now show:

Lemma (Encoding recursion theory into groups)

There is no algorithm that, on input of a finite presentation of the
form Q = Πn,a ∗ Πn,b ∗ Πn,c , where |{a, b, c} ∩Wn| ≤ 1, outputs
two finite presentations A,B of non-trivial groups such that
Q ∼= A ∗ B.

Theorem (Grushko-Neumann decomposition)

Let P be a finite presentation of a group that splits as a free
product A1 ∗ · · · ∗ An, with all the Ai indecomposable. Let
B1 ∗ · · · ∗ Bk be another such splitting into indecomposable groups.
Then n = k, and there exists a permutation σ ∈ Sn such that
Ai

∼= Bσ(i) for all 1 ≤ i ≤ n.

Using this, and our Πm,n presentations, we can now show:

Lemma (Encoding recursion theory into groups)

There is no algorithm that, on input of a finite presentation of the
form Q = Πn,a ∗ Πn,b ∗ Πn,c , where |{a, b, c} ∩Wn| ≤ 1, outputs
two finite presentations A,B of non-trivial groups such that
Q ∼= A ∗ B.

Theorem (Grushko-Neumann decomposition)

Let P be a finite presentation of a group that splits as a free
product A1 ∗ · · · ∗ An, with all the Ai indecomposable. Let
B1 ∗ · · · ∗ Bk be another such splitting into indecomposable groups.
Then n = k, and there exists a permutation σ ∈ Sn such that
Ai

∼= Bσ(i) for all 1 ≤ i ≤ n.

Using this, and our Πm,n presentations, we can now show:

Lemma (Encoding recursion theory into groups)

There is no algorithm that, on input of a finite presentation of the
form Q = Πn,a ∗ Πn,b ∗ Πn,c , where |{a, b, c} ∩Wn| ≤ 1, outputs
two finite presentations A,B of non-trivial groups such that
Q ∼= A ∗ B.

Theorem (Grushko-Neumann decomposition)

Let P be a finite presentation of a group that splits as a free
product A1 ∗ · · · ∗ An, with all the Ai indecomposable. Let
B1 ∗ · · · ∗ Bk be another such splitting into indecomposable groups.
Then n = k, and there exists a permutation σ ∈ Sn such that
Ai

∼= Bσ(i) for all 1 ≤ i ≤ n.

Using this, and our Πm,n presentations, we can now show:

Lemma (Encoding recursion theory into groups)

There is no algorithm that, on input of a finite presentation of the
form Q = Πn,a ∗ Πn,b ∗ Πn,c , where |{a, b, c} ∩Wn| ≤ 1, outputs
two finite presentations A,B of non-trivial groups such that
Q ∼= A ∗ B.

Proof.

We proceed by contradiction. As |{a, b, c} ∩Wn| ≤ 1, we must
have at least two of Πn,a,Πn,b,Πn,c are non-trivial. So split Q as
A ∗ B, with A,B both non-trivial. We consider 2 cases:
Case 1. Precisely one of a, b, c lies in Wn. If a ∈ Wn, then
Q ∼= Πn,b ∗ Πn,c . This is an indecomposable splitting, so A must
be isomorphic to at least one of Πn,b,Πn,c . The same idea works if
instead b ∈ Wn or c ∈ Wn. So, regardless of which of a, b, c lie in
Wn, A is isomorphic to at least one of Πn,a,Πn,b,Πn,c .
Case 2. None of a, b, c lie in Wn. Then Q ∼= Πn,a ∗ Πn,b ∗ Πn,c is a
splitting into indecomposable groups. Thus precisely one of A,B
splits as a free product; the other does not. Hence, at least one of
A,B must be isomorphic to at least one of Πn,a,Πn,b,Πn,c .
In either case, at least one of Πn,a,Πn,b,Πn,c is isomorphic to at
least one of A,B; these latter two being non-trivial groups. We
can recursively begin searching for such an isomorphism. This
process will eventually halt, and thus give one of Πn,a,Πn,b,Πn,c as
non-trivial, and hence one of a, b, c not in Wn. This contradicts
our first recursion theory result.

Proof.
We proceed by contradiction. As |{a, b, c} ∩Wn| ≤ 1, we must
have at least two of Πn,a,Πn,b,Πn,c are non-trivial. So split Q as
A ∗ B, with A,B both non-trivial. We consider 2 cases:

Case 1. Precisely one of a, b, c lies in Wn. If a ∈ Wn, then
Q ∼= Πn,b ∗ Πn,c . This is an indecomposable splitting, so A must
be isomorphic to at least one of Πn,b,Πn,c . The same idea works if
instead b ∈ Wn or c ∈ Wn. So, regardless of which of a, b, c lie in
Wn, A is isomorphic to at least one of Πn,a,Πn,b,Πn,c .
Case 2. None of a, b, c lie in Wn. Then Q ∼= Πn,a ∗ Πn,b ∗ Πn,c is a
splitting into indecomposable groups. Thus precisely one of A,B
splits as a free product; the other does not. Hence, at least one of
A,B must be isomorphic to at least one of Πn,a,Πn,b,Πn,c .
In either case, at least one of Πn,a,Πn,b,Πn,c is isomorphic to at
least one of A,B; these latter two being non-trivial groups. We
can recursively begin searching for such an isomorphism. This
process will eventually halt, and thus give one of Πn,a,Πn,b,Πn,c as
non-trivial, and hence one of a, b, c not in Wn. This contradicts
our first recursion theory result.

Proof.
We proceed by contradiction. As |{a, b, c} ∩Wn| ≤ 1, we must
have at least two of Πn,a,Πn,b,Πn,c are non-trivial. So split Q as
A ∗ B, with A,B both non-trivial. We consider 2 cases:
Case 1. Precisely one of a, b, c lies in Wn. If a ∈ Wn, then
Q ∼= Πn,b ∗ Πn,c . This is an indecomposable splitting, so A must
be isomorphic to at least one of Πn,b,Πn,c . The same idea works if
instead b ∈ Wn or c ∈ Wn. So, regardless of which of a, b, c lie in
Wn, A is isomorphic to at least one of Πn,a,Πn,b,Πn,c .

Case 2. None of a, b, c lie in Wn. Then Q ∼= Πn,a ∗ Πn,b ∗ Πn,c is a
splitting into indecomposable groups. Thus precisely one of A,B
splits as a free product; the other does not. Hence, at least one of
A,B must be isomorphic to at least one of Πn,a,Πn,b,Πn,c .
In either case, at least one of Πn,a,Πn,b,Πn,c is isomorphic to at
least one of A,B; these latter two being non-trivial groups. We
can recursively begin searching for such an isomorphism. This
process will eventually halt, and thus give one of Πn,a,Πn,b,Πn,c as
non-trivial, and hence one of a, b, c not in Wn. This contradicts
our first recursion theory result.

Proof.
We proceed by contradiction. As |{a, b, c} ∩Wn| ≤ 1, we must
have at least two of Πn,a,Πn,b,Πn,c are non-trivial. So split Q as
A ∗ B, with A,B both non-trivial. We consider 2 cases:
Case 1. Precisely one of a, b, c lies in Wn. If a ∈ Wn, then
Q ∼= Πn,b ∗ Πn,c . This is an indecomposable splitting, so A must
be isomorphic to at least one of Πn,b,Πn,c . The same idea works if
instead b ∈ Wn or c ∈ Wn. So, regardless of which of a, b, c lie in
Wn, A is isomorphic to at least one of Πn,a,Πn,b,Πn,c .
Case 2. None of a, b, c lie in Wn. Then Q ∼= Πn,a ∗ Πn,b ∗ Πn,c is a
splitting into indecomposable groups. Thus precisely one of A,B
splits as a free product; the other does not. Hence, at least one of
A,B must be isomorphic to at least one of Πn,a,Πn,b,Πn,c .

In either case, at least one of Πn,a,Πn,b,Πn,c is isomorphic to at
least one of A,B; these latter two being non-trivial groups. We
can recursively begin searching for such an isomorphism. This
process will eventually halt, and thus give one of Πn,a,Πn,b,Πn,c as
non-trivial, and hence one of a, b, c not in Wn. This contradicts
our first recursion theory result.

Proof.
We proceed by contradiction. As |{a, b, c} ∩Wn| ≤ 1, we must
have at least two of Πn,a,Πn,b,Πn,c are non-trivial. So split Q as
A ∗ B, with A,B both non-trivial. We consider 2 cases:
Case 1. Precisely one of a, b, c lies in Wn. If a ∈ Wn, then
Q ∼= Πn,b ∗ Πn,c . This is an indecomposable splitting, so A must
be isomorphic to at least one of Πn,b,Πn,c . The same idea works if
instead b ∈ Wn or c ∈ Wn. So, regardless of which of a, b, c lie in
Wn, A is isomorphic to at least one of Πn,a,Πn,b,Πn,c .
Case 2. None of a, b, c lie in Wn. Then Q ∼= Πn,a ∗ Πn,b ∗ Πn,c is a
splitting into indecomposable groups. Thus precisely one of A,B
splits as a free product; the other does not. Hence, at least one of
A,B must be isomorphic to at least one of Πn,a,Πn,b,Πn,c .
In either case, at least one of Πn,a,Πn,b,Πn,c is isomorphic to at
least one of A,B; these latter two being non-trivial groups. We
can recursively begin searching for such an isomorphism. This
process will eventually halt, and thus give one of Πn,a,Πn,b,Πn,c as
non-trivial, and hence one of a, b, c not in Wn. This contradicts
our first recursion theory result.

As an immediate consequence we have:

Theorem (C. 2010)

There is no algorithm that, on input of a finite presentation P of a
group that is a free product of two non-trivial finitely presented
groups, outputs two finite presentations P1,P2 which represent
non-trivial groups and whose free product is isomorphic to P.

That is, there is no algorithm that, on input of a finite presentation
of a non-trivial free product, algorithmically splits it (For if we
could, then we could split Πn,a ∗ Πn,b ∗ Πn,c).

As an immediate consequence we have:

Theorem (C. 2010)

There is no algorithm that, on input of a finite presentation P of a
group that is a free product of two non-trivial finitely presented
groups, outputs two finite presentations P1,P2 which represent
non-trivial groups and whose free product is isomorphic to P.

That is, there is no algorithm that, on input of a finite presentation
of a non-trivial free product, algorithmically splits it (For if we
could, then we could split Πn,a ∗ Πn,b ∗ Πn,c).

As an immediate consequence we have:

Theorem (C. 2010)

There is no algorithm that, on input of a finite presentation P of a
group that is a free product of two non-trivial finitely presented
groups, outputs two finite presentations P1,P2 which represent
non-trivial groups and whose free product is isomorphic to P.

That is, there is no algorithm that, on input of a finite presentation
of a non-trivial free product, algorithmically splits it (For if we
could, then we could split Πn,a ∗ Πn,b ∗ Πn,c).

As an immediate consequence we have:

Theorem (C. 2010)

There is no algorithm that, on input of a finite presentation P of a
group that is a free product of two non-trivial finitely presented
groups, outputs two finite presentations P1,P2 which represent
non-trivial groups and whose free product is isomorphic to P.

That is, there is no algorithm that, on input of a finite presentation
of a non-trivial free product, algorithmically splits it (For if we
could, then we could split Πn,a ∗ Πn,b ∗ Πn,c).

In a very similar style, using our second recursion theory result and
a slightly different way of combining the Πm,n groups, we can show
the following:

Theorem (C. 2010)

Fix any k > 0. Then there is no algorithm that, on input of a finite
presentation P = 〈X |R〉 of a non-trivial group P, outputs a word
w on X of length at most k such that w is non-trivial in P.

So if there was an algorithm to output a non-trivial element from a
non-trivial group, then there would be no bound on the length of
the words which it could output. Hence, knowing a group is
non-trivial is NOT enough to be able to algorithmically output a
non-trivial generator (which is the first place one would naively
look for a non-trivial element).

In a very similar style, using our second recursion theory result and
a slightly different way of combining the Πm,n groups, we can show
the following:

Theorem (C. 2010)

Fix any k > 0. Then there is no algorithm that, on input of a finite
presentation P = 〈X |R〉 of a non-trivial group P, outputs a word
w on X of length at most k such that w is non-trivial in P.

So if there was an algorithm to output a non-trivial element from a
non-trivial group, then there would be no bound on the length of
the words which it could output. Hence, knowing a group is
non-trivial is NOT enough to be able to algorithmically output a
non-trivial generator (which is the first place one would naively
look for a non-trivial element).

In a very similar style, using our second recursion theory result and
a slightly different way of combining the Πm,n groups, we can show
the following:

Theorem (C. 2010)

Fix any k > 0. Then there is no algorithm that, on input of a finite
presentation P = 〈X |R〉 of a non-trivial group P, outputs a word
w on X of length at most k such that w is non-trivial in P.

So if there was an algorithm to output a non-trivial element from a
non-trivial group, then there would be no bound on the length of
the words which it could output. Hence, knowing a group is
non-trivial is NOT enough to be able to algorithmically output a
non-trivial generator (which is the first place one would naively
look for a non-trivial element).

In a very similar style, using our second recursion theory result and
a slightly different way of combining the Πm,n groups, we can show
the following:

Theorem (C. 2010)

Fix any k > 0. Then there is no algorithm that, on input of a finite
presentation P = 〈X |R〉 of a non-trivial group P, outputs a word
w on X of length at most k such that w is non-trivial in P.

So if there was an algorithm to output a non-trivial element from a
non-trivial group, then there would be no bound on the length of
the words which it could output. Hence, knowing a group is
non-trivial is NOT enough to be able to algorithmically output a
non-trivial generator (which is the first place one would naively
look for a non-trivial element).

Again, using our existing recursion theory results, our Πm,n groups,
and a straightforward application of a result by Adian-Rabin, we
can show the following:

Lemma
There is no algorithm that, on input of a finite presentation
P = 〈X |R〉 of a group with torsion, and some finite n which is the
order of some element of P, outputs a word w on X which
represents any torsion element of P (not necessarily of order n).

So knowing a group has torsion, AND the order of some torsion
element, is still not enough to algorithmically construct a torsion
element. We can easily use this to show the following result:

Theorem (C. 2010)

There is no algorithm that, on input of two finite presentations
P = 〈X |R〉 and Q = 〈Y |S〉 such that P embeds in Q, outputs an
explicit map θ : X → W (Y) such that θ extends to an embedding
θ : P ↪→ Q.

Again, using our existing recursion theory results, our Πm,n groups,
and a straightforward application of a result by Adian-Rabin, we
can show the following:

Lemma
There is no algorithm that, on input of a finite presentation
P = 〈X |R〉 of a group with torsion, and some finite n which is the
order of some element of P, outputs a word w on X which
represents any torsion element of P (not necessarily of order n).

So knowing a group has torsion, AND the order of some torsion
element, is still not enough to algorithmically construct a torsion
element. We can easily use this to show the following result:

Theorem (C. 2010)

There is no algorithm that, on input of two finite presentations
P = 〈X |R〉 and Q = 〈Y |S〉 such that P embeds in Q, outputs an
explicit map θ : X → W (Y) such that θ extends to an embedding
θ : P ↪→ Q.

Again, using our existing recursion theory results, our Πm,n groups,
and a straightforward application of a result by Adian-Rabin, we
can show the following:

Lemma
There is no algorithm that, on input of a finite presentation
P = 〈X |R〉 of a group with torsion, and some finite n which is the
order of some element of P, outputs a word w on X which
represents any torsion element of P (not necessarily of order n).

So knowing a group has torsion, AND the order of some torsion
element, is still not enough to algorithmically construct a torsion
element. We can easily use this to show the following result:

Theorem (C. 2010)

There is no algorithm that, on input of two finite presentations
P = 〈X |R〉 and Q = 〈Y |S〉 such that P embeds in Q, outputs an
explicit map θ : X → W (Y) such that θ extends to an embedding
θ : P ↪→ Q.

Again, using our existing recursion theory results, our Πm,n groups,
and a straightforward application of a result by Adian-Rabin, we
can show the following:

Lemma
There is no algorithm that, on input of a finite presentation
P = 〈X |R〉 of a group with torsion, and some finite n which is the
order of some element of P, outputs a word w on X which
represents any torsion element of P (not necessarily of order n).

So knowing a group has torsion, AND the order of some torsion
element, is still not enough to algorithmically construct a torsion
element. We can easily use this to show the following result:

Theorem (C. 2010)

There is no algorithm that, on input of two finite presentations
P = 〈X |R〉 and Q = 〈Y |S〉 such that P embeds in Q, outputs an
explicit map θ : X → W (Y) such that θ extends to an embedding
θ : P ↪→ Q.

Proof.

Just take Q to be a presentation of a group with torsion of order
n. Then 〈t|tn〉 embeds in Q. But being able to construct such an
embedding would enable us to identify a torsion element (the
image of t), which contradicts the previous lemma.

So knowing that P embeds in Q is not NOT sufficient to construct
such an embedding. Compare this with the fact that:
1. Knowing P surjects onto Q is enough to construct a surjection.
2. Knowing P ∼= Q is enough to construct an isomorphism.

Proof.
Just take Q to be a presentation of a group with torsion of order
n. Then 〈t|tn〉 embeds in Q. But being able to construct such an
embedding would enable us to identify a torsion element (the
image of t), which contradicts the previous lemma.

So knowing that P embeds in Q is not NOT sufficient to construct
such an embedding. Compare this with the fact that:
1. Knowing P surjects onto Q is enough to construct a surjection.
2. Knowing P ∼= Q is enough to construct an isomorphism.

Proof.
Just take Q to be a presentation of a group with torsion of order
n. Then 〈t|tn〉 embeds in Q. But being able to construct such an
embedding would enable us to identify a torsion element (the
image of t), which contradicts the previous lemma.

So knowing that P embeds in Q is not NOT sufficient to construct
such an embedding. Compare this with the fact that:

1. Knowing P surjects onto Q is enough to construct a surjection.
2. Knowing P ∼= Q is enough to construct an isomorphism.

Proof.
Just take Q to be a presentation of a group with torsion of order
n. Then 〈t|tn〉 embeds in Q. But being able to construct such an
embedding would enable us to identify a torsion element (the
image of t), which contradicts the previous lemma.

So knowing that P embeds in Q is not NOT sufficient to construct
such an embedding. Compare this with the fact that:
1. Knowing P surjects onto Q is enough to construct a surjection.

2. Knowing P ∼= Q is enough to construct an isomorphism.

Proof.
Just take Q to be a presentation of a group with torsion of order
n. Then 〈t|tn〉 embeds in Q. But being able to construct such an
embedding would enable us to identify a torsion element (the
image of t), which contradicts the previous lemma.

So knowing that P embeds in Q is not NOT sufficient to construct
such an embedding. Compare this with the fact that:
1. Knowing P surjects onto Q is enough to construct a surjection.
2. Knowing P ∼= Q is enough to construct an isomorphism.

3. Applications to 4-Manifolds:

Theorem (Markov)

There is a recursive procedure that, on input of a finite
presentation P = 〈X |R〉 of a group, constructs a finite
triangulation M(P) of a closed 4-manifold with the following
properties:
1. π1(M(P)) ∼= P.
2. If P and Q are finite presentations, then M(P ∗ Q) is
homeomorphic to the connect sum M(P)#M(Q).

Combining this with our first group theory lemma regarding
splitting Πn,a ∗ Πn,b ∗ Πn,c , and the fact that we can ‘read off’ a
presentation for the fundamental group of a finite triangulation, we
get:

3. Applications to 4-Manifolds:

Theorem (Markov)

There is a recursive procedure that, on input of a finite
presentation P = 〈X |R〉 of a group, constructs a finite
triangulation M(P) of a closed 4-manifold with the following
properties:
1. π1(M(P)) ∼= P.
2. If P and Q are finite presentations, then M(P ∗ Q) is
homeomorphic to the connect sum M(P)#M(Q).

Combining this with our first group theory lemma regarding
splitting Πn,a ∗ Πn,b ∗ Πn,c , and the fact that we can ‘read off’ a
presentation for the fundamental group of a finite triangulation, we
get:

3. Applications to 4-Manifolds:

Theorem (Markov)

There is a recursive procedure that, on input of a finite
presentation P = 〈X |R〉 of a group, constructs a finite
triangulation M(P) of a closed 4-manifold with the following
properties:

1. π1(M(P)) ∼= P.
2. If P and Q are finite presentations, then M(P ∗ Q) is
homeomorphic to the connect sum M(P)#M(Q).

Combining this with our first group theory lemma regarding
splitting Πn,a ∗ Πn,b ∗ Πn,c , and the fact that we can ‘read off’ a
presentation for the fundamental group of a finite triangulation, we
get:

3. Applications to 4-Manifolds:

Theorem (Markov)

There is a recursive procedure that, on input of a finite
presentation P = 〈X |R〉 of a group, constructs a finite
triangulation M(P) of a closed 4-manifold with the following
properties:
1. π1(M(P)) ∼= P.

2. If P and Q are finite presentations, then M(P ∗ Q) is
homeomorphic to the connect sum M(P)#M(Q).

Combining this with our first group theory lemma regarding
splitting Πn,a ∗ Πn,b ∗ Πn,c , and the fact that we can ‘read off’ a
presentation for the fundamental group of a finite triangulation, we
get:

3. Applications to 4-Manifolds:

Theorem (Markov)

There is a recursive procedure that, on input of a finite
presentation P = 〈X |R〉 of a group, constructs a finite
triangulation M(P) of a closed 4-manifold with the following
properties:
1. π1(M(P)) ∼= P.
2. If P and Q are finite presentations, then M(P ∗ Q) is
homeomorphic to the connect sum M(P)#M(Q).

Combining this with our first group theory lemma regarding
splitting Πn,a ∗ Πn,b ∗ Πn,c , and the fact that we can ‘read off’ a
presentation for the fundamental group of a finite triangulation, we
get:

3. Applications to 4-Manifolds:

Theorem (Markov)

There is a recursive procedure that, on input of a finite
presentation P = 〈X |R〉 of a group, constructs a finite
triangulation M(P) of a closed 4-manifold with the following
properties:
1. π1(M(P)) ∼= P.
2. If P and Q are finite presentations, then M(P ∗ Q) is
homeomorphic to the connect sum M(P)#M(Q).

Combining this with our first group theory lemma regarding
splitting Πn,a ∗ Πn,b ∗ Πn,c , and the fact that we can ‘read off’ a
presentation for the fundamental group of a finite triangulation, we
get:

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M which splits as a connect sum of two
non-simply connected manifolds, outputs two finite triangulations
of non-simply connected closed 4-manifolds M1,M2 whose connect
sum is homeomorphic to M.

So just knowing that a 4-manifold splits as a connect sum of
non-simply connected pieces is NOT enough to be able to split it
as such. (If we could, then the Markov construction would allow us
to split Πn,a ∗ Πn,b ∗ Πn,c).

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M which splits as a connect sum of two
non-simply connected manifolds, outputs two finite triangulations
of non-simply connected closed 4-manifolds M1,M2 whose connect
sum is homeomorphic to M.

So just knowing that a 4-manifold splits as a connect sum of
non-simply connected pieces is NOT enough to be able to split it
as such. (If we could, then the Markov construction would allow us
to split Πn,a ∗ Πn,b ∗ Πn,c).

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M which splits as a connect sum of two
non-simply connected manifolds, outputs two finite triangulations
of non-simply connected closed 4-manifolds M1,M2 whose connect
sum is homeomorphic to M.

So just knowing that a 4-manifold splits as a connect sum of
non-simply connected pieces is NOT enough to be able to split it
as such. (If we could, then the Markov construction would allow us
to split Πn,a ∗ Πn,b ∗ Πn,c).

We can also apply the Markov construction to carry over some of
our other algorithmic results from algebra to geometry.

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M such that π1(M) has torsion, outputs an
essential loop γ in M which represents a torsion element in π1(M).

If we could do this, then the Markov construction would allow us
to construct a torsion element in any finite presentation of a
torsion group, which we showed impossible in our earlier lemma.

We can also apply the Markov construction to carry over some of
our other algorithmic results from algebra to geometry.

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M such that π1(M) has torsion, outputs an
essential loop γ in M which represents a torsion element in π1(M).

If we could do this, then the Markov construction would allow us
to construct a torsion element in any finite presentation of a
torsion group, which we showed impossible in our earlier lemma.

We can also apply the Markov construction to carry over some of
our other algorithmic results from algebra to geometry.

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M such that π1(M) has torsion, outputs an
essential loop γ in M which represents a torsion element in π1(M).

If we could do this, then the Markov construction would allow us
to construct a torsion element in any finite presentation of a
torsion group, which we showed impossible in our earlier lemma.

We can also apply the Markov construction to carry over some of
our other algorithmic results from algebra to geometry.

Corollary (C. 2010)

There is no algorithm that, on input of a finite triangulation of a
closed 4-manifold M such that π1(M) has torsion, outputs an
essential loop γ in M which represents a torsion element in π1(M).

If we could do this, then the Markov construction would allow us
to construct a torsion element in any finite presentation of a
torsion group, which we showed impossible in our earlier lemma.

Full details of the material presented here can be found in the
preprint:

M. Chiodo, Finding non-trivial elements and splittings in groups,
arXiv:1002.2786v3 (2010).

