Geometric approach to the braid conjugacy problem

Ivan Dynnikov

Moscow State University

Braid group B_{n} :

$$
\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{cc}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, & |i-j|>1, \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, 1 \leqslant i \leqslant n-2
\end{array}\right.\right\rangle
$$

A braid:

$$
\sigma_{2} \sigma_{5}^{-1} \sigma_{4} \sigma_{1} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{4}^{2} \sigma_{5}^{-1} \sigma_{3}^{-1} \sigma_{2}^{-2} \sigma_{1}^{-1}
$$

Relations:

$$
\underset{\sigma_{i} \sigma_{i}^{-1}}{\longrightarrow}=\overline{\bigcap_{1}}=\bigcap_{\sigma_{i}^{-1} \sigma_{i}}
$$

Relations:

Relations:

Conjugacy Decision Problem for B_{n} : given $b_{1}, b_{2} \in B_{n}$ decide whether $\exists c \in B_{n}$ s.t. $b_{1}=c b_{2} c^{-1}$

Conjugator Search Problem for B_{n} : given $b_{1}, b_{2} \in B_{n}$ that are conjugate find $c \in B_{n}$ s.t. $b_{1}=c b_{2} c^{-1}$

Solution:

- F.A.Garside, 1969

Given a braid b, the algorithms computes the Summit Set of the conjugacy class of b. This is a finite subset of the conjugacy class. It is (usually) exponentially large in the size of the input.

Improvements:

- W. P. Thurston, 1992 (greedy normal form)
- E. A. El-Rifai and H. R. Morton, 1994 (cycling/decycling, super summit set)
- J. Birman, K.H. Ko, and S.J. Lee, 1998 (better generating set)
- N. Franco and J. Gonzales-Meneses, 2001 (minimal simple conjugations)
- V. Gebhardt, 2003 (ultra summit set)

USS $\subset \mathrm{SSS} \subset \mathrm{SS} \subset$ Conjugacy class

Garside fundamental braid Δ_{n} :

The center of B_{n} is generated by Δ_{n}^{2}.

Permutation braid: only positive crossings, any two strands cross at most once.

\{permutation braids from $\left.B_{n}\right\} \leftrightarrow S_{n}$

For $\pi_{1}, \pi_{2} \in S_{n}$ s.t. $\left|\pi_{1}\right|+\left|\pi_{2}\right|=\left|\pi_{1} \circ \pi_{2}\right|$ we have

$$
b_{\pi_{1}} b_{\pi_{2}}=b_{\pi_{1} \pi_{2}}
$$

Thurston's left greedy form of a braid:

$$
b=\Delta^{k} b_{1} b_{2} \ldots b_{m}
$$

where:

- Δ is the Garside fundamental braid;
- b_{i} are permutation braids;
- $k \in \mathbb{Z}$ is maximal possible;
- each b_{i} is the maximal left tail of $b_{i} b_{i+1} \ldots b_{m}$.

Cycling:

$$
b=\Delta_{n}^{k} b_{1} b_{2} \ldots b_{m} \mapsto \Delta_{n}^{k} b_{2} \ldots b_{m} b_{1}^{\prime}
$$

where $b_{1}^{\prime}=\Delta_{n}^{k} b_{1} \Delta_{n}^{-k}$.

Decycling:

$$
b=\Delta_{n}^{k} b_{1} b_{2} \ldots b_{m} \mapsto \Delta_{n}^{k} b_{m}^{\prime} b_{1} b_{2} \ldots b_{m-1}
$$

where $b_{m}^{\prime}=\Delta_{n}^{-k} b_{m} \Delta_{n}^{k}$.

The algorithm:

- apply cycling/decycling until the braid is in SSS;
- apply cycling until a circuit is detected;
- apply minimal simple conjugations to discover the whole USS.

|USS| can be exponentially large. E.g., for $b_{k}=\sigma_{1} \sigma_{3}^{2} \ldots \sigma_{2 k-1}^{k} \in$ $B_{2 k}$ we have

The reason here is the reducibility of the braids.

Geometric point of view:

$$
B_{n} \cong \mathcal{M C G}\left(D^{2} \backslash\left\{P_{1}, \ldots, P_{n}\right\} ; \partial D^{2}\right)
$$

$$
B_{n} /\left\langle\Delta^{2}\right\rangle \cong \mathcal{M C G}\left(S^{2} \backslash\left\{P_{0}=\infty, P_{1}, \ldots, P_{n}\right\}\right)
$$

Nielsen-Thurston trichotomy in braid groups:

- Periodic
- Reduced
- Pseudo-Anosov

Periodic braids $=$ roots of central elements:

A reduced braid:

Pseudo-Anosov braid: \exists two invariant mutually transversal measured foliations $\mathcal{F}_{1}, \mathcal{F}_{2}$ (called stable and unstable, respectively) with isolated singularities on $S^{2} \backslash\left\{P_{0}, \ldots, P_{n}\right\}$, and $\lambda>1$ s.t.

- 1-prong singularities may occur only at the punctures and $P_{0}=\infty$;
- the transversal measure of \mathcal{F}_{2} stretches λ times and that of \mathcal{F}_{1} shrinks λ times under the action of the braid.

1-prong singularity

3-prong singularity

A pseudo-Anosov braid:

To see how \mathcal{F}_{1} looks like one can pick an arbitrary curve linked with the punctures:

and apply a large enough power of the braid:

and apply a large enough power of the braid:

and apply a large enough power of the braid:

The "limit point" is equivalent to \mathcal{F}_{1} modulo the following operations:

J.Birman, V.Gebhardt, J.Gonzales-Meneses, 2007: a polynomial solution for the Conjugator Search problem in the periodic case.
M.Bestvina, M.Handel, 1995: an algorithm for fining the geometrical type of a braid (more generally, of a surface homeomorphism). Fast in practice. Not proven to be polynomial.

The most important case is pseudo-Anosov.

A typical braid is pseudo-Anosov, it's USS consists of just one or two circuits of length bounded by the length of the braid, and all braids in the USS are rigid.
J.Birman, V.Gebhardt, J.Gonzáles-Meneses arXiv:math/math.GT/0605230:
A small (bounded by a polynomial in n) power of a pseudoAnosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of the USS of a pseudo-Anosov rigid braid?

A typical braid is pseudo-Anosov, it's USS consists of just one or two circuits of length bounded by the length of the braid, and all braids in the USS are rigid.
J.Birman, V.Gebhardt, J.Gonzáles-Meneses arXiv:math/math.GT/0605230:
A small (bounded by a polynomial in n) power of a pseudoAnosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of the USS of a pseudo-Anosov rigid braid?

ANSWER: no.
x^{x}

䞠

\mid USS $\mid=36$

\mid USS $\mid=54$

|USS| $=324$

\mid USS| $=486$

|USS| $=2916$

|USS| $=4374$

\mid USS $\mid=26244$

\mid USS $\mid=39366$

Conjectured formula: $\left(3+(-1)^{n-1}\right) \cdot 3^{n-3}$
M.Prasolov: $|\mathrm{USS}| \geqslant 2^{n / 2-1}$ in this case.

Birman-Ko-Lee setup.

Conjectured formula for |USS| of $\sigma_{1} \sigma_{2}^{-1} \ldots \sigma_{n-1}^{(-1)^{n}}$ (holds for small n):

$$
\begin{cases}2 n \cdot 3^{n-3}, & n \text { odd } \\ n \cdot 3^{n-3}, & n \text { even } .\end{cases}
$$

Proven growth for odd n (M.Prasolov): $2^{(n-1) / 2}$.

Geometric cycling for a pseudo-Anosov braid:

$$
b \mapsto a^{-1} b a,
$$

where a corresponds to moving the leftmost puncture P_{1} along a separatrix of \mathcal{F}_{1} to the leftmost available position on the ray $\left[P_{1}, \infty\right)$

The algorithm:
(*) apply geometric cycling until finding a circuit;

- apply elementary conjugations to an element from the circuit;
- repeat $(*)$ for each of the braid obtained by the elementary conjutations.

Geometrical summit set contains at most $(n-2)$ circuits!
More precisely, the number of circuits equals k / q, where: k is the number of prongs at the infinity;
q is the denominator of the rotation number $\rho=p / q$ with $\operatorname{gcd}(p, q)=1, q>0$. The rotation number of a braid is characterized by the property

$$
\Delta^{2[m \rho]-2}<b^{m}<\Delta^{2[m \rho]+4},
$$

which holds for any $m \in \mathbb{Z}$ and Dehornoy's (more general, any Thurston type) ordering " $<$ ".

3

$-2 \sqrt{6}+2 x$

2xacex

$2 x-2$

72c

资

或

خ خ خ

