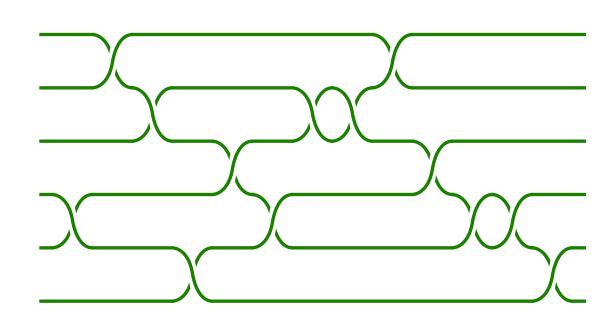
Geometric approach to the braid conjugacy problem

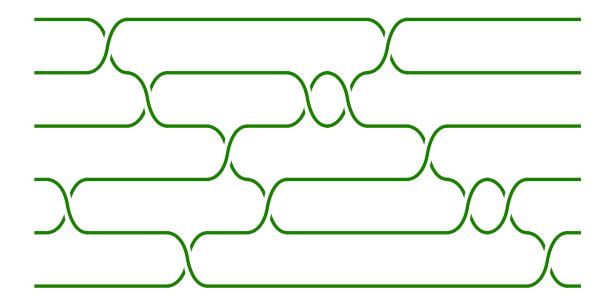
Ivan Dynnikov

Moscow State University

Braid group B_n :

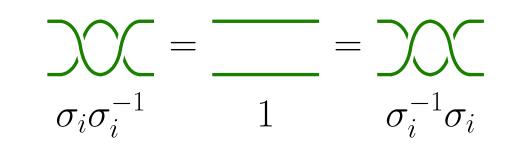
$$\left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, & |i-j| > 1, \\ \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1}, & 1 \leq i \leq n-2 \end{array} \right\rangle$$

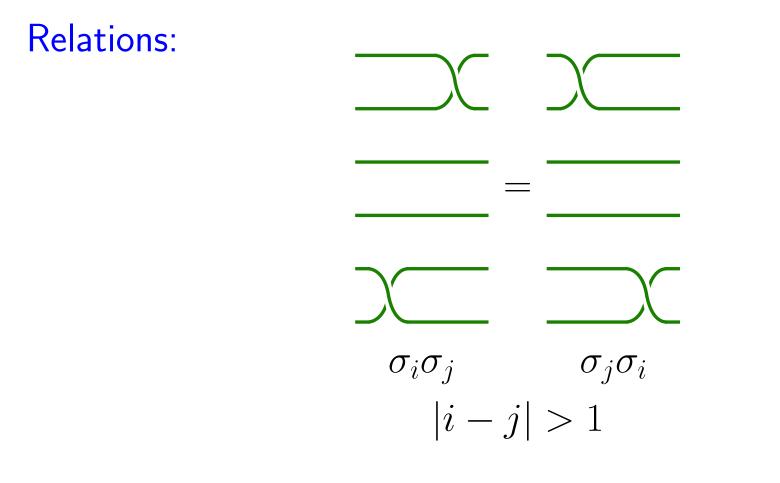




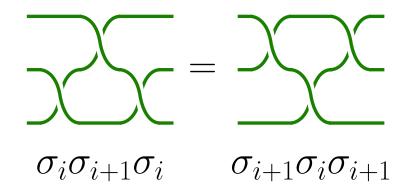
 $\sigma_2 \sigma_5^{-1} \sigma_4 \sigma_1 \sigma_3^{-1} \sigma_2^{-1} \sigma_4^2 \sigma_5^{-1} \sigma_3^{-1} \sigma_2^{-2} \sigma_1^{-1}$

Relations:





Relations:



Conjugacy Decision Problem for B_n : given $b_1, b_2 \in B_n$ decide whether $\exists c \in B_n$ s.t. $b_1 = cb_2c^{-1}$

Conjugator Search Problem for B_n : given $b_1, b_2 \in B_n$ that are conjugate find $c \in B_n$ s.t. $b_1 = cb_2c^{-1}$

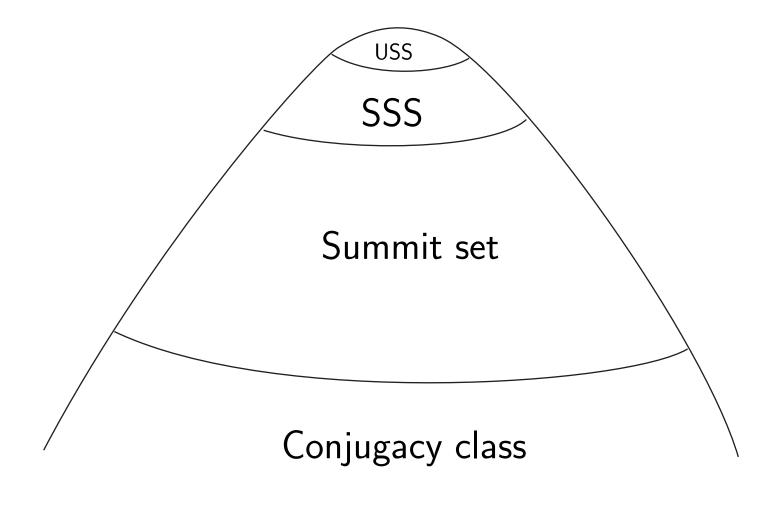
Solution:

• F.A.Garside, 1969

Given a braid b, the algorithms computes the Summit Set of the conjugacy class of b. This is a finite subset of the conjugacy class. It is (usually) exponentially large in the size of the input.

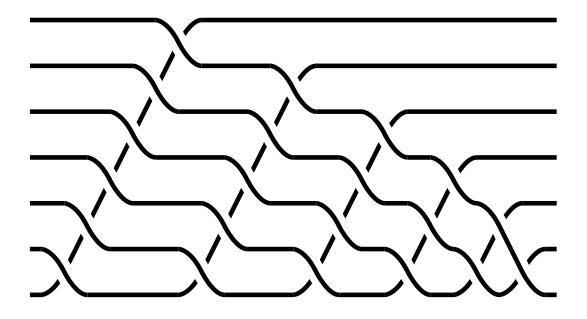
Improvements:

- W. P. Thurston, 1992 (greedy normal form)
- E. A. El-Rifai and H. R. Morton, 1994 (cycling/decycling, super summit set)
- J. Birman, K.H. Ko, and S.J. Lee, 1998 (better generating set)
- N. Franco and J. Gonzales-Meneses, 2001 (minimal simple conjugations)
- V. Gebhardt, 2003 (ultra summit set)



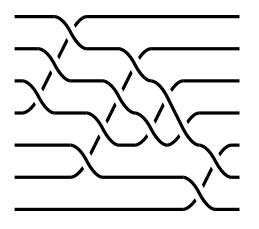
$\mathsf{USS} \subset \mathsf{SSS} \subset \mathsf{SS} \subset \mathsf{Conjugacy\ class}$

Garside fundamental braid Δ_n :



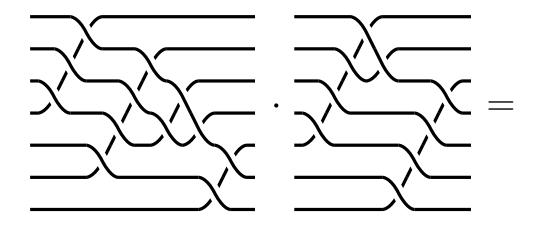
The center of B_n is generated by Δ_n^2 .

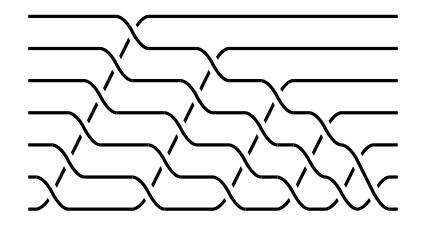
Permutation braid: only positive crossings, any two strands cross at most once.



{permutation braids from B_n } $\leftrightarrow S_n$

For $\pi_1, \pi_2 \in S_n$ s.t. $|\pi_1| + |\pi_2| = |\pi_1 \circ \pi_2|$ we have $b_{\pi_1} b_{\pi_2} = b_{\pi_1 \pi_2}$





Thurston's left greedy form of a braid:

$$b = \Delta^k b_1 b_2 \dots b_m,$$

where:

- $\bullet~\Delta$ is the Garside fundamental braid;
- b_i are permutation braids;
- $k \in \mathbb{Z}$ is maximal possible;
- each b_i is the maximal left tail of $b_i b_{i+1} \dots b_m$.

Cycling:

$$b=\Delta_n^k b_1 b_2 \dots b_m \mapsto \Delta_n^k b_2 \dots b_m b_1',$$

where $b_1'=\Delta_n^k b_1 \Delta_n^{-k}.$

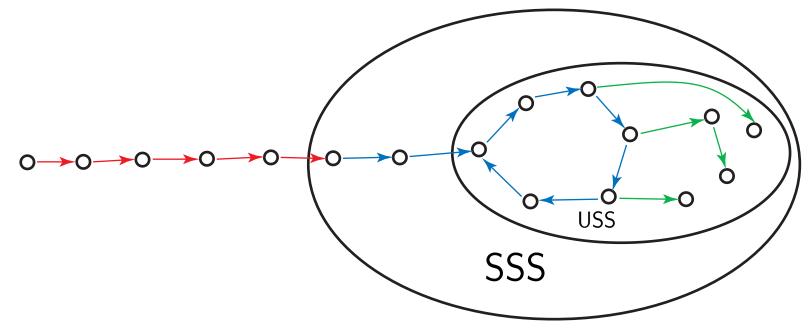
Decycling:

$$b = \Delta_n^k b_1 b_2 \dots b_m \mapsto \Delta_n^k b'_m b_1 b_2 \dots b_{m-1},$$

where $b'_m = \Delta_n^{-k} b_m \Delta_n^k.$

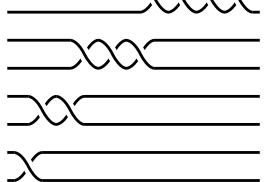
The algorithm:

- apply cycling/decycling until the braid is in SSS;
- apply cycling until a circuit is detected;
- apply minimal simple conjugations to discover the whole USS.



 $|\mathsf{USS}|$ can be exponentially large. E.g., for $b_k = \sigma_1 \sigma_3^2 \dots \sigma_{2k-1}^k \in B_{2k}$ we have

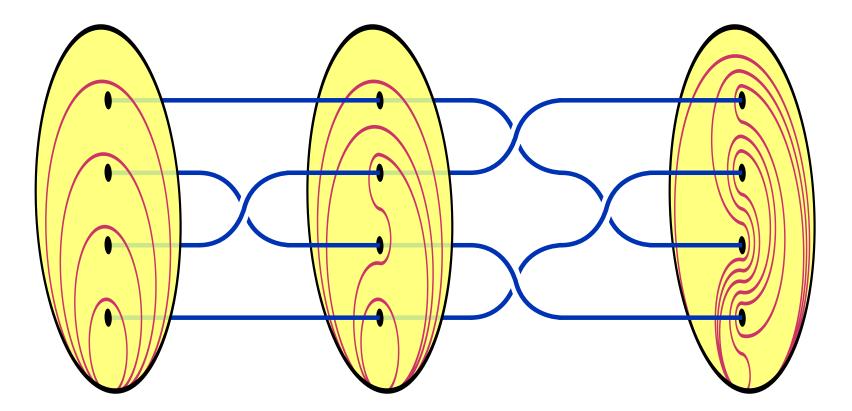
$$\frac{|\mathsf{USS}(b_k)| = k!}{20000}$$



The reason here is the reducibility of the braids.

Geometric point of view:

 $B_n \cong \mathcal{MCG}(D^2 \setminus \{P_1, \ldots, P_n\}; \partial D^2)$

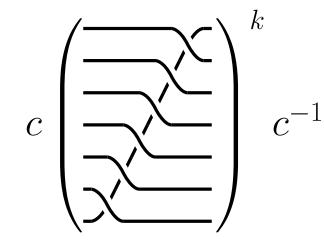


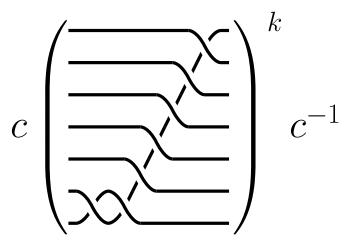
 $B_n/\langle \Delta^2 \rangle \cong \mathcal{MCG}(S^2 \setminus \{P_0 = \infty, P_1, \dots, P_n\})$

Nielsen–Thurston trichotomy in braid groups:

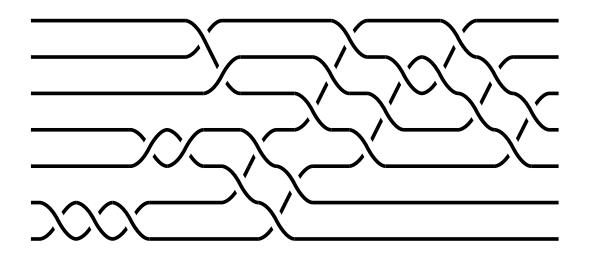
- Periodic
- Reduced
- Pseudo-Anosov

Periodic braids = roots of central elements:



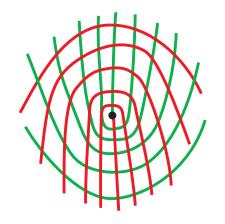


A reduced braid:

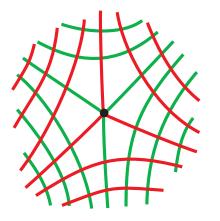


Pseudo-Anosov braid: \exists two invariant mutually transversal measured foliations \mathcal{F}_1 , \mathcal{F}_2 (called stable and unstable, respectively) with isolated singularities on $S^2 \setminus \{P_0, \ldots, P_n\}$, and $\lambda > 1$ s.t.

- 1-prong singularities may occur only at the punctures and $P_0 = \infty$;
- the transversal measure of \mathcal{F}_2 stretches λ times and that of \mathcal{F}_1 shrinks λ times under the action of the braid.



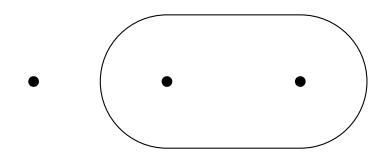
1-prong singularity



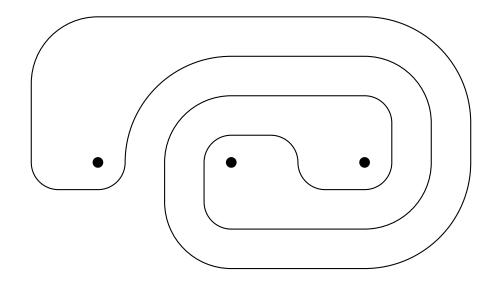
3-prong singularity

A pseudo-Anosov braid:

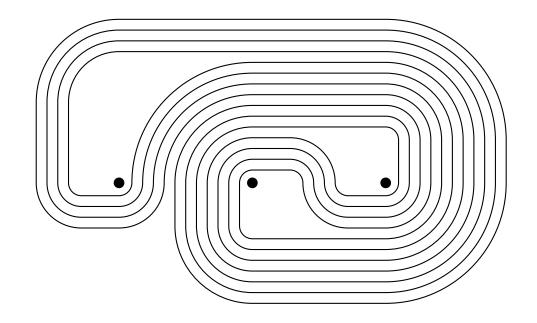
To see how \mathcal{F}_1 looks like one can pick an arbitrary curve linked with the punctures:



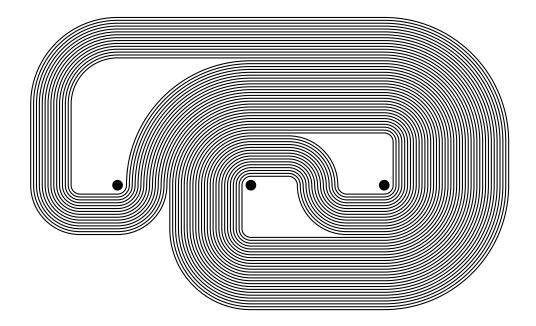
and apply a large enough power of the braid:



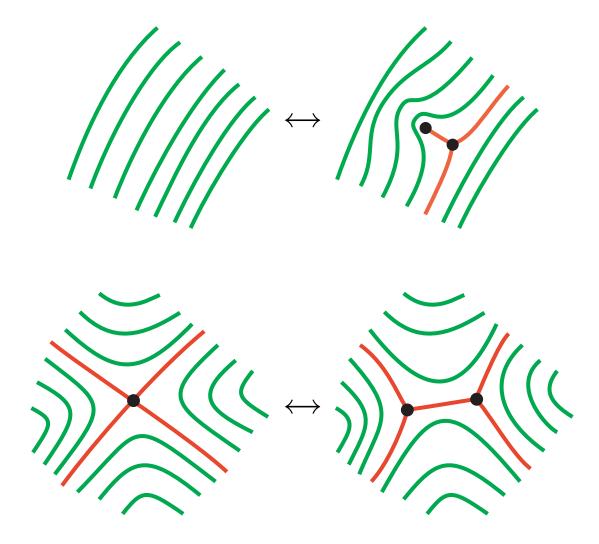
and apply a large enough power of the braid:



and apply a large enough power of the braid:



The "limit point" is equivalent to \mathcal{F}_1 modulo the following operations:



J.Birman, V.Gebhardt, J.Gonzales-Meneses, 2007: a polynomial solution for the Conjugator Search problem in the periodic case.

M.Bestvina, M.Handel, 1995: an algorithm for fining the geometrical type of a braid (more generally, of a surface homeomorphism). Fast in practice. Not proven to be polynomial.

The most important case is pseudo-Anosov.

A typical braid is pseudo-Anosov, it's USS consists of just one or two circuits of length bounded by the length of the braid, and all braids in the USS are rigid.

J.Birman, V.Gebhardt, J.Gonzáles-Meneses arXiv:math/math.GT/0605230:

A small (bounded by a polynomial in n) power of a pseudo-Anosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of the USS of a pseudo-Anosov rigid braid?

A typical braid is pseudo-Anosov, it's USS consists of just one or two circuits of length bounded by the length of the braid, and all braids in the USS are rigid.

J.Birman, V.Gebhardt, J.Gonzáles-Meneses arXiv:math/math.GT/0605230:

A small (bounded by a polynomial in n) power of a pseudo-Anosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of the USS of a pseudo-Anosov rigid braid?

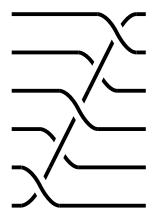
ANSWER: no.

 $|\mathsf{USS}| = 4$

 $|\mathsf{USS}| = 6$

$$|\mathsf{USS}| = 36$$

$$|\mathsf{USS}| = 54$$



$$|\mathsf{USS}| = 324$$

$$|\mathsf{USS}| = 486$$

$$|\mathsf{USS}| = 2916$$

$$|\mathsf{USS}| = 4374$$

$$|\mathsf{USS}| = 26244$$

$$|USS| = 39366$$

Conjectured formula: $(3 + (-1)^{n-1}) \cdot 3^{n-3}$

M.Prasolov: $|USS| \ge 2^{n/2-1}$ in this case.

Birman–Ko–Lee setup.

Conjectured formula for |USS| of $\sigma_1 \sigma_2^{-1} \dots \sigma_{n-1}^{(-1)^n}$ (holds for small n):

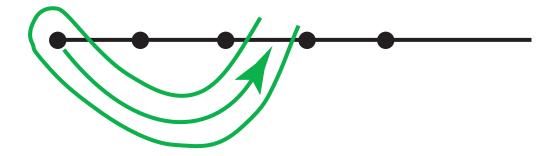
$$\left\{egin{array}{ll} 2n\cdot 3^{n-3}, & n ext{ odd},\ n\cdot 3^{n-3}, & n ext{ even}. \end{array}
ight.$$

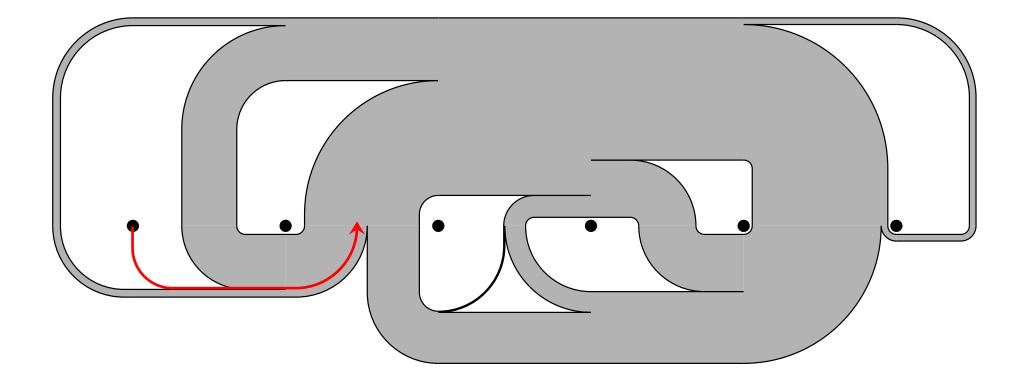
Proven growth for odd n (M.Prasolov): $2^{(n-1)/2}$.

Geometric cycling for a pseudo-Anosov braid:

 $b \mapsto a^{-1}ba$,

where a corresponds to moving the leftmost puncture P_1 along a separatrix of \mathcal{F}_1 to the leftmost available position on the ray $[P_1,\infty)$

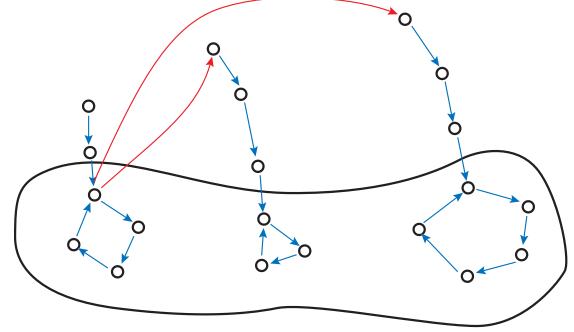




The algorithm:

(*) apply geometric cycling until finding a circuit;

- apply elementary conjugations to an element from the circuit;
- repeat (*) for each of the braid obtained by the elementary conjutations.



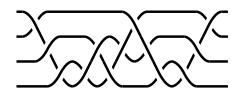
Geometrical summit set contains at most (n-2) circuits!

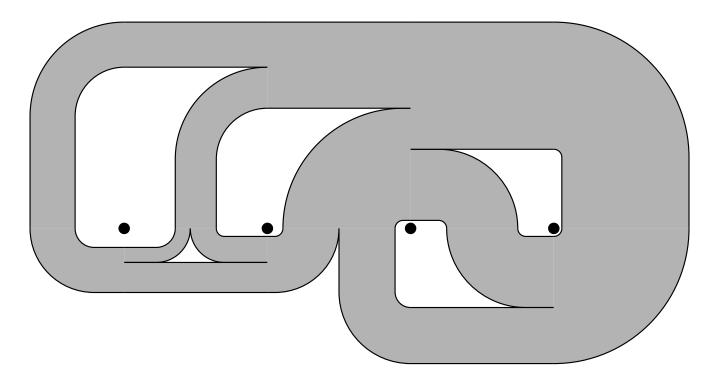
More precisely, the number of circuits equals k/q, where: k is the number of prongs at the infinity;

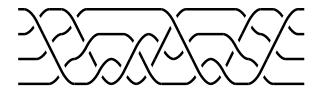
q is the denominator of the rotation number $\rho=p/q$ with $\gcd(p,q)=1,\ q>0.$ The rotation number of a braid is characterized by the property

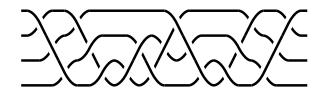
$$\Delta^{2[m\rho]-2} < b^m < \Delta^{2[m\rho]+4},$$

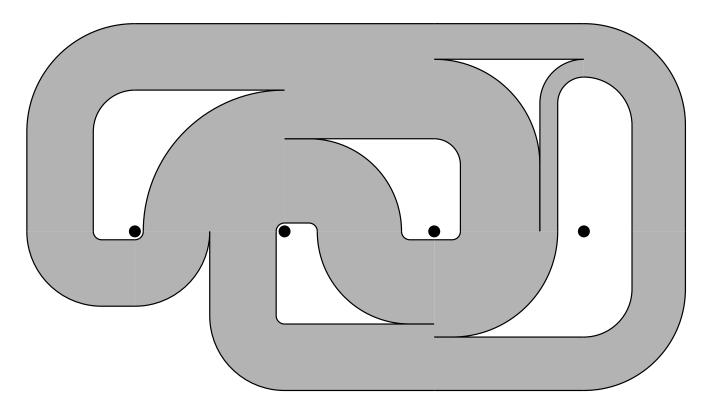
which holds for any $m \in \mathbb{Z}$ and Dehornoy's (more general, any Thurston type) ordering "<".

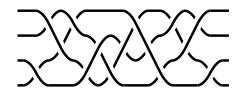


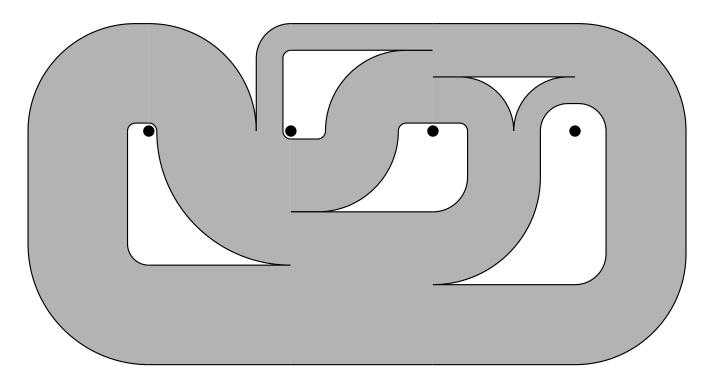


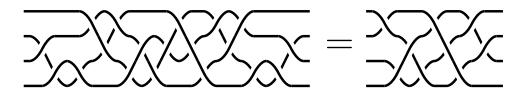




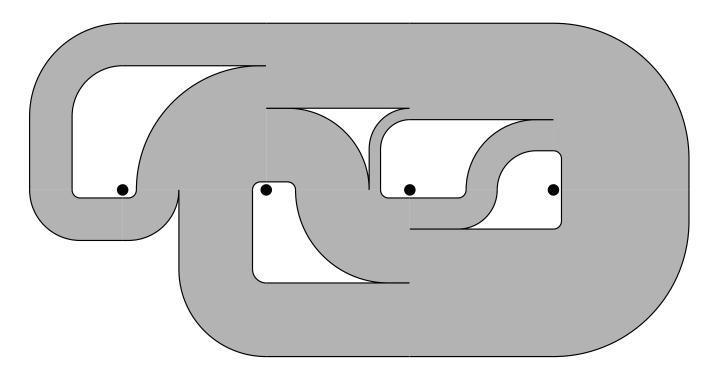


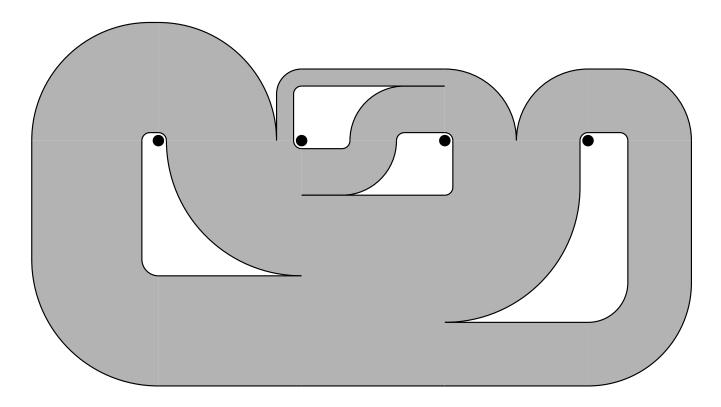


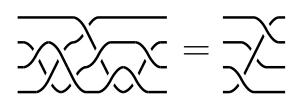


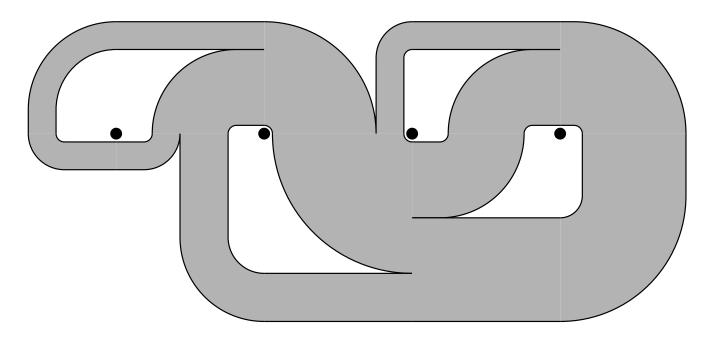


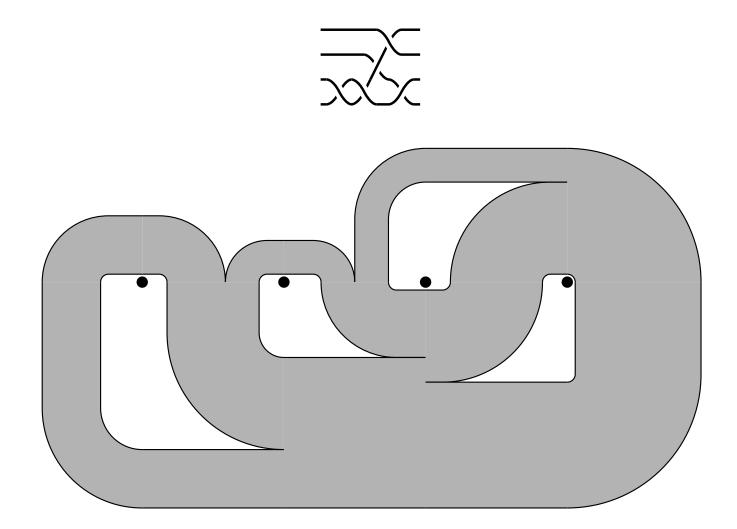


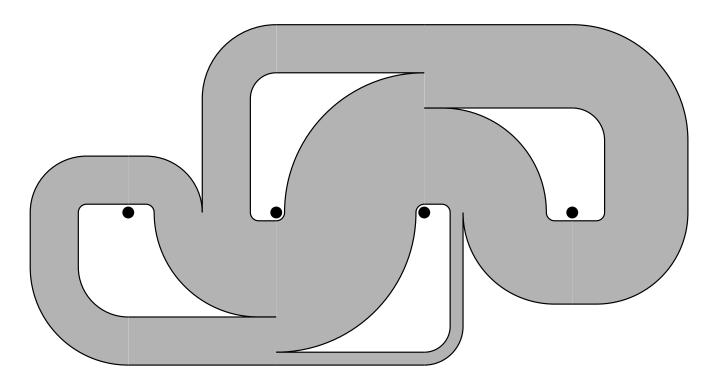


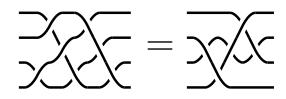


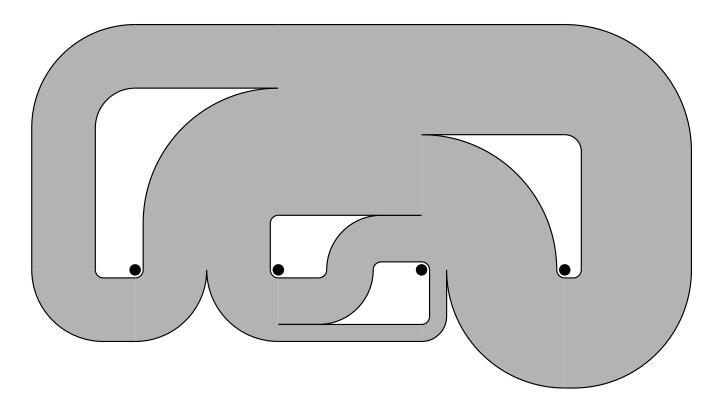


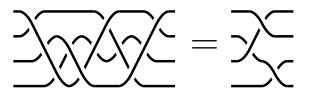


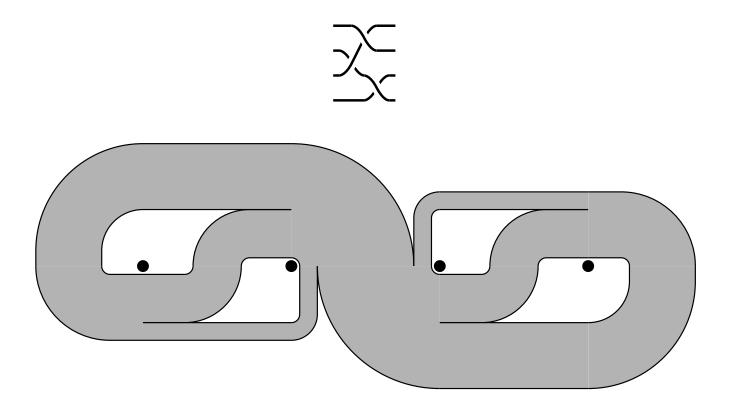


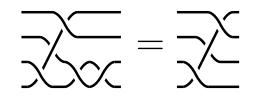












braid	X	Ž								
USS	4	6	36	54	324	486	2916	4374	26244	39366
GSS	2	5	24	24	82	65	192	136	370	245