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Braid group Bn:〈
σ1, . . . , σn−1

∣∣∣ σiσj = σjσi, |i − j| > 1,
σiσi+1σi = σi+1σiσi+1, 1 � i � n − 2

〉



A braid:
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Relations:
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Relations:

=

σiσj σjσi

|i − j| > 1



Relations:

=

σiσi+1σi σi+1σiσi+1



Conjugacy Decision Problem for Bn:
given b1, b2 ∈ Bn decide whether ∃c ∈ Bn s.t. b1 = cb2c

−1

Conjugator Search Problem for Bn:
given b1, b2 ∈ Bn that are conjugate find c ∈ Bn s.t.
b1 = cb2c

−1



Solution:

• F.A.Garside, 1969

Given a braid b, the algorithms computes the Summit Set of the
conjugacy class of b. This is a finite subset of the conjugacy
class. It is (usually) exponentially large in the size of the input.



Improvements:

• W. P. Thurston, 1992 (greedy normal form)

• E. A. El-Rifai and H. R. Morton, 1994 (cycling/decycling,
super summit set)

• J. Birman, K.H. Ko, and S.J. Lee, 1998 (better generating
set)

• N. Franco and J. Gonzales-Meneses, 2001 (minimal simple
conjugations)

• V. Gebhardt, 2003 (ultra summit set)



Conjugacy class

Summit set

SSS

USS

USS ⊂ SSS ⊂ SS ⊂ Conjugacy class



Garside fundamental braid Δn:

The center of Bn is generated by Δ2
n.



Permutation braid: only positive crossings, any two strands cross
at most once.

{permutation braids from Bn} ↔ Sn



For π1, π2 ∈ Sn s.t. |π1| + |π2| = |π1 ◦ π2| we have

bπ1
bπ2

= bπ1π2

· =



Thurston’s left greedy form of a braid:

b = Δkb1b2 . . . bm,

where:

• Δ is the Garside fundamental braid;

• bi are permutation braids;

• k ∈ Z is maximal possible;

• each bi is the maximal left tail of bibi+1 . . . bm.



Cycling:

b = Δk
nb1b2 . . . bm �→ Δk

nb2 . . . bmb′1,
where b′1 = Δk

nb1Δ
−k
n .

Decycling:

b = Δk
nb1b2 . . . bm �→ Δk

nb
′
mb1b2 . . . bm−1,

where b′m = Δ−k
n bmΔk

n.



The algorithm:

• apply cycling/decycling until the braid is in SSS;

• apply cycling until a circuit is detected;

• apply minimal simple conjugations to discover the whole
USS.

SSS

USS



|USS| can be exponentially large. E.g., for bk = σ1σ
2
3 . . . σk

2k−1 ∈
B2k we have

|USS(bk)| = k!.

The reason here is the reducibility of the braids.



Geometric point of view:

Bn
∼= MCG(D2 \ {P1, . . . , Pn}; ∂D2)

Bn/〈Δ2〉 ∼= MCG(S2 \ {P0 = ∞, P1, . . . , Pn})



Nielsen–Thurston trichotomy in braid groups:

• Periodic

• Reduced

• Pseudo-Anosov



Periodic braids = roots of central elements:
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A reduced braid:



Pseudo-Anosov braid: ∃ two invariant mutually transversal mea-
sured foliations F1, F2 (called stable and unstable, respectively)
with isolated singularities on S2 \ {P0, . . . , Pn}, and λ > 1 s.t.

• 1-prong singularities may occur only at the punctures and
P0 = ∞;

• the transversal measure of F2 stretches λ times and that of
F1 shrinks λ times under the action of the braid.

1-prong singularity 3-prong singularity



A pseudo-Anosov braid:

To see how F1 looks like one can pick an arbitrary curve linked
with the punctures:



and apply a large enough power of the braid:



and apply a large enough power of the braid:



and apply a large enough power of the braid:



The “limit point” is equivalent to F1 modulo the following op-
erations:

↔

↔



J.Birman, V.Gebhardt, J.Gonzales-Meneses, 2007: a polynomial
solution for the Conjugator Search problem in the periodic case.

M.Bestvina, M.Handel, 1995: an algorithm for fining the geo-
metrical type of a braid (more generally, of a surface homeomor-
phism). Fast in practice. Not proven to be polynomial.

The most important case is pseudo-Anosov.



A typical braid is pseudo-Anosov, it’s USS consists of just one
or two circuits of length bounded by the length of the braid, and
all braids in the USS are rigid.

J.Birman, V.Gebhardt, J.Gonzáles-Meneses
arXiv:math/math.GT/0605230:
A small (bounded by a polynomial in n) power of a pseudo-
Anosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of
the USS of a pseudo-Anosov rigid braid?



A typical braid is pseudo-Anosov, it’s USS consists of just one
or two circuits of length bounded by the length of the braid, and
all braids in the USS are rigid.

J.Birman, V.Gebhardt, J.Gonzáles-Meneses
arXiv:math/math.GT/0605230:
A small (bounded by a polynomial in n) power of a pseudo-
Anosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of
the USS of a pseudo-Anosov rigid braid?

ANSWER: no.



|USS| = 4



|USS| = 6



|USS| = 36



|USS| = 54



|USS| = 324



|USS| = 486



|USS| = 2916



|USS| = 4374



|USS| = 26244



|USS| = 39366



braid
|USS| 4 6 36 54 324 486 2916 4374 26244 39366

Conjectured formula: (3 + (−1)n−1) · 3n−3

M.Prasolov: |USS| � 2n/2−1 in this case.



Birman–Ko–Lee setup.

Conjectured formula for |USS| of σ1σ
−1
2 . . . σ

(−1)n

n−1 (holds for
small n): {

2n · 3n−3, n odd,
n · 3n−3, n even.

Proven growth for odd n (M.Prasolov): 2(n−1)/2.



Geometric cycling for a pseudo-Anosov braid:

b �→ a−1ba,

where a corresponds to moving the leftmost puncture P1 along
a separatrix of F1 to the leftmost available position on the ray
[P1,∞)





The algorithm:

(∗) apply geometric cycling until finding a circuit;

• apply elementary conjugations to an element from the cir-
cuit;

• repeat (∗) for each of the braid obtained by the elementary
conjutations.



Geometrical summit set contains at most (n − 2) circuits!

More precisely, the number of circuits equals k/q, where:
k is the number of prongs at the infinity;
q is the denominator of the rotation number ρ = p/q with
gcd(p, q) = 1, q > 0. The rotation number of a braid is char-
acterized by the property

Δ2[mρ]−2 < bm < Δ2[mρ]+4,

which holds for any m ∈ Z and Dehornoy’s (more general, any
Thurston type) ordering “<”.
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braid
|USS| 4 6 36 54 324 486 2916 4374 26244 39366
|GSS| 2 5 24 24 82 65 192 136 370 245


