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Braid group B,;:
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Conjugacy Decision Problem for B,;:
given by, by € B,, decide whether 3¢ € B,, s.t. b; = cbyc™!

Conjugator Search Problem for B,,:
given by, by € B, that are conjugate find ¢ € B,, s.t.
b = CbQC_l



Solution:
e F.A.Garside, 1969

Given a braid b, the algorithms computes the Summit Set of the
conjugacy class of b. This is a finite subset of the conjugacy
class. It is (usually) exponentially large in the size of the input.



Improvements:

e W. P. Thurston, 1992 (greedy normal form)
e E. A. El-Rifai and H. R. Morton, 1994 (cycling/decycling,

super summit set)

e J. Birman, K.H. Ko, and S.J. Lee, 1998 (better generating
set)

e N. Franco and J. Gonzales-Meneses, 2001 (minimal simple
conjugations)

e V. Gebhardt, 2003 (ultra summit set)
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USS C SSS € SS C Conjugacy class



Garside fundamental braid A,;:

The center of B, is generated by AZ.



Permutation braid: only positive crossings, any two strands cross
at most once.
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For 1, mo € S, s.t. |my| + |ma| = |m o | we have
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Thurston's left greedy form of a braid:

b= A"bby. .. by,

where:

e A is the Garside fundamental braid:
e b; are permutation braids;

e k € Z is maximal possible;

e ecach b; is the maximal left tail of 6,0, . ..



Cycling:

where b, = A¥hAF

Decycling:

b — A,ﬁblbg “ . bm — A,ﬁb;nblbg “ . bm—l;
where b/ = A~Fp, AF.



The algorithm:
e apply cycling/decycling until the braid is in SSS;

e apply cycling until a circuit is detected;

e apply to discover the whole




IUSS| can be exponentially large. E.g., for b, = o107 ..

B> we have

USS(by)| = K.
XOOCC

—XXX

XX

~

The reason here is the reducibility of the braids.
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Nielsen—T hurston trichotomy in braid groups:

e Periodic
e Reduced

e Pseudo-Anosov



Periodic braids = roots of central elements:
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A reduced braid:




Pseudo-Anosov braid: d two invariant mutually transversal mea-
sured foliations F7, > (called stable and unstable, respectively)
with isolated singularities on S*\ {P,..., P}, and A > 1 s.t.

e 1-prong singularities may occur only at the punctures and
By = oo;

e the transversal measure of F> stretches \ times and that of
JF7 shrinks A times under the action of the braid.
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1-prong singularity 3-prong singularity



A pseudo-Anosov braid:

XS

To see how F; looks like one can pick an arbitrary curve linked
with the punctures:




and apply a large enough power of the braid:
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erations:



J.Birman, V.Gebhardt, J.Gonzales-Meneses, 2007: a polynomial
solution for the Conjugator Search problem in the periodic case.

M.Bestvina, M.Handel, 1995: an algorithm for fining the geo-
metrical type of a braid (more generally, of a surface homeomor-
phism). Fast in practice. Not proven to be polynomial.

The most important case is pseudo-Anosov.



A typical braid is pseudo-Anosov, it's USS consists of just one
or two circuits of length bounded by the length of the braid, and

all braids in the USS are rigid.

J.Birman, V.Gebhardt, J.Gonzales-Meneses

arXiv:math /math.GT /0605230:

A small (bounded by a polynomial in n) power of a pseudo-
Anosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of
the USS of a pseudo-Anosov rigid braid?



A typical braid is pseudo-Anosov, it's USS consists of just one
or two circuits of length bounded by the length of the braid, and

all braids in the USS are rigid.

J.Birman, V.Gebhardt, J.Gonzales-Meneses

arXiv:math /math.GT /0605230:

A small (bounded by a polynomial in n) power of a pseudo-
Anosov braid has USS consisting of rigid elements.

QUESTION: is there a polynomial upper bound on the size of
the USS of a pseudo-Anosov rigid braid?

ANSWER: no.
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USS| = 39366
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[USS[[4 6 36 54 324 486 2016 4374 26244

Conjectured formula: (3 + (—1)*"1). 3"

M.Prasolov: |USS| > 27?71 in this case.

39366



Birman—Ko—Lee setup.

Conjectured formula for |USS| of (7102_1...(772__”” (holds for

small n):
{ 2n - 3", n odd,

n -3 n even.

Proven growth for odd n (M.Prasolov): 2"=1/2



Geometric cycling for a pseudo-Anosov braid:
b— a ha,

where a corresponds to moving the leftmost puncture P; along
a separatrix of F; to the leftmost available position on the ray
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The algorithm:
(*) apply geometric cycling until finding a circuit;

e apply elementary conjugations to an element from the cir-
cuit;

e repeat () for each of the braid obtained by the elementary
conjutations.




Geometrical summit set contains at most (n — 2) circuits!

More precisely, the number of circuits equals k/q, where:

k is the number of prongs at the infinity;

q is the denominator of the rotation number p = p/q with
gcd(p,q) = 1, ¢ > 0. The rotation number of a braid is char-

acterized by the property
AQ[mp]—Q < " < AQ[mp]%—ZL’

which holds for any m € Z and Dehornoy's (more general, any
Thurston type) ordering “<".
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USS]

4 6 36 54 324 4386 2916 4374 26244

39366
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