Free subgroups of lattices

Lewis Bowen

Group Theory International Webinar May 2010

Lewis Bowen (Texas A&M)

Given a lattice Γ in a locally compact unimodular group *G*, prove the existence of subgroups of Γ satisfying prescribed conditions.

Let F < G be a subgroup. Can we change F slightly so that the new subgroup F' < G satisfies:

Let F < G be a subgroup. Can we change F slightly so that the new subgroup F' < G satisfies:

• the isomorphism type of F' is close to that of F,

Let F < G be a subgroup. Can we change F slightly so that the new subgroup F' < G satisfies:

- the isomorphism type of F' is close to that of F,
- large-scale properties of F' < G are close to large-scale properties of F < G,

Let F < G be a subgroup. Can we change F slightly so that the new subgroup F' < G satisfies:

• the isomorphism type of F' is close to that of F,

 large-scale properties of F' < G are close to large-scale properties of F < G,

• *F*′ < Γ?

Example

Let
$$G = \mathbb{R}$$
, $\Gamma = \mathbb{Z}$, $F = \langle \tau \rangle$.

Example

Let
$$G = \mathbb{R}$$
, $\Gamma = \mathbb{Z}$, $F = \langle \tau \rangle$.

After a small algebraic deformation of F, we may assume τ is rational.

Example

Let
$$G = \mathbb{R}$$
, $\Gamma = \mathbb{Z}$, $F = \langle \tau \rangle$.

After a small algebraic deformation of F, we may assume τ is rational.

Then, a finite-index subgroup of F lies in Γ .

Let F be an abstract group,

- Let F be an abstract group,
- $S \subset F$ a finite generating set,

- Let F be an abstract group,
- $S \subset F$ a finite generating set,

 $\epsilon > 0$,

- Let F be an abstract group,
- $\mathcal{S} \subset \mathcal{F}$ a finite generating set,

 $\epsilon > 0$,

 $\phi: \mathbf{F} \rightarrow \mathbf{G}$, a homomorphism.

Let F be an abstract group,

 $S \subset F$ a finite generating set,

 $\epsilon > 0$,

 $\phi: \mathbf{F} \rightarrow \mathbf{G}$, a homomorphism.

 $\phi_{\epsilon}: F \to G$ is an ϵ -perturbation of ϕ if for any sequence $s_1, \ldots, s_n \in S \cup S^{-1}$, there exist elements $s'_i \in G$ such that

 $d(\phi(s_i), s'_i) < \epsilon,$

$$\phi_{\epsilon}(\boldsymbol{s}_{1}\cdots\boldsymbol{s}_{i})=\boldsymbol{s}_{1}^{\prime}\cdots\boldsymbol{s}_{i}^{\prime}$$

for all *i*. It is *not* required to be a homomorphism.

Let F be an abstract group,

 $S \subset F$ a finite generating set,

 $\epsilon > 0$,

 $\phi: \mathbf{F} \rightarrow \mathbf{G}$, a homomorphism.

 $\phi_{\epsilon}: F \to G$ is an ϵ -perturbation of ϕ if for any sequence $s_1, \ldots, s_n \in S \cup S^{-1}$, there exist elements $s'_i \in G$ such that

 $egin{aligned} & d(\phi(m{s}_i),m{s}_i')<\epsilon, \ & \phi_\epsilon(m{s}_1\cdotsm{s}_i)=m{s}_1'\cdotsm{s}_i' \end{aligned}$

for all *i*. It is *not* required to be a homomorphism.

Equivalently, $\forall s \in S \cup S^{-1}, f \in F$,

 $d(\phi_{\epsilon}(fs), \phi_{\epsilon}(f)\phi(s)) < \epsilon.$

 $\phi_{\epsilon}: F \to G$ is *virtually a homomorphism* into $\Gamma < G$ if \exists a finite index subgroup F' < F such that

$$\phi_{\epsilon}(f_{1})\phi_{\epsilon}(f_{2}) = \phi_{\epsilon}(f_{1}f_{2}) \; \forall f_{1} \in F', f_{2} \in F$$

and $\phi_{\epsilon}(F') < \Gamma$.

Let G be a locally compact unimodular group,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

Let G be a locally compact unimodular group,

- $\Gamma < G$, a cocompact discrete subgroup,
- d, a left-invariant proper metric on G,
- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $S = \{s_1, ..., s_r\},\$

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $S=\{s_1,...,s_r\},$
- $\phi: \textit{\textbf{F}} \rightarrow \textit{\textbf{G}}$ a homomorphism,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $\boldsymbol{S} = \{\boldsymbol{s}_1,...,\boldsymbol{s}_r\},$
- $\phi: \textit{\textbf{F}} \rightarrow \textit{\textbf{G}}$ a homomorphism,

 $\epsilon > 0.$

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $\boldsymbol{S} = \{\boldsymbol{s}_1,...,\boldsymbol{s}_r\},$
- $\phi: \mathbf{F} \rightarrow \mathbf{G}$ a homomorphism,

 $\epsilon > 0.$

Conclusion: there exists an ϵ -perturbation of ϕ that is virtually a homomorphism into Γ .

Lewis Bowen (Texas A&M)

Let X be a proper Gromov hyperbolic space,

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

G = Isom(X),

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

G = Isom(X),

H be a group with finite generating set S,

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

G = Isom(X),

H be a group with finite generating set S,

 $\phi: H \rightarrow G$ be a homomorphism,

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

G = Isom(X),

H be a group with finite generating set S,

 $\phi: H \rightarrow G$ be a homomorphism,

 $\phi_{\epsilon}: H \rightarrow G$ an ϵ -perturbation of ϕ ,

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

G = Isom(X),

H be a group with finite generating set S,

 $\phi: H \rightarrow G$ be a homomorphism,

 $\phi_{\epsilon}: H \rightarrow G$ an ϵ -perturbation of ϕ ,

 $L(\phi) = \overline{\phi(H)x} \cap \partial X, (\forall x \in X)$

Let X be a proper Gromov hyperbolic space,

 ∂X be its boundary,

G = Isom(X),

H be a group with finite generating set S,

 $\phi: H \rightarrow G$ be a homomorphism,

 $\phi_{\epsilon}: H \rightarrow G$ an ϵ -perturbation of ϕ ,

$$L(\phi) = \overline{\phi(H)x} \cap \partial X, (\forall x \in X)$$

$$L(\phi_{\epsilon}) = \overline{\phi_{\epsilon}(H)x} \cap \partial X \ (\forall x \in X).$$

Asymptotic Geometry Theorem

• For all $\epsilon > 0$ sufficiently small, $\phi_{\epsilon} : H \rightarrow G$ is injective.

Asymptotic Geometry Theorem

- For all $\epsilon > 0$ sufficiently small, $\phi_{\epsilon} : H \rightarrow G$ is injective.
- If $\phi_{\epsilon}(id) = id$ then $\lim_{\epsilon \to 0} L(\phi_{\epsilon}) = L(\phi)$.

Asymptotic Geometry Theorem

- For all $\epsilon > 0$ sufficiently small, $\phi_{\epsilon} : H \rightarrow G$ is injective.
- If $\phi_{\epsilon}(id) = id$ then $\lim_{\epsilon \to 0} L(\phi_{\epsilon}) = L(\phi)$.
- If φ_ε is a virtual homomorphism then lim_{ε→0} H.dim L(φ_ε) = H.dim L(φ) as ε → 0.

H. Dimensions of Limit Sets of Free Subgroups

For $\Lambda < G$, let $D_{free}(\Lambda) = \{d \ge 0 : \exists$ quasi-convex cocompact free subgroup $F < \Lambda$ with $H.dim L(F) = d\}$.

H. Dimensions of Limit Sets of Free Subgroups

For $\Lambda < G$, let $D_{free}(\Lambda) = \{d \ge 0 : \exists$ quasi-convex cocompact free subgroup $F < \Lambda$ with $H.dim L(F) = d\}$.

Theorem

If $\Gamma < G$ is a uniform lattice, then $\overline{D_{free}(G)} = \overline{D_{free}(\Gamma)}$.

H. Dimensions of Limit Sets of Free Subgroups

For $\Lambda < G$, let $D_{free}(\Lambda) = \{d \ge 0 : \exists$ quasi-convex cocompact free subgroup $F < \Lambda$ with $H.dim L(F) = d\}$.

Theorem

If $\Gamma < G$ is a uniform lattice, then $\overline{D_{free}(G)} = \overline{D_{free}(\Gamma)}$.

Remark

If $G = Isom(\mathbb{H}^n)$ for n = 2 or 3 then $\overline{D_{free}(G)} = [0, n-1]$. No nontrivial bounds are known for $n \ge 4$.

The Cheeger Constant

Given a closed Riemannian manifold *M*,

$$h(M) := \inf_{S} \frac{area(S)}{\min(vol(X_1), vol(X_2))}.$$

The Cheeger Constant

Given a closed Riemannian manifold *M*,

$$h(M) := \inf_{S} \frac{area(S)}{\min(vol(X_1), vol(X_2))}.$$

If *M* is noncompact then

$$h(M) := \inf_{X} \frac{area(\partial X)}{vol(X)}.$$

The Cheeger Constant

Given a closed Riemannian manifold *M*,

$$h(M) := \inf_{S} \frac{area(S)}{\min(vol(X_1), vol(X_2))}.$$

If *M* is noncompact then

$$h(M) := \inf_X \frac{area(\partial X)}{vol(X)}.$$

Theorem (Lackenby, Long, Reid)

If M is a closed hyperbolic 3-manifold then there exists a sequence of infinite-sheeted coverings M_i of M such that $h(M_i) \rightarrow 0$.

Lewis Bowen (Texas A&M)

A group Γ is *LERF* \iff \forall finitely generated subgroup $H < \Gamma$, $\bigcap \left\{ \Gamma' \mid H < \Gamma', \ [\Gamma : \Gamma'] < \infty \right\} = H.$

A group Γ is *LERF* \iff \forall finitely generated subgroup $H < \Gamma$, $\bigcap \left\{ \Gamma' \mid H < \Gamma', \ [\Gamma : \Gamma'] < \infty \right\} = H.$

Theorem (Lackenby, Long, Reid)

If M is a closed hyperbolic 3-manifold and $\pi_1(M)$ is LERF then there exists a sequence of finite coverings M_i of M such that $h(M_i) \rightarrow 0$.

A group Γ is *LERF* \iff \forall finitely generated subgroup $H < \Gamma$, $\bigcap \left\{ \Gamma' \mid H < \Gamma', \ [\Gamma : \Gamma'] < \infty \right\} = H.$

Theorem (Lackenby, Long, Reid)

If *M* is a closed hyperbolic 3-manifold and $\pi_1(M)$ is LERF then there exists a sequence of finite coverings M_i of *M* such that $h(M_i) \rightarrow 0$. I.e., $\pi_1(M)$ does not have property τ .

A group Γ is *LERF* \iff \forall finitely generated subgroup $H < \Gamma$, $\bigcap \left\{ \Gamma' \mid H < \Gamma', \ [\Gamma : \Gamma'] < \infty \right\} = H.$

Theorem (Lackenby, Long, Reid)

If *M* is a closed hyperbolic 3-manifold and $\pi_1(M)$ is LERF then there exists a sequence of finite coverings M_i of *M* such that $h(M_i) \rightarrow 0$. I.e., $\pi_1(M)$ does not have property τ . I.e., the Lubotzky-Sarnak conjecture holds for $\pi_1(M)$.

Surface Subgroups

Theorem (Lackenby)

If $\Gamma < SO(3, 1)$ is discrete, finitely generated and contains a noncyclic finite subgroup then either Γ is finite, Γ is virtually free or Γ contains a surface subgroup.

Let G be a locally compact unimodular group,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

Let G be a locally compact unimodular group,

- $\Gamma < G$, a cocompact discrete subgroup,
- d, a left-invariant proper metric on G,
- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $S = \{s_1, ..., s_r\},\$

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $\boldsymbol{S} = \{\boldsymbol{s}_1,...,\boldsymbol{s}_r\},$
- $\phi: \textit{\textbf{F}} \rightarrow \textit{\textbf{G}}$ a homomorphism,

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $\boldsymbol{S} = \{\boldsymbol{s}_1,...,\boldsymbol{s}_r\},$
- $\phi: \textit{\textbf{F}} \rightarrow \textit{\textbf{G}}$ a homomorphism,

 $\epsilon > 0.$

Let G be a locally compact unimodular group,

 $\Gamma < G$, a cocompact discrete subgroup,

d, a left-invariant proper metric on G,

- $\textit{F} = \langle \textit{s}_1, ..., \textit{s}_r \rangle$ a finitely generated free group,
- $\boldsymbol{S} = \{\boldsymbol{s}_1,...,\boldsymbol{s}_r\},$
- $\phi: \mathbf{F} \rightarrow \mathbf{G}$ a homomorphism,

 $\epsilon > 0.$

Conclusion: there exists an ϵ -perturbation of ϕ that is virtually a homomorphism into Γ .

Lewis Bowen (Texas A&M)

F acts on $\Gamma \setminus G$

F acts on $\Gamma \setminus G$

If this action has a periodic point, then there is some $g \in G$ such that $gFg^{-1} \cap \Gamma$ has finite index in gFg^{-1} . Then we're done.

F acts on $\Gamma \setminus G$

If this action has a periodic point, then there is some $g \in G$ such that $gFg^{-1} \cap \Gamma$ has finite index in gFg^{-1} . Then we're done.

Embed the dynamical system $F \curvearrowright \Gamma \setminus G$ into a symbolic dynamical system over F.

F acts on $\Gamma \setminus G$

If this action has a periodic point, then there is some $g \in G$ such that $gFg^{-1} \cap \Gamma$ has finite index in gFg^{-1} . Then we're done.

Embed the dynamical system $F \curvearrowright \Gamma \setminus G$ into a symbolic dynamical system over F.

The new system has a periodic point.

F acts on $\Gamma \setminus G$

If this action has a periodic point, then there is some $g \in G$ such that $gFg^{-1} \cap \Gamma$ has finite index in gFg^{-1} . Then we're done.

Embed the dynamical system $F \curvearrowright \Gamma \setminus G$ into a symbolic dynamical system over F.

The new system has a periodic point.

The periodic point corresponds to the ϵ -perturbation that we need.

Let *K* be a finite set.

Let *K* be a finite set.

 K^F is the set of all functions $x : F \to K$. It is the *full shift*.

Let *K* be a finite set.

 K^F is the set of all functions $x : F \to K$. It is the *full shift*.

An element $x \in K^F$ is a *treequence*.

Let *K* be a finite set.

 K^F is the set of all functions $x : F \to K$. It is the *full shift*.

An element $x \in K^F$ is a *treequence*.

The *shift map* of $f \in F$ is the homeomorphism $\sigma_f : K^F \to K^F$ defined by

$$\sigma_f x(g) = x(f^{-1}g).$$

Finite-Type Constraints

Let \mathcal{G} be a finite graph with vertex set K.

Finite-Type Constraints

Let \mathcal{G} be a finite graph with vertex set K.

Assume every edge of \mathcal{G} is directed with labels in S.

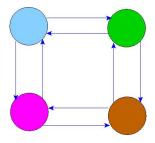
Finite-Type Constraints

Let \mathcal{G} be a finite graph with vertex set K.

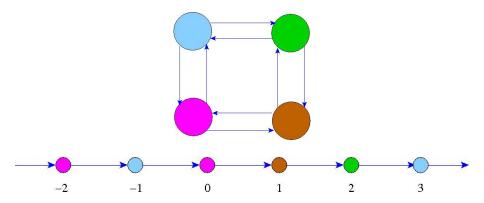
Assume every edge of \mathcal{G} is directed with labels in S.

 \mathcal{G} is a *constraint graph*.

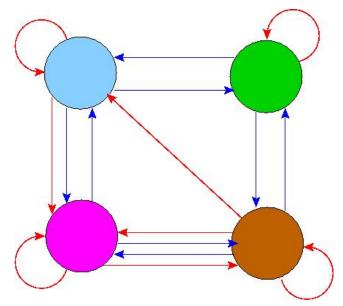
A constraint graph for $F = \mathbb{Z}$

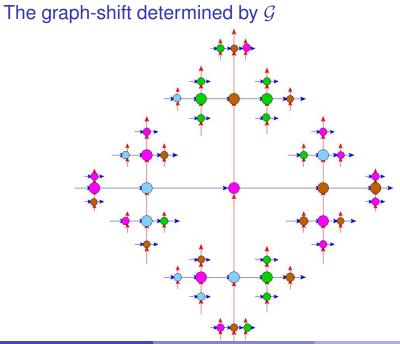


A constraint graph for $F = \mathbb{Z}$



A constraint graph for $F = \mathbb{F}_2$





Lewis Bowen (Texas A&M)

The graph-shift determined by ${\mathcal G}$

Let $X = \{x \in K^F \mid \forall g \in F, s \in S, \text{ if } x(g) = i \text{ and } x(gs) = j \text{ then } \exists \text{ an edge in } \mathcal{G} \text{ from } i \text{ to } j \text{ labeled } s\}.$

Problem: When does a graph-shift X contain a periodic point?

Problem: When does a graph-shift *X* contain a periodic point? If $X \subset K^{\mathbb{Z}}$ is a nonempty graph-shift then it contains a periodic point.

Problem: When does a graph-shift X contain a periodic point?

If $X \subset K^{\mathbb{Z}}$ is a nonempty graph-shift then it contains a periodic point.

If *F* is a nonabelian free group then there exist nonempty graph-shifts $X \subset K^F$ (for |K| > 2) that have no periodic points.

Problem: When does a graph-shift X contain a periodic point?

If $X \subset K^{\mathbb{Z}}$ is a nonempty graph-shift then it contains a periodic point.

If *F* is a nonabelian free group then there exist nonempty graph-shifts $X \subset K^F$ (for |K| > 2) that have no periodic points.

Lemma (Key Lemma)

Let $X \subset K^F$ be a subshift of finite type. If \exists a shift-invariant Borel probability measure on X then \exists a periodic point in X. Indeed, invariant measures supported on periodic points are dense in the space of all invariant measures on X.

Proof of main theorem given key lemma

Let $\delta > 0$ be such that $\forall g_1, g_2 \in G$ with $d(g_1, id), d(g_2, id) < \delta$ and $\forall s \in S \cup S^{-1}$,

 $d(g_1\phi(s)g_2,\phi(s)) < \epsilon.$

Proof of main theorem given key lemma

Let $\delta > 0$ be such that $\forall g_1, g_2 \in G$ with $d(g_1, id), d(g_2, id) < \delta$ and $\forall s \in S \cup S^{-1}, d(g_1\phi(s)g_2, \phi(s)) < \epsilon.$

Let A_1, \ldots, A_n be a Borel partition of $\Gamma \setminus G$ into sets of diameter $< \delta$.

Proof of main theorem given key lemma

Let $\delta > 0$ be such that $\forall g_1, g_2 \in G$ with $d(g_1, id), d(g_2, id) < \delta$ and $\forall s \in S \cup S^{-1}, d(g_1\phi(s)g_2, \phi(s)) < \epsilon.$

Let A_1, \ldots, A_n be a Borel partition of $\Gamma \setminus G$ into sets of diameter $< \delta$.

Choose $a_i \in A_i$. Assume $a_1 = \Gamma$, the identity coset.

 $V(\mathcal{G})=K=\{a_1,\ldots,a_n\}.$

$$V(\mathcal{G})=K=\{a_1,\ldots,a_n\}.$$

 $\forall a_i, a_j \in V(\mathcal{G}), \forall s \in S, \exists an s-labeled edge e = (a_i, a_j; s)$ from a_i to a_j iff $\exists a'_i \in A_i, a'_j \in A_j$ such that $a'_i \phi(s) = a'_i$.

$$V(\mathcal{G})=K=\{a_1,\ldots,a_n\}.$$

 $\forall a_i, a_j \in V(\mathcal{G}), \forall s \in S, \exists an s-labeled edge e = (a_i, a_j; s)$ from a_i to a_j iff $\exists a'_i \in A_i, a'_j \in A_j$ such that $a'_i \phi(s) = a'_j$.

Extra data: let $g_i, g_j \in G$ be such that $a_ig_i = a'_i, a_jg_j = a'_j$ and $d(g_i, id), d(g_j, id) < \delta$.

$$V(\mathcal{G})=K=\{a_1,\ldots,a_n\}.$$

 $\forall a_i, a_j \in V(\mathcal{G}), \forall s \in S, \exists an s-labeled edge e = (a_i, a_j; s)$ from a_i to a_j iff $\exists a'_i \in A_i, a'_j \in A_j$ such that $a'_i \phi(s) = a'_j$.

Extra data: let $g_i, g_j \in G$ be such that $a_i g_i = a'_i, a_j g_j = a'_j$ and $d(g_i, id), d(g_j, id) < \delta$.

Define $\psi(e) = g_i \phi(s) g_j^{-1}$.

$$V(\mathcal{G})=K=\{a_1,\ldots,a_n\}.$$

 $\forall a_i, a_j \in V(\mathcal{G}), \forall s \in S, \exists an s-labeled edge e = (a_i, a_j; s)$ from a_i to a_j iff $\exists a'_i \in A_i, a'_j \in A_j$ such that $a'_i \phi(s) = a'_j$.

Extra data: let $g_i, g_j \in G$ be such that $a_ig_i = a'_i, a_jg_j = a'_j$ and $d(g_i, id), d(g_j, id) < \delta$.

Define $\psi(e) = g_i \phi(s) g_j^{-1}$.

Note $a_i\psi(e) = a_j$ and $d(\psi(e), \phi(s)) < \epsilon$.

The subshift of finite type

Let *X* be the subshift of finite type determined by \mathcal{G} .

The subshift of finite type

Let X be the subshift of finite type determined by \mathcal{G} .

For $x \in X$ and $f \in F$, define $\phi_x(f) = \psi_x(e_1) \cdots \psi_x(e_n)$ where $e_1, \ldots e_n$ is the unique path in the Cayley graph of *F* from *id* to *f*.

The subshift of finite type

Let X be the subshift of finite type determined by \mathcal{G} .

For $x \in X$ and $f \in F$, define $\phi_x(f) = \psi_x(e_1) \cdots \psi_x(e_n)$ where $e_1, \ldots e_n$ is the unique path in the Cayley graph of *F* from *id* to *f*.

 $\phi_{\mathbf{X}}$ is an ϵ -perturbation of ϕ .

Define $B: \Gamma \setminus G \to X \subset K^F$ by $B(\Gamma g)(f) = a_i$ if $\Gamma g \phi(f) \in A_i$.

Define $B : \Gamma \setminus G \to X \subset K^F$ by $B(\Gamma g)(f) = a_i$ if $\Gamma g \phi(f) \in A_i$.

B is equivariant.

Define $B : \Gamma \setminus G \to X \subset K^F$ by $B(\Gamma g)(f) = a_i$ if $\Gamma g \phi(f) \in A_i$.

B is equivariant.

 $B_*(Haar)$ is a shift-invariant Borel probability measure on K^F .

Define $B : \Gamma \setminus G \to X \subset K^F$ by $B(\Gamma g)(f) = a_i$ if $\Gamma g \phi(f) \in A_i$.

B is equivariant.

 $B_*(Haar)$ is a shift-invariant Borel probability measure on K^F .

 \exists a periodic treequence $x \in X$ with $x(id) = a_1 = \Gamma$.

Define $B : \Gamma \setminus G \to X \subset K^F$ by $B(\Gamma g)(f) = a_i$ if $\Gamma g \phi(f) \in A_i$.

B is equivariant.

 $B_*(Haar)$ is a shift-invariant Borel probability measure on K^F .

 \exists a periodic treequence $x \in X$ with $x(id) = a_1 = \Gamma$.

 $φ_x$ is virtually a homomorphism into Γ.

Problem: When does a graph-shift X contain a periodic point?

Problem: When does a graph-shift *X* contain a periodic point? If $X \subset K^{\mathbb{Z}}$ is a nonempty graph-shift then it contains a periodic point.

Problem: When does a graph-shift X contain a periodic point?

If $X \subset K^{\mathbb{Z}}$ is a nonempty graph-shift then it contains a periodic point.

If *F* is a nonabelian free group then there exist nonempty graph-shifts $X \subset K^F$ (for |K| > 2) that have no periodic points.

Problem: When does a graph-shift X contain a periodic point?

If $X \subset K^{\mathbb{Z}}$ is a nonempty graph-shift then it contains a periodic point.

If *F* is a nonabelian free group then there exist nonempty graph-shifts $X \subset K^F$ (for |K| > 2) that have no periodic points.

Lemma (Key Lemma)

Let $X \subset K^F$ be a subshift of finite type. If \exists a shift-invariant Borel probability measure on X then \exists a periodic point in X. Indeed, invariant measures supported on periodic points are dense in the space of all invariant measures on X.

From periodic points to finite graphs

Let $X \subset K^F$ be the subshift of finite type determined by the constraint graph \mathcal{G} .

From periodic points to finite graphs

Let $X \subset K^F$ be the subshift of finite type determined by the constraint graph \mathcal{G} .

A periodic point $x \in K^F$ corresponds to a finite labeled graph (the Schreier coset graph of Stab(x)).

From periodic points to finite graphs

Let $X \subset K^F$ be the subshift of finite type determined by the constraint graph \mathcal{G} .

A periodic point $x \in K^F$ corresponds to a finite labeled graph (the Schreier coset graph of Stab(x)).

Conversely, a finite appropriately labeled graph corresponds to a periodic point.

An edge $e \in E(G)$ is denoted e = (v, w; s) if it goes from v to $w \in V(G)$ and is labeled $s \in S$.

An edge $e \in E(G)$ is denoted e = (v, w; s) if it goes from v to $w \in V(G)$ and is labeled $s \in S$.

A *weight* on \mathcal{G} is a function $W : V(\mathcal{G}) \cup E(\mathcal{G}) \rightarrow [0, \infty)$ such that

An edge $e \in E(G)$ is denoted e = (v, w; s) if it goes from v to $w \in V(G)$ and is labeled $s \in S$.

A *weight* on \mathcal{G} is a function $W : V(\mathcal{G}) \cup E(\mathcal{G}) \rightarrow [0, \infty)$ such that

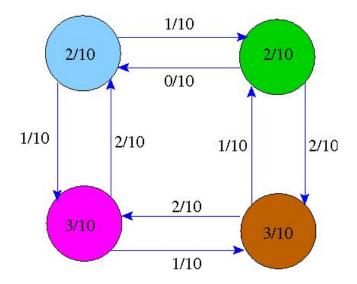
$$\forall v \in V(\mathcal{G}), s \in S \quad \sum_{w \in V(\mathcal{G})} W(v, w; s) = W(v)$$

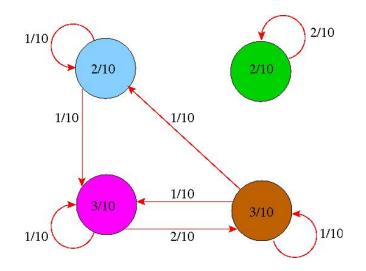
An edge $e \in E(G)$ is denoted e = (v, w; s) if it goes from v to $w \in V(G)$ and is labeled $s \in S$.

A *weight* on \mathcal{G} is a function $W : V(\mathcal{G}) \cup E(\mathcal{G}) \rightarrow [0, \infty)$ such that

$$orall oldsymbol{v} \in oldsymbol{V}(\mathcal{G}), oldsymbol{s} \in oldsymbol{S} \quad \sum_{oldsymbol{w} \in oldsymbol{V}(\mathcal{G})}oldsymbol{W}(oldsymbol{v},oldsymbol{w};oldsymbol{s}) = oldsymbol{W}(oldsymbol{v})$$

$$\forall w \in V(\mathcal{G}), s \in S \quad \sum_{v \in V(\mathcal{G})} W(v, w; s) = W(w).$$





Existence of Integral Weights

If there exists a shift-invariant measure μ on X then there exists a weight on \mathcal{G} :

Existence of Integral Weights

If there exists a shift-invariant measure μ on X then there exists a weight on \mathcal{G} :

$$W_{\mu}(\mathbf{v}) := \mu(\{\mathbf{x} \in \mathbf{X} : \mathbf{x}(\mathbf{e}) = \mathbf{v}\}),$$

Existence of Integral Weights

If there exists a shift-invariant measure μ on X then there exists a weight on \mathcal{G} :

$$W_{\mu}(\mathbf{v}) := \mu(\{\mathbf{x} \in \mathbf{X} : \mathbf{x}(\mathbf{e}) = \mathbf{v}\}),$$

$$W_{\mu}(\mathbf{v},\mathbf{w};\mathbf{s}) := \mu(\{\mathbf{x}\in X : \mathbf{x}(\mathbf{e}) = \mathbf{v}, \mathbf{x}(\mathbf{s}) = \mathbf{w}\}).$$

Existence of Integral Weights

If there exists a shift-invariant measure μ on X then there exists a weight on \mathcal{G} :

$$W_{\mu}(\mathbf{v}) := \mu(\{\mathbf{x} \in \mathbf{X} : \mathbf{x}(\mathbf{e}) = \mathbf{v}\}),$$

$$W_{\mu}(\mathbf{v},\mathbf{w};\mathbf{s}) := \mu(\{\mathbf{x}\in X : \mathbf{x}(\mathbf{e}) = \mathbf{v}, \mathbf{x}(\mathbf{s}) = \mathbf{w}\}).$$

If there exists a weight on \mathcal{G} then there exists a nonzero integral weight on \mathcal{G} .

Existence of Integral Weights

If there exists a shift-invariant measure μ on X then there exists a weight on \mathcal{G} :

$$W_{\mu}(\mathbf{v}) := \mu(\{\mathbf{x} \in \mathbf{X} : \mathbf{x}(\mathbf{e}) = \mathbf{v}\}),$$

$$W_{\mu}(\mathbf{v},\mathbf{w};\mathbf{s}) := \mu(\{\mathbf{x}\in X : \mathbf{x}(\mathbf{e}) = \mathbf{v}, \mathbf{x}(\mathbf{s}) = \mathbf{w}\}).$$

If there exists a weight on \mathcal{G} then there exists a nonzero integral weight on \mathcal{G} .

Weights and graphs

Given a finite graph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{G}))$ with a label-preserving graph homomorphism $\phi : \mathcal{H} \to \mathcal{G}$ we define a weight

Weights and graphs

Given a finite graph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{G}))$ with a label-preserving graph homomorphism $\phi : \mathcal{H} \to \mathcal{G}$ we define a weight

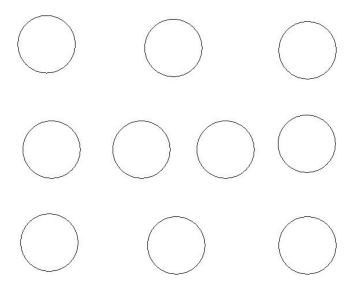
$$W_{\mathcal{H}}(\mathbf{v}) := |\phi^{-1}(\mathbf{v})|, \quad W_{\mathcal{H}}(\mathbf{v}, \mathbf{w}; \mathbf{s}) := |\phi^{-1}(\mathbf{v}, \mathbf{w}; \mathbf{s})|.$$

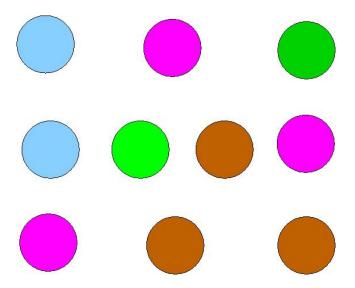
Weights and graphs

Given a finite graph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{G}))$ with a label-preserving graph homomorphism $\phi : \mathcal{H} \to \mathcal{G}$ we define a weight

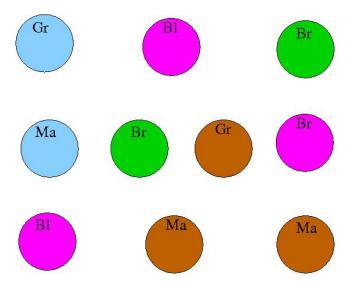
$$W_{\mathcal{H}}(\mathbf{v}) := |\phi^{-1}(\mathbf{v})|, \quad W_{\mathcal{H}}(\mathbf{v}, \mathbf{w}; \mathbf{s}) := |\phi^{-1}(\mathbf{v}, \mathbf{w}; \mathbf{s})|.$$

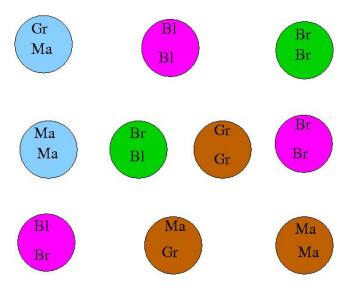
Conversely, from a nonzero integral *W* there exists a finite graph \mathcal{H} (with universal cover the Cayley graph of *F*) with $W_{\mathcal{H}} = W$.

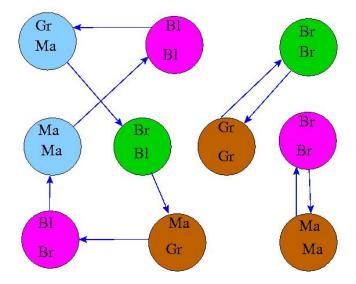












• $\forall v \in V(G)$, let \mathcal{H}_v be a set with W(v) elements.

• $\forall v \in V(G)$, let \mathcal{H}_v be a set with W(v) elements.

• For $s \in S$, let

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For $s \in S$, let
- $\{\mathcal{H}_{\nu,w}^s : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{ν} s.t. $|\mathcal{H}_{\nu,w}^s| = W(\nu, w; s)$,

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For $s \in S$, let
- $\{\mathcal{H}_{v,w}^{s} : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{v} s.t. $|\mathcal{H}_{v,w}^{s}| = W(v, w; s)$,
- $\{{}^{s}\mathcal{H}_{v,w} : v \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{w} s.t. $|{}^{s}\mathcal{H}_{v,w}| = W(v,w;s)$.

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For *s* ∈ *S*, let
- $\{\mathcal{H}_{v,w}^s : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_v s.t. $|\mathcal{H}_{v,w}^s| = W(v,w;s)$,
- $\{{}^{s}\mathcal{H}_{v,w} : v \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{w} s.t. $|{}^{s}\mathcal{H}_{v,w}| = W(v,w;s)$.
- Let $b_{v,w;s} : \mathcal{H}_{v,w}^s \to {}^s\mathcal{H}_{v,w}$ be a bijection.

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For *s* ∈ *S*, let
- $\{\mathcal{H}_{\nu,w}^s : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{ν} s.t. $|\mathcal{H}_{\nu,w}^s| = W(\nu, w; s)$,
- $\{{}^{s}\mathcal{H}_{v,w} : v \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{w} s.t. $|{}^{s}\mathcal{H}_{v,w}| = W(v,w;s)$.
- Let $b_{v,w;s} : \mathcal{H}_{v,w}^{s} \to {}^{s}\mathcal{H}_{v,w}$ be a bijection.
- Let \mathcal{H} be the graph with vertices $\bigsqcup_{v \in V(\mathcal{G})} \mathcal{H}_v$,

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For *s* ∈ *S*, let
- $\{\mathcal{H}_{v,w}^s : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_v s.t. $|\mathcal{H}_{v,w}^s| = W(v,w;s)$,
- $\{{}^{s}\mathcal{H}_{v,w} : v \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{w} s.t. $|{}^{s}\mathcal{H}_{v,w}| = W(v,w;s)$.
- Let $b_{v,w;s} : \mathcal{H}_{v,w}^s \to {}^s\mathcal{H}_{v,w}$ be a bijection.
- Let \mathcal{H} be the graph with vertices $\bigsqcup_{v \in V(\mathcal{G})} \mathcal{H}_v$,
- and edges: if η, ω ∈ V(H) and b_{v,w;s}(η) = ω then there is an s-labeled directed edge in H from η to ω.

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For *s* ∈ *S*, let
- $\{\mathcal{H}_{\nu,w}^s : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{ν} s.t. $|\mathcal{H}_{\nu,w}^s| = W(\nu, w; s)$,
- $\{{}^{s}\mathcal{H}_{v,w} : v \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{w} s.t. $|{}^{s}\mathcal{H}_{v,w}| = W(v,w;s)$.
- Let $b_{v,w;s} : \mathcal{H}_{v,w}^s \to {}^s\mathcal{H}_{v,w}$ be a bijection.
- Let \mathcal{H} be the graph with vertices $\bigsqcup_{v \in V(\mathcal{G})} \mathcal{H}_v$,
- and edges: if η, ω ∈ V(H) and b_{v,w;s}(η) = ω then there is an s-labeled directed edge in H from η to ω.
- $\overline{x}: V(\mathcal{H}) \to V(\mathcal{G})$ is defined by $\overline{x}(\eta) = v$ if $\eta \in \mathcal{H}_v$.

- $\forall v \in V(\mathcal{G})$, let \mathcal{H}_v be a set with W(v) elements.
- For *s* ∈ *S*, let
- $\{\mathcal{H}_{\nu,w}^s : w \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{ν} s.t. $|\mathcal{H}_{\nu,w}^s| = W(\nu, w; s)$,
- $\{{}^{s}\mathcal{H}_{v,w} : v \in V(\mathcal{G})\}$ be a partition of \mathcal{H}_{w} s.t. $|{}^{s}\mathcal{H}_{v,w}| = W(v,w;s)$.
- Let $b_{v,w;s} : \mathcal{H}_{v,w}^s \to {}^s\mathcal{H}_{v,w}$ be a bijection.
- Let \mathcal{H} be the graph with vertices $\bigsqcup_{v \in V(\mathcal{G})} \mathcal{H}_v$,
- and edges: if η, ω ∈ V(H) and b_{v,w;s}(η) = ω then there is an s-labeled directed edge in H from η to ω.
- $\overline{x}: V(\mathcal{H}) \to V(\mathcal{G})$ is defined by $\overline{x}(\eta) = v$ if $\eta \in \mathcal{H}_v$.

Surface Groups

Example

There exists a subshift of finite type *X* over $G = \langle a, b, c, d | [a, b] [c, d] = 1 \rangle$ such that there is a shift-invariant Borel probability measure on *X* but there are no periodic points in *X*.

Surface Groups

Example

There exists a subshift of finite type *X* over $G = \langle a, b, c, d | [a, b] [c, d] = 1 \rangle$ such that there is a shift-invariant Borel probability measure on *X* but there are no periodic points in *X*.

Continuous version : There is a finite set of tiles in the hyperbolic plane such that no periodic tiling with these tiles exists but there is an $Isom(\mathbb{H}^2)$ -invariant probability measure on the space of tilings.

An aperiodic tile set

Lewis Bowen (Texas A&M)

The example

