Automata generating free products of groups of order 2

Dmytro Savchuk (joint with Yaroslav Vorobets)

Binghamton University

May 13, 2010

The space we act on

Action on a rooted tree T.

$$
V(T)=X^{*}, \quad X=\{0, \ldots, d-1\}-\text { alphabet }
$$

$$
G<\text { Aut } T
$$

Action given by finite Mealy type automaton

Definition (By Example)

$S_{2}=\{\varepsilon=i d, \sigma=(01)\}$ acts on $X=\{0,1\}$.

\mathcal{A} - noninitial automaton,
\mathcal{A}_{q} - initial automaton, $q \in\{a, b, i d\}$.
\mathcal{A}_{q} acts on $X^{*}($ and on $T)$

States:

a	b	a	b	a	$i d$	$i d$	$i d$

Output: | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Input: | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

States:

a	b	a	b	a	$i d$	$i d$	$i d$

Output:

1	0	1	0	0	0	1	1

Input: \quad| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

States:

a	b	a	b	a	$i d$	$i d$	$i d$

Output:

1	0	1	0	0	0	1	1

Definition of automaton group

Given an automaton A every state q defines an automorphism A_{q} of X^{*}

Definition

The automaton (or self-similar) group generated by automaton A is a group $\left\langle A_{q}\right| q$ is a state of A$\rangle<\operatorname{Aut} X^{*}$. This group is denoted by $G(A)$.

Definition of automaton group

Given an automaton A every state q defines an automorphism A_{q} of X^{*}

Definition

The automaton (or self-similar) group generated by automaton A is a group $\left\langle A_{q}\right| q$ is a state of A$\rangle<$ Aut X^{*}. This group is denoted by $G(A)$.

Example

$a(w)=\bar{w}$. Thus $a^{2}=1$ and $G(A) \simeq C_{2}$.

There is a convenient way to represent the element f of $\operatorname{Aut} X^{*}$ in the form

$$
f=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right) \alpha_{f},
$$

where
$f_{i} \in$ Aut X^{*} describe how f acts on the i-th subtree, i.e.

$$
f(i u)=j w \Leftrightarrow f_{i}(u)=w,
$$

$\alpha_{f} \in \operatorname{Sym}(X)$ describes how f acts on the 1 -st letter.

Example

C_{2}	Basilica	\mathbb{Z} (Adding Machine)
$0,1 \bigcirc \stackrel{a}{\odot}$		
$a=(a, a) \sigma$	$\begin{aligned} & a=(b, 1) \sigma \\ & b=(a, 1) \\ & 1=(1,1) \end{aligned}$	$a=(1, a) \sigma$

Example

C_{2}	Basilica	\mathbb{Z} (Adding Machine)
$0,1 \bigcirc \stackrel{a}{\sigma}$		
$a=(a, a) \sigma$	$\begin{aligned} & a=(b, 1) \sigma \\ & b=(a, 1) \\ & 1=(1,1) \end{aligned}$	$a=(1, a) \sigma$

If

$$
\begin{aligned}
g & =\left(g_{1}, g_{2}, \ldots, g_{d}\right) \pi_{g}, \\
h & =\left(h_{1}, h_{2}, \ldots, h_{d}\right) \pi_{h},
\end{aligned}
$$

then

$$
g h=\left(g_{1} h_{\pi_{g}(1)}, \ldots, g_{d} h_{\pi_{g}(d)}\right) \pi_{g} \pi_{h}
$$

Source of Counterexamples

- Burnside problem on infinite periodic groups
- Milnor problem on groups of intermediate growth
- Day problem on amenability
- Atiyah conjecture on L^{2} Betti numbers
- Connection to holomorphic dynamics via Iterated Monodromy Groups

What known groups are generated by automata?

- $G L_{n}(\mathbb{Z})$
- Baumslag-Solitar groups $B S(1, n)$
- Free groups
- Free products of some groups

History of the question

- Aleshin (1983) - F_{3}, proof is unclear

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$
- Glasner,Mozes (2003) F_{7} over 6-letter alphabet and F_{3} over 14-letter alphabet

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$
- Glasner,Mozes (2003) F_{7} over 6-letter alphabet and F_{3} over 14-letter alphabet
- Bellaterra automaton (2004) $C_{2} * C_{2} * C_{2}$ as self-similar, F_{2} as self-similar over 2-letter alphabet

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$
- Glasner,Mozes (2003) F_{7} over 6-letter alphabet and F_{3} over 14-letter alphabet
- Bellaterra automaton (2004) $C_{2} * C_{2} * C_{2}$ as self-similar, F_{2} as self-similar over 2-letter alphabet
- Vorobets, Vorobets (2005) Aleshin automaton indeed generates F_{3}

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$
- Glasner,Mozes (2003) F_{7} over 6-letter alphabet and F_{3} over 14-letter alphabet
- Bellaterra automaton (2004) $C_{2} * C_{2} * C_{2}$ as self-similar, F_{2} as self-similar over 2-letter alphabet
- Vorobets, Vorobets (2005) Aleshin automaton indeed generates F_{3}
- Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating $F_{2 n+1}$ and $*_{i=1}^{2 n+1} C_{2}$

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$
- Glasner,Mozes (2003) F_{7} over 6-letter alphabet and F_{3} over 14-letter alphabet
- Bellaterra automaton (2004) $C_{2} * C_{2} * C_{2}$ as self-similar, F_{2} as self-similar over 2-letter alphabet
- Vorobets, Vorobets (2005) Aleshin automaton indeed generates F_{3}
- Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating $F_{2 n+1}$ and $*_{i=1}^{2 n+1} C_{2}$
- Steinberg, Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating $F_{2 n}$ and $*_{i=1}^{2 n} C_{2}$

History of the question

- Aleshin (1983) - F_{3}, proof is unclear
- Brunner-Sidki (1998) - $G L_{n}(Z)$ (and, hence, F_{2}) can be generated by automata)
- Oliynyk (1999) $C_{2} * C_{2} * \cdots * C_{2}$
- Glasner,Mozes (2003) F_{7} over 6-letter alphabet and F_{3} over 14-letter alphabet
- Bellaterra automaton (2004) $C_{2} * C_{2} * C_{2}$ as self-similar, F_{2} as self-similar over 2-letter alphabet
- Vorobets, Vorobets (2005) Aleshin automaton indeed generates F_{3}
- Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating $F_{2 n+1}$ and $*_{i=1}^{2 n+1} C_{2}$
- Steinberg, Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating $F_{2 n}$ and $*_{i=1}^{2 n} C_{2}$
- Gupta-Gupta-Oliynyk (2007) free products of finite groups

History of the question

Aleshin's automaton $(1983,2005)$ Bellaterra automaton (2004)
F_{3}

$$
C_{2} * C_{2} * C_{2}
$$

Generalizations

Theorem (M. Vorobets, Ya. Vorobets (2006))

The automaton

generates the free product of $2 n+1$ groups of order 2 .

Generalizations

Theorem (B. Steinberg, M. Vorobets, Ya. Vorobets (2006))

The automaton

where the number of nontrivial σ_{i} is odd, generates the free product of $2 n$ groups of order 2.

Motivating example

is the smallest not covered by Vorobets, Vorobets, Steinberg series

What we prove

Theorem

The automaton

where σ_{i} are chosen arbitrarily, generates the free product of n groups of order 2.

Brave conjecture

Any automaton from the family

where at least one σ_{i} is nontrivial generates the free product of groups of order 2

Starting Point: 4-state automaton

$$
\begin{aligned}
a & =(c, b) \\
b & =(b, c) \\
c & =(d, d) \sigma \\
d & =(a, a) \sigma
\end{aligned}
$$

Theorem
$G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}$

Dual Automata Motivation

One more way to define a self-similar group is by its action on X^{*}.

$a=(c, b)$,	$a(0 w)=0 c(w)$ $a(1 w)=1 b(w)$
$b=(b, c)$,	$b(0 w)=0 b(w)$ $b(1 w)=1 c(w)$
$c=(d, d) \sigma$,	$c(0 w)=1 d(w)$ $c(1 w)=0 d(w)$
$d=(a, a) \sigma$,	$d(0 w)=1 a(w)$ $d(1 w)=0 a(w)$

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	
$b 1 \rightarrow 1 c$	
$c 0 \rightarrow 1 d$	
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	
$b 1 \rightarrow 1 c$	
$c 0 \rightarrow 1 d$	
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	
$d b 1 a 001 *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	
$b 1 \rightarrow 1 c$	
$c 0 \rightarrow 1 d$	
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	
$d b 1 a 01 *$	
$d b 10 c 1 *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	
$b 1 \rightarrow 1 c$	
$c 0 \rightarrow 1 d$	$d b d 001 *$ $d b 1 a 01 *$ $c 1 \rightarrow 0 d$ $d 0 \rightarrow 1 a$ $d 1 \rightarrow 0 a$
$d b 10 c 1 *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	dbd001*
$a 1 \rightarrow 1 b$	db1a01*
$b 0 \rightarrow 0 b$	db10c1*
$b 1 \rightarrow 1 c$	db100d*
$c 0 \rightarrow 1 d$	d1c00d*
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	$d b d 001 *$
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	$d b 1 a 01 *$
$b 1 \rightarrow 1 c$	$d b 10 c 1 *$
$c 0 \rightarrow 1 d$	$d b 100 d *$
$c 1 \rightarrow 0 d$	$d 1 c 00 d *$
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	$d 11 d 0 d *$

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	$d b d 001 *$
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	$d b 1 a 01 *$
$b 1 \rightarrow 1 c$	$d b 10 c 1 *$
$c 0 \rightarrow 1 d$	$d b 100 d *$
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	$d 1 c 00 d *$
$d 11 d 0 d *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	
$b 1 \rightarrow 1 c$	
$c 0 \rightarrow 1 d$	$d b d 001 *$
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	$d b 1 a 01 *$
	$d b 100 d *$
	$d 1 c 00 d *$
$d 11 d 0 d *$	
$d 111 a d *$	
$0 a 11 a d *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	$d b d 001 *$
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	$d b 1 a 01 *$
$b 1 \rightarrow 1 c$	$d b 10 c 1 *$
$c 0 \rightarrow 1 d$	$d b 100 d *$
$c 1 \rightarrow 0 d$	$d 1 c 00 d *$
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	$d 11 d 0 d *$
	$d 111 a d *$
	$0 a 11 a d *$
$01 b 1 a d *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	
$a 1 \rightarrow 1 b$	
$b 0 \rightarrow 0 b$	
$b 1 \rightarrow 1 c$	
$c 0 \rightarrow 1 d$	$d b d 001 *$
$c 1 \rightarrow 0 d$	
$d 0 \rightarrow 1 a$	
$d 1 \rightarrow 0 a$	$d b 1 a 01 *$
	$d b 100 d *$
	$d 1 c 00 d *$
	$d 11 d 0 d *$
$d 111 a d *$	
$0 a 11 a d *$	
$01 b 1 a d *$	
$011 c a d *$	

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	$d b d 001 *$	Hence
$a 1 \rightarrow 1 b$		
$b 0 \rightarrow 0 b$		
$b 1 \rightarrow 1 c$	$d b 1 a 01 *$	$d(b(d(001)))=d b d(001)=011$
$c 0 \rightarrow 1 d$	$d b 10 c 1 *$	and
$c 1 \rightarrow 0 d$	$d b 100 d *$	$\left.(d b d)\right\|_{001}=d a c$
$d 0 \rightarrow 1 a$		
$d 1 \rightarrow 0 a$	$d 1 c 00 d *$	
	$d 11 d 0 d *$	
	$d 111 a d *$	
$0 a 11 a d *$		
$01 b 1 a d *$		
$011 c a d *$		

Dual Automata Motivation

It's easy to compute $g w:=g(w)$ for $g \in G$ and $w \in X^{*}$.

$a 0 \rightarrow 0 c$	Hence	
$a 1 \rightarrow 1 b$	$d b d 001 *$	H $b 0 \rightarrow 0 b$ $b 1 \rightarrow 1 c$ $c 0 \rightarrow 1 d$
$c 1 \rightarrow 0 d$	$d b 10 c 1 *$	$d(b(d(001)))=d b d(001)=011$
$d 0 \rightarrow 1 a$	and	
$d 1 \rightarrow 0 a$	$d b 100 d *$	$\left.(d b d)\right\|_{001}=d a c$
	$d 1 c 00 d *$	
$d 11 d 0 d *$		
	$d 111 a d *$	
$0 a 11 a d *$		
$01 b 1 a d *$		
$011 c a d *$		

Question: Who acts on whom?

Idea of the proof

Definition

For $\mathcal{A}=(Q, X, \pi, \lambda)$ its dual automaton $\hat{\mathcal{A}}$ is defined by "flipping the roles" of the set of states Q and alphabet X. I.e. $\hat{\mathcal{A}}=(X, Q, \hat{\lambda}, \hat{\pi})$, where

$$
\begin{aligned}
& \hat{\lambda}(x, q)=\lambda(q, x), \\
& \hat{\pi}(x, q)=\pi(q, x)
\end{aligned}
$$

The dual group Γ is generated by dual automaton

$$
\begin{aligned}
& \mathbb{O}=(\mathbb{O}, \mathbb{O}, \mathbb{1}, \mathbb{1})(a, c, d) \\
& \mathbb{1}=(\mathbb{1}, \mathbb{1}, \mathbb{O}, \mathbb{O})(a, b, c, d),
\end{aligned}
$$

Γ acts on 4-ary tree leaving the red subtree \hat{T} invariant:

Proposition

Let $G=\langle S\rangle$ be an automaton semigroup acting on X^{*}. And let \hat{G} be its dual semigroup acting on S^{*}. Then for any $g \in G$ and $v \in X^{*}$

$$
\left.g\right|_{v}=v(g)
$$

Proposition

Each level of the tree \hat{T} contains at least one nontrivial element of $G_{\mathcal{A}}$. One can take $a b a b \cdots a b c$ or $a b a b \cdots a b a c$.

Proposition

Each level of the tree \hat{T} contains at least one nontrivial element of $G_{\mathcal{A}}$. One can take $a b a b \cdots a b c$ or $a b a b \cdots a b a c$.

Corollary

Transitivity of Γ on $\hat{T} \Rightarrow\left[G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}\right]$.

$$
G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}
$$

$$
G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}
$$

「 acts level transitively

Γ is infinite

$$
G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}
$$

$G_{\mathcal{A}}$ is infinite

Γ is infinite

$$
G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}
$$

Γ acts level transitively

$G_{\mathcal{A}}$ acts level transitively

$G_{\mathcal{A}}$ is infinite
Γ is infinite

$$
G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}
$$

Γ acts level transitively

$G_{\mathcal{A}}$ acts level transitively

\sqrt{V}

$G_{\mathcal{A}}$ is infinite

$$
G_{\mathcal{A}} \cong C_{2} * C_{2} * C_{2} * C_{2}
$$

Γ is infinite

TRUE

(there is an algorithm)

Γ acts level transitively

Family of automata

Theorem

The groups $G^{(n)}$ generated by automata from the family above are isomorphic to the free products of n groups of order 2

Proposition

The dual group $\Gamma^{(n)}=\left\langle\mathbb{O}_{n}, \mathbb{1}_{n}\right\rangle$ acts on n-ary tree $T^{(n)}$:

$$
\begin{aligned}
& \mathbb{O}_{n}=\left(\mathbb{O}_{n}, \mathbb{O}_{n}, \mathbb{1}_{n}, \mathbb{K}_{n 1}, \ldots, \mathbb{K}_{n, n-4}, \mathbb{1}_{n}\right)\left(a_{n} c_{n} q_{n 1} \ldots q_{n, n-4} d_{n}\right), \\
& \mathbb{1}_{n}=\left(\mathbb{1}_{n}, \mathbb{1}_{n}, \mathrm{O}_{n}, \mathbb{L}_{n 1}, \ldots, \mathbb{L}_{n, n-4}, \mathbb{O}_{n}\right)\left(a_{n} b_{n} c_{n} q_{n 1} \ldots q_{n, n-4} d_{n}\right),
\end{aligned}
$$

where $\mathbb{K}_{n, i}=\mathbb{O}_{n}$ and $\mathbb{L}_{n, i}=\mathbb{1}_{n}$ if $\sigma_{n, i}=i d$, and $\mathbb{K}_{n, i}=\mathbb{1}_{n}$ and $\mathbb{L}_{n, i}=\mathbb{O}_{n}$ otherwise.

$$
\begin{array}{rr}
\alpha_{n}=\left(\alpha_{n}, \alpha_{n}, \beta_{n}, \gamma_{n 1}, \ldots, \gamma_{n, n-4}, \beta_{n}\right) & \left(a_{n} b_{n}\right)\left(c_{n} q_{n 1} \ldots q_{n, n-4} d_{n}\right), \\
\beta_{n}=\left(\beta_{n}, \beta_{n}, \alpha_{n}, \delta_{n 1}, \ldots, \delta_{n, n-4}, \alpha_{n}\right) & \left(c_{n} q_{n 1} \ldots q_{n, n-4} d_{n}\right),
\end{array}
$$

where $\gamma_{n, i}=\alpha_{n}$ and $\delta_{n, i}=\beta_{n}$ if $\sigma_{n, i}=i d$, and $\gamma_{n, i}=\beta_{n}$ and $\delta_{n, i}=\alpha_{n}$ otherwise.

Proposition

$$
\Gamma^{(n)}=\left\langle\alpha_{n}, \beta_{n}, \overline{\left(b_{n} c_{n}\right)}\right\rangle .
$$

From the base case we know that $\Gamma^{(4)}=\Gamma$ acts transitively on $\hat{T}^{(4)}$

Lemma

For any $v \in \Gamma$ there exists $v^{\prime} \in \Gamma^{(n)}$ with the following property. For any word g over $\left\{a_{n}, b_{n}, c_{n}\right\}$ such that $v(g)$ is also a word over $\left\{a_{n}, b_{n}, c_{n}\right\}$, we have $v(g)=v^{\prime}(g)$.

The proof of transitivity of $\Gamma^{(n)}$ on the levels of $\hat{T}^{(n)}$ follows by induction on level.

$$
\begin{aligned}
& g_{1} g_{2} g_{3} \ldots g_{k-1} g_{k}, \quad g_{i} \in\left\{a_{n}, b_{n}, c_{n}, q_{1}, \ldots, d_{n}\right\} \\
& \quad \quad \text { induction assumption } \\
& a_{n} b_{n} a_{n} \ldots a_{n} b_{n} t, \quad t \in\left\{a_{n}, c_{n}, q_{1}, \ldots, d_{n}\right\} \\
& \quad \downarrow \beta_{n}^{j} \\
& a_{n} b_{n} a_{n} \ldots a_{n} b_{n} t^{\prime}, \quad t^{\prime} \in\left\{a_{n}, c_{n}\right\} \\
& \quad \downarrow \text { transitivity of } \Gamma \\
& a_{n} b_{n} a_{n} \ldots a_{n} b_{n} a_{n}
\end{aligned}
$$

