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Outline

Profinite groups arise in nature as Galois groups of infinite
algebraic extensions.
But they have an interesting theory in their own right.

A profinite group is a compact topological group that is built out
of finite groups. Properties of the topological group reflect
group-theoretic properties of all the finite groups.

If we forget the topology we wouldn’t expect this to remain true: it
doesn’t in general. However: in the special case where the profinite

group is topologically finitely generated,

{ open subgroups } = { subgroups of finite index }

Hence: algebraic structure determines the topology.
Proposed by Serre in the 1970s, not proved until 2003.
Related to algebraic properties of finite groups: specifically the
behaviour of word-values.
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Examples of profinite groups

1. E/k an algebraic Galois extension of fields. Then

Gal(E/k) = lim
←− Λ

Gal(K/k)

where Λ = { finite Galois extensions K of k with K ⊆ E }, with
the restriction maps

Gal(K2/k)→ Gal(K1/k) (K2 ⊇ K1)

2. T a locally finite rooted tree. Then

Aut(T ) = lim
←− m∈N

Aut(T [m])

where T [m] is the ball of radius m in T centred at the root.
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Definition of profinite groups

In general, suppose we have a directed set Λ, finite groups Gλ

(λ ∈ Λ) and epimorphisms θλµ : Gλ → Gµ (λ ≥ µ), all compatible
in the obvious way. The inverse limit of the system (Gλ) is

G = lim
←− Λ

Gλ = {g = (gλ) | gλθλµ = gµ ∀λ > µ} ≤
∏

Λ

Gλ

Give each finite group Gλ its discrete topology and
∏

Gλ the

product topology. This becomes a compact Hausdorff group by
Tychonoff’s Theorem. Also G is a closed subgroup. So G satisfies

Definition A profinite group is a compact Hausdorff totally
disconnected topological group.

More useful definition:

a compact Hausdorff group whose open subgroups form a base for
the neighbourhoods of 1.
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Writing N (G ) = {open normal subgroups of G} we have

G = lim
←−

(G/N | N ∈ N (G ))

Fundamental observation: in any compact group, open subgroups
have finite index.

Is the converse true?
No! Let Cn be a group of order 2 for each n and take

Gn = C1 × · · · × Cn

projecting onto Cn−1 in the obvious way. Then

G = lim
←−

Gn =
∏

j∈N Cj

has countably many open subgroups but 22ℵ0 subgroups of index 2.
More interesting example: there is a profinite group G such that
G/N is perfect for each N ∈ N (G ), but having (non-open) normal
subgroups of index 2.
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Serre’s theorem (1975) In a finitely generated pro-p group, every
subgroup of finite index is open.

Finitely generated is meant in the topological sense. In fact, for G
profinite

d(G ) = sup{d(G/N) | N ∈ N (G )}

where d(G ) is the minimal size of a topological (ordinary in finite
case) generating set .

Philosophy: qualitative properties of topological (profinite) group
G reflect uniform algebraic properties of (continuous) finite
quotients G/N (N ∈ N (G )).

Serre’s question Is ST true for all f.g. profinite groups?

Need to understand what ‘finite-index subgroups of G are open’
means algebraically for the finite quotients G/N (N ∈ N (G ))!
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Consider

G ′Gp = 〈[x , y ]zp | x , y , z ∈ G 〉.

Since G/G ′Gp is elementary abelian, its subgroups of index p have
trivial intersection, i.e.

G ′Gp =
⋂
{N | N C G , |G/N| = p} .

Open subgroups are closed. So if each index-p subgroup is open
then G ′Gp is closed. If G is a finitely generated pro-p group,
the converse is also true (easy); and an easy induction shows:

all subgroups of index p open ⇐⇒ all subgroups of finite index
open.

What does it mean for G ′Gp to be closed?
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Write w(x , y , z) = [x , y ]zp and set

Gw =
{

w(g)±1 | g ∈ G × G × G
}
.

Then

G ′Gp = w(G ) =
∞⋃
n=1

G ∗nw

where G ∗nw = Gw · Gw · . . . · Gw (n times).

Now the map w : G (3) → G is continuous and G is compact, so
G ∗nw is compact, hence closed in G , for each n.
Baire category Theorem implies that the following are equivalent:

(a) w(G ) is closed
(b) w(G ) is closed and for some n, G ∗nw contains a non-empty
open subset of w(G )
(c) for some n, G ∗nw = w(G ).
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Moreover:

w(G ) = G ∗nw ⇐⇒ w(G/N) = (G/N)∗nw ∀N ∈ N (G ).

So: w(G ) is closed iff w has bounded width in all finite continuous
quotients of G .

In general, a f.g. profinite group may not have any subroups of
prime index. However, each subgroup H of finite index in G
contains a normal subgroup H0 of finite index, and taking
q = |G/H0| we have

Gq ≤ H0 ≤ H

where Gq = 〈xq | x ∈ G 〉. If Gq is open then H is open.

Theorem (N. Nikolov & DS) If G is a f.g. profinite group and
q ∈ N then Gq is open in G .
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Corollary 1 If G is a f.g. profinite group then every subgroup of
finite index in G is open.

Corollary 2 Every group homomorphism from a f.g. profinite
group to any profinite group is continuous. The topology on a f.g.
profinite group is uniquely determined by the group structure.

Taking w(x) = xq, we see as before that NS is equivalent to

Theorem Given d , q ∈ N there exists f ∈ N such that: in any
d-generator finite group, every product of qth powers is equal to a
product of f qth powers.

(Slight cheat: this also depends on positive solution to Restricted
Burnside Problem (Zelmanov et al), which implies
Gq open ⇐⇒ Gq closed,
and a long roundabout argument that we only found in 2009;
Corollary 1 was proved in 2003 using other words.)
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Uniformly elliptic words

Definition A group word w is uniformly elliptic if for each d ∈ N
there exists f ∈ N such that w(H) = H∗fw for every d-generator
finite group H.

Each uniformly elliptic word carries topological information about
profinite groups: w is uniformly elliptic if and only if w(G ) is
closed in G for every f. g. profinite group G .

Suppose we want to prove that w is uniformly elliptic.
H a d-generator finite group. We need to Assume :

♥ w(H) = 〈g1, . . . , gm〉 where g1, . . . , gm ∈ Hw and m depends
only on w and d .
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Set X = Hw and G = 〈X 〉 = w(H). Choose K C G such that

G = K · X ∗t
K = [K ,G ] plus a technical condition ♣

(here t depends on w and d only).

Key Theorem Let G = 〈g1, . . . , gm〉 be a finite group and K a
normal subgroup satisfying ♣. Then

K = ([K , g1] · . . . · [K , gm])∗f

where f depends only on m.

Since g ∈ X =⇒ [K , g ] ⊆ X ∗2 we can then deduce that

w(H) = G = ([K , g1] · . . . · [K , gm])∗f · X ∗t

= X ∗(2f +t) = H
∗(2f +t)
w .

Actually we couldn’t quite prove this; and ♥ doesn’t (a priori) hold
for w = xq. The fact that is does is a consequence of our theorem!
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= X ∗(2f +t) = H
∗(2f +t)
w .

Actually we couldn’t quite prove this; and ♥ doesn’t (a priori) hold
for w = xq. The fact that is does is a consequence of our theorem!



Proof of the Key Theorem - rough idea

Solve an equation by successive approximations (à la Hensel’s
Lemma):

h =
f∏

i=1

[xi1, g1] . . . [xim, gm] := Φ(x) (∗)

Constant: h ∈ K
Parameters: g1, . . . , gm
Unknowns: xij ∈ K
Pick N C G minimal subject to

K ≥ N = [N,G ] > 1.

Assume inductively that we’ve found uij ∈ K such that

h = Φ(u) · ε
with ‘error term’ ε ∈ N. Seek yij ∈ N such that (∗) holds with
xij = yijuij .
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Equivalently: solve
ε = Φ′u(y),

an equation in N with operators from G .

Case 1: N is a small nilpotent group. Uses linear and ‘quadratic’
algebra over finite fields.

Case 2: N is a direct product of isomorphic simple groups.
Reduces to solving many equations in one finite simple group (with
operators).

In fact to make induction work we need to show that the equations
have many solutions. Ultimately it comes down to arithmetic in
finite fields – in case 2, CFSG tells us that (nearly always) we’re
dealing with a matrix group over some Fq.
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Which words are uniformly elliptic?

1) ‘Simple commutators’

[x , y ], [x1, x2, . . . , xc ] = [[x1, x2, . . . , xc−1], xc ] (c > 2)

2)‘Non-commutator words’: thinking of w = w(x1, . . . , xk) as an
element of the free group F on x1, . . . , xk , say w is a
non-commutator word if w /∈ F ′ = [F ,F ].

(1) can be deduced from the Key Theorem. (2) follows from
Theorem NS: if w is a non-commutator word then

w = xe1
1 . . . xek

k v

where v ∈ F ′ and ej 6= 0 for some j . Now let G be a f.g. profinite
group, and put q = ej . Then

w(G ) ≥ Gq;

as Gq is open in G , so is w(G ).
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Maybe all words are uniformly elliptic? No!

Exercise Let V be a d-dimensional vector space and let m < d/2.
Show that V ∧ V contains elements that can’t be expressed as

m∑
i=1

ui ∧ vi .

This implies that the word [x , y ] has width at least d/2 in the
finite group G = F/γ3(F )F p where F is free of rank d .
Let H = G o 〈t〉 where t (of order d) permutes the d generators
of G cyclically.
Then d(H) = 2, but

the word δ2 = [[x , y ], [z , t]] has width at least d/2 in H.
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As d is arbitrary it follows that δ2 is not uniformly elliptic (even in
finite p-groups, if we choose d to range over powers of p).

Jaikin’s Theorem Let p be a prime and w a non-trivial word.
Then w(G ) is closed in G for every finitely generated pro-p group
G if and only if

w /∈ F ′′(F ′)p. (J(p))

In general, J(p) for every prime p is a necessary condition for w to
be u.e.

Main problem Is it sufficient?
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