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Definition

A topological automaton (topological correspondence) F is a quadruple
(M, My, f, 1), where M and M are topological spaces (orbispaces),

f: My — M is a finite covering map and ¢ : M; — M is a continuous
map.
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Topological setting

Definition

A topological automaton (topological correspondence) F is a quadruple
(M, My, f, 1), where M and M are topological spaces (orbispaces),

f: My — M is a finite covering map and ¢ : M; — M is a continuous
map.

Examples:

Self-coverings: when ¢ is identity.
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Definition

A topological automaton (topological correspondence) F is a quadruple
(M, My, f, 1), where M and M are topological spaces (orbispaces),

f: My — M is a finite covering map and ¢ : M; — M is a continuous
map.

Examples:

Self-coverings: when ¢ is identity.
Partial self-coverings: when ¢ is an embedding.
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Topological setting

Definition

A topological automaton (topological correspondence) F is a quadruple
(M, My, f, 1), where M and M are topological spaces (orbispaces),

f: My — M is a finite covering map and ¢ : M; — M is a continuous
map.

Examples:

Self-coverings: when ¢ is identity.
Partial self-coverings: when ¢ is an embedding.
Finite automata (transducers).
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Transducers
Definition

An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:Q XX — X,

T QXX — Q,
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Transducers

Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:QXxX—X, 7m:QxX— Q,

called the output and transition.
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Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation.
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internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation. The automaton is
finite if the set Q is finite.
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T —
Transducers

Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, g € Q.
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Transducers

Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, g € Q. Let M;
be the graph with the set of vertices X where for every x € X and g € Q
we have an arrow eg , from x to 7(q, x).
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T —
Transducers

Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, g € Q. Let M;
be the graph with the set of vertices X where for every x € X and g € Q
we have an arrow eg , from x to 7(q, x). Define f(eqx) = eq and

L(e%X) = €x(q,x)-
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T —
Transducers

Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, g € Q. Let M;
be the graph with the set of vertices X where for every x € X and g € Q
we have an arrow eg , from x to 7(q, x). Define f(eqx) = eq and

t(€q,x) = €r(q,x)- If the automaton is invertible, then f is a covering.
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T —
Transducers

Definition
An automaton over an alphabet X is a triple (Q, 7, 7), where Q is a set (of
internal states) and 7 and 7w are maps

T:@xX—X, m:Q@xX— Q,

called the output and transition. The automaton is called invertible if for
every go € Q the map x — 7(qo, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, g € Q. Let M;

be the graph with the set of vertices X where for every x € X and g € Q

we have an arrow eg , from x to 7(q, x). Define f(eqx) = eq and

t(€q,x) = €x(q,x)- If the automaton is invertible, then f is a covering. The

corresponding topological automaton is called the dual Moore diagram of
the automaton.
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lterating automata

Let Mo =M, fy = f and 1o = ¢ and define f,, ¢y : Mpr1 —> M, by the
pullback diagram
Mn+1 i’ Mﬂ

| =

tn—1
M, = M,_1.
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lterating automata

Let Mo =M, fy = f and 1o = ¢ and define f,, ¢y : Mpr1 —> M, by the
pullback diagram

Mn+1 B Mﬂ

| =

Mn E) Mn—l'
Then the nth iteration F" of the topological automaton F is the covering

foofpo---of,_1: M, — M together with the map
1QOL1 O+ 0tp_1: M, — M.
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Examples:

If F is a self-covering, then F" is its nth iteration.
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Examples:

If F is a self-covering, then F" is its nth iteration. If F corresponds to a
partial self-covering f : M1 — M, M1 C M, then F" corresponds to
the partial self-covering " : M, — M.
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Examples:

If F is a self-covering, then F" is its nth iteration. If F corresponds to a
partial self-covering f : M1 — M, M1 C M, then F" corresponds to
the partial self-covering " : M, — M.

If F is the dual Moore diagram of an invertible automaton A, then F" is
the dual Moore diagram of the automaton describing the action of A on
strings of length n.
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L3
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f4 f3

i
My —= Ms
f3 fo

%]
Mz — M,
f fi

L1
My — My

L2

L1

We get three inverse limits lim¢ 7, lim, F and lim¢, F with self-maps ¢,

fv and A.
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Iterated monodromy groups

Let F = (M, M1, f,.) be a topological automaton.
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Iterated monodromy groups

Let F = (M, M1, f,.) be a topological automaton. ldentify 71 (M;j) with
a subgroup of finite index in 71(M) using f.

V. Nekrashevych (Texas A&M) Simplicial approximations April 2010 8/21



-
Iterated monodromy groups

Let F = (M, M1, f,.) be a topological automaton. ldentify 71 (M;j) with
a subgroup of finite index in m1(M) using f.. Then
Ly : m(M1) — w1 (M) is a virtual endomorphism of m1(M).
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Iterated monodromy groups

Let F = (M, M1, f,.) be a topological automaton. ldentify 71 (M;j) with
a subgroup of finite index in m1(M) using f.. Then
Ly : m(M1) — w1 (M) is a virtual endomorphism of m1(M).
Denote
o= () & Domidg
n>1,gem (M)
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Iterated monodromy groups

Let F = (M, M1, f,.) be a topological automaton. ldentify 71 (M;j) with
a subgroup of finite index in m1(M) using f.. Then
Ly : m(M1) — w1 (M) is a virtual endomorphism of m1(M).

Denote
N, = n gt -Dom. g
n>1,gem (M)

The iterated monodromy group of F is

IMG (F) = m(M)/N,,
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Let F = (M, M1, f,.) be a topological automaton. ldentify 71 (M;j) with
a subgroup of finite index in m1(M) using f.. Then
Ly : m(M1) — w1 (M) is a virtual endomorphism of m1(M).

Denote
N, = ﬂ gt -Dom. g
n>1,gem (M)

The iterated monodromy group of F is
IMG (F) = m(M)/N,,

together with the (conjugacy class of) the virtual endomorphism induced
by ¢x.
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-
Iterated monodromy groups

Let F = (M, M1, f,.) be a topological automaton. ldentify 71 (M;j) with
a subgroup of finite index in m1(M) using f.. Then
Ly : m(M1) — w1 (M) is a virtual endomorphism of m1(M).
Denote
N,= () &' Domi g
n>1,gem (M)

The iterated monodromy group of F is
IMG (F) = m(M)/N,,

together with the (conjugacy class of) the virtual endomorphism induced
by ¢». Two topological automata are combinatorially equivalent if they
have the same iterated monodromy groups.
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Contracting automata

Definition

Let F = (M, M1, f,.) be a topological automaton such that M is a
compact path connected and locally path connected (orbi)space.
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Contracting automata

Definition

Let F = (M, M1, f,.) be a topological automaton such that M is a
compact path connected and locally path connected (orbi)space. F is
contracting if there exists a length structure on M and A < 1 such that

for every rectifiable path v in M;j
length(¢(7y)) < A - length(7),

where length of « is computed with respect the lift of the length structure
by f.
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Theorem

Let F = (M, M1, f,.) be a contracting topological automaton with
locally simply connected M.
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Theorem

Let F = (M, M1, f,.) be a contracting topological automaton with
locally simply connected M. Then the system (lim, F, fs,) depends, up to
a topological conjugacy, on (IMG (F),t.) only.
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Theorem

Let F = (M, M1, f,.) be a contracting topological automaton with
locally simply connected M. Then the system (lim, F, fs,) depends, up to
a topological conjugacy, on (IMG (F),t.) only.

If F is an automaton associated with an expanding partial self-covering
f: ./\/ll e ./\/l,
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Theorem
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locally simply connected M. Then the system (lim, F, fs,) depends, up to
a topological conjugacy, on (IMG (F),t.) only.
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Theorem
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locally simply connected M. Then the system (lim, F, fs,) depends, up to
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V. Nekrashevych (Texas A&M) Simplicial approximations April 2010 10 / 21



Theorem

Let F = (M, M1, f,.) be a contracting topological automaton with
locally simply connected M. Then the system (lim, F, fs,) depends, up to
a topological conjugacy, on (IMG (F), i) only.

If F is an automaton associated with an expanding partial self-covering
f: My — M, then F is contracting, and the limit (lim, F, fs) is
restriction of f onto the attractor (1), M, of backward iterations of f
(the “Julia set” of f). In general it is a complicated space. Constructing
another combinatorially equivalent contracting topological automaton F,
we get approximations of the Julia set.
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Theorem

Let F = (M, M1, f,.) be a contracting topological automaton with
locally simply connected M. Then the system (lim, F, fs,) depends, up to
a topological conjugacy, on (IMG (F), i) only.

If F is an automaton associated with an expanding partial self-covering
f: My — M, then F is contracting, and the limit (lim, F, fs) is
restriction of f onto the attractor (1), M, of backward iterations of f
(the “Julia set” of f). In general it is a complicated space. Constructing
another combinatorially equivalent contracting topological automaton F,
we get approximations of the Julia set. Every contracting topological
automaton is combinatorially equivalent to the dual Moore diagram of a
transducer
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Theorem

Let F = (M, M1, f,.) be a contracting topological automaton with
locally simply connected M. Then the system (lim, F, fs,) depends, up to
a topological conjugacy, on (IMG (F), i) only.

If F is an automaton associated with an expanding partial self-covering
f: My — M, then F is contracting, and the limit (lim, F, fs) is
restriction of f onto the attractor (1), M, of backward iterations of f
(the “Julia set” of f). In general it is a complicated space. Constructing
another combinatorially equivalent contracting topological automaton F,
we get approximations of the Julia set. Every contracting topological
automaton is combinatorially equivalent to the dual Moore diagram of a
transducer (not contracting, in general).
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Example: —% + 3—22

fixed under f.

Consider f(z) = —%3 + 32 It has three critical points 0o, 1, —1, which are
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Consider f(z) = _z + 32|t has three critical points 0o, 1, —1, which are
2 2

fixed under f.

Hence it is a covering of C \ {£1} by the subset
C\ f1({#£1}) = C\ {=£1, £2}.
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. P 3z
Example: —% + %

Consider f(z) = _z + 3Z It has three critical points 0o, 1, —1, which are
2 2

fixed under f.

Hence it is a covering of C \ {£1} by the subset
C\ f~1({#£1}) = C\ {£1,£2}. The fundamental group is generated by

a
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8
Example: —% + 352

The generators are lifted to

@) () 1)

f7H)
We get

(@) =a, w(b?)=>b, w(a®)=1, wn(b?)=1
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208 Huseer CrEMER:

Wir gehen von zwei gleichseitigen Dreiecken A 4, 4, 4; und
A A, A, A, mit der Seite a aus, die an der Ecke A, aneinander-
stoBen (Fig. 2). Sie bil-
den zusammen den ge-
schlossenen polygonalen
5 Iugpy=A, 4,45 4,4;,
der die Ebene in 3 Be-
! reiche teilt:
° 1, Das Innere von
A A4, A, A;: B,
Ag 4s 2. Das Innere von

g & A A A A B,

3. Den Bereich B, der den unendlich fernen Punkt enthdlt und

vom ganzen polygonalen Zug p, begrenzt wird.

In die Mitte jeder der Seiten von p, setzen wir die Spitze eines
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208 Huseer CrEMER:

Wir gehen von zwei gleichseitigen Dreiecken A 4, 4, 4; und
A A, A, A, mit der Seite a aus, die an der Ecke A, aneinander-
stoBen (Fig. 2). Sie bil-
den zusammen den ge-
schlossenen polygonalen
5 Iugpy=A, 4,45 4,4;,
der die Ebene in 3 Be-
! reiche teilt:
° 1, Das Innere von
A A4, A, A;: B,
Ag 4s 2. Das Innere von

g & A A A A B,

3. Den Bereich B, der den unendlich fernen Punkt enthdlt und

vom ganzen polygonalen Zug p, begrenzt wird.

In die Mitte jeder der Seiten von p, setzen wir die Spitze eines

The original picture appears in a paper of Gaston Julia in 1918.
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The Julia set of —2—23 352
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General approach
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General approach

Let G be a finitely generated group and let ¢ : Gi — G be a surjective
virtual endomorphism, which is contracting,
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General approach

Let G be a finitely generated group and let ¢ : Gi — G be a surjective
virtual endomorphism, which is contracting, i.e., there exist constants N
and C such that

(6" (&) < 5(g) + €

for all g € Dom ¢N.
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.
General approach

Let G be a finitely generated group and let ¢ : Gi — G be a surjective
virtual endomorphism, which is contracting, i.e., there exist constants N
and C such that

(6" (&) < 5(g) + €

for all g € Dom ¢,
A model of (G, ) is a length space X on which G acts by isometries,
properly and co-compactly and a contracting map ¢ : ¥ — X" such that

(& g) =P(E) ¢(s)

for all g € Dom¢ and £ € X.
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If (X,®) is a model of (G, ¢), then we get a contracting topological
automaton F = (M, My, f, 1), where M = X/G,
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If (X,®) is a model of (G, ¢), then we get a contracting topological
automaton F = (M, My, f, 1), where M = X /G, My = X /Gy,
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If (X,®) is a model of (G, ¢), then we get a contracting topological
automaton F = (M, My, f, 1), where M = X /G, My = X /Gy,
f:X/Gy — X/G is induced by the identity map,
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induced by .
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If (X,®) is a model of (G, ¢), then we get a contracting topological
automaton F = (M, My, f, 1), where M = X /G, My = X /Gy,
f:X/G — X/G is induced by the identity map, ¢ : X/Gi — X /G is
induced by .

Then the iterated monodromy group of F is (G /Ny, ¢/Ny), where

Ny = Unzl,geG g_l -Dom ¢" - g.
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If (X,®) is a model of (G, ¢), then we get a contracting topological
automaton F = (M, My, f, 1), where M = X /G, My = X /Gy,
f:X/G — X/G is induced by the identity map, ¢ : X/Gi — X /G is
induced by .

Then the iterated monodromy group of F is (G /Ny, ¢/Ny), where

Ny =Up>14ec8 - Domo” - g.

The nth iteration of this automaton is the automaton constructed in the
same way from (G, ¢").
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If (X,®) is a model of (G, ¢), then we get a contracting topological
automaton F = (M, My, f, 1), where M = X /G, My = X /Gy,
f:X/G — X/G is induced by the identity map, ¢ : X/Gi — X /G is
induced by .

Then the iterated monodromy group of F is (G /Ny, ¢/Ny), where

Ny =Up>14ec8 - Domo” - g.

The nth iteration of this automaton is the automaton constructed in the
same way from (G, ¢").

The inverse limit of the spaces X'/ Dom ¢" with respect to the maps
induced by ® depends only on (G, ¢) and is called the limit space of

(G, 9).
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DESSS—....
Rips complexes

The group G acts on itself by right translations properly and co-compactly.
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Rips complexes

The group G acts on itself by right translations properly and co-compactly.
Choosing a coset transversal R of G by Dom ¢ we get a map

®(g):=o¢(r'g), reR, r'geDom¢

satisfying the condition ®(¢ - g) = ®(&) - (g).
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Rips complexes
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Rips complexes

The group G acts on itself by right translations properly and co-compactly.
Choosing a coset transversal R of G by Dom ¢ we get a map

d(g) = cb(r_lg), reR, rlgeDome

satisfying the condition ®(¢ - g) = ®(&) - (g).

It remains to “fill-in" the G-space G so that we get a metric space such
that an extension of ® is contracting.

A natural candidate is a Rips complex of G. If S=S"131isa
generating set, then define (G, S) to be the simplicial complex with
vertex set G in which A C G is a simplex iff g7*A C S for every g € A.
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.
Rips complexes

The group G acts on itself by right translations properly and co-compactly.
Choosing a coset transversal R of G by Dom ¢ we get a map

d(g) = qﬁ(r_lg), reR, rlgeDome

satisfying the condition ®(¢ - g) = ®(&) - (g).

It remains to “fill-in" the G-space G so that we get a metric space such
that an extension of ® is contracting.

A natural candidate is a Rips complex of G. If S=S"131isa
generating set, then define (G, S) to be the simplicial complex with
vertex set G in which A C G is a simplex iff g7*A C S for every g € A. If
g/)(rl_lgr2) € Sforall n,m € R and g € S such that rl_lgrg € Dom ¢,
then ® : [(G,S) — (G, S) is simplicial.
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.
Cut-and-paste rules

Baricentric subdivision of (G, S) coincides with the geometric realization
of the poset of the sets of the foom A-g for AC S and g € G.
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Baricentric subdivision of (G, S) coincides with the geometric realization
of the poset of the sets of the foom A-g for AC S and g € G.

The sub-complex T of subsets A - g containing 1 is a fundamental domain
of the G-action.
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Cut-and-paste rules

Baricentric subdivision of (G, S) coincides with the geometric realization
of the poset of the sets of the foom A-g for AC S and g € G.

The sub-complex T of subsets A - g containing 1 is a fundamental domain
of the G-action. The complex M =T(G,S)/G is obtained by
identifications kp : A+— A- h defined on the set K, of vertices A € T such

that A> h 1.
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Cut-and-paste rules

Baricentric subdivision of (G, S) coincides with the geometric realization
of the poset of the sets of the foom A-g for AC S and g € G.

The sub-complex T of subsets A - g containing 1 is a fundamental domain
of the G-action. The complex M =T(G,S)/G is obtained by
identifications kp : A+— A- h defined on the set K, of vertices A € T such
that A> h™L.

The complexes M, are obtained by taking d” copies of T and pasting
them together by copies of kp according to a simple recursive rule.
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Theorem

There exists a generating set S of G and a number n such that

®":T1(G,S) — I(G,S) is homotopic through maps V satisfying
V(- -g)=WV(&) - ¢"(g) to a contracting map.
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There exists a generating set S of G and a number n such that
®":T1(G,S) — I(G,S) is homotopic through maps V satisfying
V(- -g)=VWV(&) - ¢"(g) to a contracting map.

In this way we get a model of the virtual endomorphism (G, ¢"), which is
good enough to get combinatorial approximations of the Julia sets.
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Theorem

There exists a generating set S of G and a number n such that
®":T1(G,S) — I(G,S) is homotopic through maps V satisfying
V(- -g)=VWV(&) - ¢"(g) to a contracting map.

In this way we get a model of the virtual endomorphism (G, ¢"), which is
good enough to get combinatorial approximations of the Julia sets.

A more explicit version of the theorem is algorithmic. There is an algorithm
which, given the iterated monodromy group of an expanding dynamical
system, produces the complex T and the pasting rules kp, thus giving a
recurrent description of the complexes M, approximating the Julia set.
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