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Topological setting

Definition

A topological automaton (topological correspondence) F is a quadruple
(M,M1, f , ι), where M and M1 are topological spaces (orbispaces),
f : M1 −→ M is a finite covering map and ι : M1 −→ M is a continuous
map.

Examples:

Self-coverings: when ι is identity.
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Topological setting

Definition

A topological automaton (topological correspondence) F is a quadruple
(M,M1, f , ι), where M and M1 are topological spaces (orbispaces),
f : M1 −→ M is a finite covering map and ι : M1 −→ M is a continuous
map.

Examples:

Self-coverings: when ι is identity.
Partial self-coverings: when ι is an embedding.
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Topological setting

Definition

A topological automaton (topological correspondence) F is a quadruple
(M,M1, f , ι), where M and M1 are topological spaces (orbispaces),
f : M1 −→ M is a finite covering map and ι : M1 −→ M is a continuous
map.

Examples:

Self-coverings: when ι is identity.
Partial self-coverings: when ι is an embedding.
Finite automata (transducers).
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Transducers

Definition

An automaton over an alphabet X is a triple (Q, τ, π), where Q is a set (of
internal states) and τ and π are maps

τ : Q × X −→ X, π : Q × X −→ Q,
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internal states) and τ and π are maps
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called the output and transition. The automaton is called invertible if for
every q0 ∈ Q the map x 7→ τ(q0, x) is a permutation.
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every q0 ∈ Q the map x 7→ τ(q0, x) is a permutation. The automaton is
finite if the set Q is finite.

V. Nekrashevych (Texas A&M) Simplicial approximations April 2010 3 / 21



Transducers

Definition

An automaton over an alphabet X is a triple (Q, τ, π), where Q is a set (of
internal states) and τ and π are maps

τ : Q × X −→ X, π : Q × X −→ Q,

called the output and transition. The automaton is called invertible if for
every q0 ∈ Q the map x 7→ τ(q0, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, q ∈ Q.
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Transducers

Definition

An automaton over an alphabet X is a triple (Q, τ, π), where Q is a set (of
internal states) and τ and π are maps

τ : Q × X −→ X, π : Q × X −→ Q,

called the output and transition. The automaton is called invertible if for
every q0 ∈ Q the map x 7→ τ(q0, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, q ∈ Q. Let M1

be the graph with the set of vertices X where for every x ∈ X and q ∈ Q
we have an arrow eq,x from x to τ(q, x).
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Transducers

Definition

An automaton over an alphabet X is a triple (Q, τ, π), where Q is a set (of
internal states) and τ and π are maps

τ : Q × X −→ X, π : Q × X −→ Q,

called the output and transition. The automaton is called invertible if for
every q0 ∈ Q the map x 7→ τ(q0, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, q ∈ Q. Let M1

be the graph with the set of vertices X where for every x ∈ X and q ∈ Q
we have an arrow eq,x from x to τ(q, x). Define f (eq,x) = eq and
ι(eq,x) = eπ(q,x).
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Transducers

Definition

An automaton over an alphabet X is a triple (Q, τ, π), where Q is a set (of
internal states) and τ and π are maps

τ : Q × X −→ X, π : Q × X −→ Q,

called the output and transition. The automaton is called invertible if for
every q0 ∈ Q the map x 7→ τ(q0, x) is a permutation. The automaton is
finite if the set Q is finite.

Let M be the graph with one vertex and |Q| arrows eq, q ∈ Q. Let M1

be the graph with the set of vertices X where for every x ∈ X and q ∈ Q
we have an arrow eq,x from x to τ(q, x). Define f (eq,x) = eq and
ι(eq,x) = eπ(q,x). If the automaton is invertible, then f is a covering.The
corresponding topological automaton is called the dual Moore diagram of
the automaton.
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Dual Moore diagram
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Iterating automata

Let M0 = M, f0 = f and ι0 = ι and define fn, ιn : Mn+1 −→ Mn by the
pullback diagram

Mn+1
ιn−→ Mn





y

fn





y

fn−1

Mn
ιn−1
−→ Mn−1.
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Iterating automata

Let M0 = M, f0 = f and ι0 = ι and define fn, ιn : Mn+1 −→ Mn by the
pullback diagram

Mn+1
ιn−→ Mn





y

fn





y

fn−1

Mn
ιn−1
−→ Mn−1.

Then the nth iteration Fn of the topological automaton F is the covering
f0 ◦ f1 ◦ · · · ◦ fn−1 : Mn −→ M together with the map
ι0 ◦ ι1 ◦ · · · ◦ ιn−1 : Mn −→ M.
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Examples:

If F is a self-covering, then Fn is its nth iteration.
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Examples:

If F is a self-covering, then Fn is its nth iteration. If F corresponds to a
partial self-covering f : M1 −→ M, M1 ⊂ M, then Fn corresponds to
the partial self-covering f n : Mn −→ M.
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Examples:

If F is a self-covering, then Fn is its nth iteration. If F corresponds to a
partial self-covering f : M1 −→ M, M1 ⊂ M, then Fn corresponds to
the partial self-covering f n : Mn −→ M.

If F is the dual Moore diagram of an invertible automaton A, then Fn is
the dual Moore diagram of the automaton describing the action of A on
strings of length n.
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...
...

...
. . .





y

f4





y

f3





y

f2

. . .
ι4−→ M4

ι3−→ M3
ι2−→ M2





y

f3





y

f2





y

f1

. . .
ι3−→ M3

ι2−→ M2
ι1−→ M1





y

f2





y

f1





y

f

. . .
ι2−→ M2

ι1−→ M1
ι

−→ M
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ι3−→ M3
ι2−→ M2





y

f3





y

f2





y

f1

. . .
ι3−→ M3

ι2−→ M2
ι1−→ M1





y

f2





y

f1





y

f

. . .
ι2−→ M2

ι1−→ M1
ι

−→ M

We get three inverse limits limf F , limι F and limf ,ι F with self-maps ι∞,
f∞ and ∆.
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Iterated monodromy groups

Let F = (M,M1, f , ι) be a topological automaton.
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ι∗ : π1(M1) −→ π1(M) is a virtual endomorphism of π1(M).
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Iterated monodromy groups

Let F = (M,M1, f , ι) be a topological automaton. Identify π1(M1) with
a subgroup of finite index in π1(M) using f∗. Then
ι∗ : π1(M1) −→ π1(M) is a virtual endomorphism of π1(M).
Denote

Nι∗ =
⋂

n≥1,g∈π1(M)

g−1 · Dom ιn∗ · g
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Iterated monodromy groups

Let F = (M,M1, f , ι) be a topological automaton. Identify π1(M1) with
a subgroup of finite index in π1(M) using f∗. Then
ι∗ : π1(M1) −→ π1(M) is a virtual endomorphism of π1(M).
Denote

Nι∗ =
⋂

n≥1,g∈π1(M)

g−1 · Dom ιn∗ · g

The iterated monodromy group of F is

IMG (F) = π1(M)/Nι∗
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Nι∗ =
⋂

n≥1,g∈π1(M)

g−1 · Dom ιn∗ · g

The iterated monodromy group of F is

IMG (F) = π1(M)/Nι∗

together with the (conjugacy class of) the virtual endomorphism induced
by ι∗.
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Iterated monodromy groups

Let F = (M,M1, f , ι) be a topological automaton. Identify π1(M1) with
a subgroup of finite index in π1(M) using f∗. Then
ι∗ : π1(M1) −→ π1(M) is a virtual endomorphism of π1(M).
Denote

Nι∗ =
⋂

n≥1,g∈π1(M)

g−1 · Dom ιn∗ · g

The iterated monodromy group of F is

IMG (F) = π1(M)/Nι∗

together with the (conjugacy class of) the virtual endomorphism induced
by ι∗. Two topological automata are combinatorially equivalent if they
have the same iterated monodromy groups.
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Contracting automata

Definition

Let F = (M,M1, f , ι) be a topological automaton such that M is a
compact path connected and locally path connected (orbi)space.
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Contracting automata

Definition

Let F = (M,M1, f , ι) be a topological automaton such that M is a
compact path connected and locally path connected (orbi)space. F is
contracting if there exists a length structure on M and λ < 1 such that
for every rectifiable path γ in M1

length(ι(γ)) ≤ λ · length(γ),

where length of γ is computed with respect the lift of the length structure
by f .
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M.
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.
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Theorem
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If F is an automaton associated with an expanding partial self-covering
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.

If F is an automaton associated with an expanding partial self-covering
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.

If F is an automaton associated with an expanding partial self-covering
f : M1 −→ M, then F is contracting, and the limit (limι F , f∞) is
restriction of f onto the attractor

⋂

n≥0 Mn of backward iterations of f
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.

If F is an automaton associated with an expanding partial self-covering
f : M1 −→ M, then F is contracting, and the limit (limι F , f∞) is
restriction of f onto the attractor

⋂

n≥0 Mn of backward iterations of f
(the “Julia set” of f ).
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.

If F is an automaton associated with an expanding partial self-covering
f : M1 −→ M, then F is contracting, and the limit (limι F , f∞) is
restriction of f onto the attractor

⋂

n≥0 Mn of backward iterations of f
(the “Julia set” of f ). In general it is a complicated space.
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.

If F is an automaton associated with an expanding partial self-covering
f : M1 −→ M, then F is contracting, and the limit (limι F , f∞) is
restriction of f onto the attractor

⋂

n≥0 Mn of backward iterations of f
(the “Julia set” of f ). In general it is a complicated space. Constructing
another combinatorially equivalent contracting topological automaton F ,
we get approximations of the Julia set.
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⋂
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we get approximations of the Julia set. Every contracting topological
automaton is combinatorially equivalent to the dual Moore diagram of a
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Theorem

Let F = (M,M1, f , ι) be a contracting topological automaton with
locally simply connected M. Then the system (limι F , f∞) depends, up to
a topological conjugacy, on (IMG (F) , ι∗) only.

If F is an automaton associated with an expanding partial self-covering
f : M1 −→ M, then F is contracting, and the limit (limι F , f∞) is
restriction of f onto the attractor

⋂

n≥0 Mn of backward iterations of f
(the “Julia set” of f ). In general it is a complicated space. Constructing
another combinatorially equivalent contracting topological automaton F ,
we get approximations of the Julia set. Every contracting topological
automaton is combinatorially equivalent to the dual Moore diagram of a
transducer (not contracting, in general).

V. Nekrashevych (Texas A&M) Simplicial approximations April 2010 10 / 21



Example: −z3

2 + 3z
2

Consider f (z) = − z3

2 + 3z
2 .
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Example: −z3

2 + 3z
2

Consider f (z) = − z3

2 + 3z
2 . It has three critical points ∞, 1,−1, which are

fixed under f .
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Example: −z3

2 + 3z
2

Consider f (z) = − z3

2 + 3z
2 . It has three critical points ∞, 1,−1, which are

fixed under f .

Hence it is a covering of C \ {±1} by the subset
C \ f −1({±1}) = C \ {±1,±2}.
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Example: −z3

2 + 3z
2

Consider f (z) = − z3

2 + 3z
2 . It has three critical points ∞, 1,−1, which are

fixed under f .

Hence it is a covering of C \ {±1} by the subset
C \ f −1({±1}) = C \ {±1,±2}. The fundamental group is generated by

V. Nekrashevych (Texas A&M) Simplicial approximations April 2010 11 / 21



Example: −z3

2 + 3z
2

The generators are lifted to
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Example: −z3

2 + 3z
2

The generators are lifted to

We get

ι∗(a
2) = a, ι∗(b

2) = b, ι∗(a
b) = 1, ι∗(b

a) = 1.
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Example: −z3

2 + 3z
2

a

aa

b

b b
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Example: −z3

2 + 3z
2
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The original picture appears in a paper of Gaston Julia in 1918.
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The Julia set of −z3

2 + 3z
2
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General approach
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General approach

Let G be a finitely generated group and let φ : G1 −→ G be a surjective
virtual endomorphism, which is contracting,
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General approach

Let G be a finitely generated group and let φ : G1 −→ G be a surjective
virtual endomorphism, which is contracting, i.e., there exist constants N
and C such that

`(φN(g)) <
1

2
`(g) + C

for all g ∈ Dom φN .
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General approach

Let G be a finitely generated group and let φ : G1 −→ G be a surjective
virtual endomorphism, which is contracting, i.e., there exist constants N
and C such that

`(φN(g)) <
1

2
`(g) + C

for all g ∈ Dom φN .
A model of (G , φ) is a length space X on which G acts by isometries,
properly and co-compactly and a contracting map Φ : X −→ X such that

Φ(ξ · g) = Φ(ξ) · φ(g)

for all g ∈ Dom φ and ξ ∈ X .
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G ,
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G , M1 = X/G1,
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G , M1 = X/G1,
f : X/G1 −→ X/G is induced by the identity map,
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G , M1 = X/G1,
f : X/G1 −→ X/G is induced by the identity map, ι : X/G1 −→ X/G is
induced by Φ.
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G , M1 = X/G1,
f : X/G1 −→ X/G is induced by the identity map, ι : X/G1 −→ X/G is
induced by Φ.
Then the iterated monodromy group of F is (G/Nφ, φ/Nφ), where
Nφ =

⋃

n≥1,g∈G g−1 · Dom φn · g .
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G , M1 = X/G1,
f : X/G1 −→ X/G is induced by the identity map, ι : X/G1 −→ X/G is
induced by Φ.
Then the iterated monodromy group of F is (G/Nφ, φ/Nφ), where
Nφ =

⋃

n≥1,g∈G g−1 · Dom φn · g .
The nth iteration of this automaton is the automaton constructed in the
same way from (G , φn).
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If (X ,Φ) is a model of (G , φ), then we get a contracting topological
automaton F = (M,M1, f , ι), where M = X/G , M1 = X/G1,
f : X/G1 −→ X/G is induced by the identity map, ι : X/G1 −→ X/G is
induced by Φ.
Then the iterated monodromy group of F is (G/Nφ, φ/Nφ), where
Nφ =

⋃

n≥1,g∈G g−1 · Dom φn · g .
The nth iteration of this automaton is the automaton constructed in the
same way from (G , φn).
The inverse limit of the spaces X/Dom φn with respect to the maps
induced by Φ depends only on (G , φ) and is called the limit space of
(G , φ).
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Rips complexes

The group G acts on itself by right translations properly and co-compactly.
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Choosing a coset transversal R of G by Dom φ we get a map

Φ(g) := φ(r−1g), r ∈ R , r−1g ∈ Dom φ

satisfying the condition Φ(ξ · g) = Φ(ξ) · φ(g).
It remains to “fill-in” the G -space G so that we get a metric space such
that an extension of Φ is contracting.
A natural candidate is a Rips complex of G . If S = S−1 3 1 is a
generating set, then define Γ(G ,S) to be the simplicial complex with
vertex set G in which A ⊂ G is a simplex iff g−1A ⊂ S for every g ∈ A.
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The group G acts on itself by right translations properly and co-compactly.
Choosing a coset transversal R of G by Dom φ we get a map

Φ(g) := φ(r−1g), r ∈ R , r−1g ∈ Dom φ

satisfying the condition Φ(ξ · g) = Φ(ξ) · φ(g).
It remains to “fill-in” the G -space G so that we get a metric space such
that an extension of Φ is contracting.
A natural candidate is a Rips complex of G . If S = S−1 3 1 is a
generating set, then define Γ(G ,S) to be the simplicial complex with
vertex set G in which A ⊂ G is a simplex iff g−1A ⊂ S for every g ∈ A. If
φ(r−1

1 gr2) ∈ S for all r1, r2 ∈ R and g ∈ S such that r−1
1 gr2 ∈ Dom φ,

then Φ : Γ(G ,S) −→ Γ(G ,S) is simplicial.
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Cut-and-paste rules

Baricentric subdivision of Γ(G ,S) coincides with the geometric realization
of the poset of the sets of the form A · g for A ⊂ S and g ∈ G .
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of the poset of the sets of the form A · g for A ⊂ S and g ∈ G .
The sub-complex T of subsets A · g containing 1 is a fundamental domain
of the G -action. The complex M = Γ(G ,S)/G is obtained by
identifications κh : A 7→ A · h defined on the set Kh of vertices A ∈ T such
that A 3 h−1.
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Cut-and-paste rules

Baricentric subdivision of Γ(G ,S) coincides with the geometric realization
of the poset of the sets of the form A · g for A ⊂ S and g ∈ G .
The sub-complex T of subsets A · g containing 1 is a fundamental domain
of the G -action. The complex M = Γ(G ,S)/G is obtained by
identifications κh : A 7→ A · h defined on the set Kh of vertices A ∈ T such
that A 3 h−1.
The complexes Mn are obtained by taking dn copies of T and pasting
them together by copies of κh according to a simple recursive rule.
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Theorem

There exists a generating set S of G and a number n such that
Φn : Γ(G ,S) −→ Γ(G ,S) is homotopic through maps Ψ satisfying
Ψ(ξ · g) = Ψ(ξ) · φn(g) to a contracting map.
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In this way we get a model of the virtual endomorphism (G , φn), which is
good enough to get combinatorial approximations of the Julia sets.
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There exists a generating set S of G and a number n such that
Φn : Γ(G ,S) −→ Γ(G ,S) is homotopic through maps Ψ satisfying
Ψ(ξ · g) = Ψ(ξ) · φn(g) to a contracting map.

In this way we get a model of the virtual endomorphism (G , φn), which is
good enough to get combinatorial approximations of the Julia sets.
A more explicit version of the theorem is algorithmic. There is an algorithm
which, given the iterated monodromy group of an expanding dynamical
system, produces the complex T and the pasting rules κh, thus giving a
recurrent description of the complexes Mn approximating the Julia set.
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