# Simplicial approximations of the Julia sets using Group Theory 

Volodymyr Nekrashevych

April 1, 2010<br>International Group Theory Webinar

## Topological setting

Definition

A topological automaton

## Topological setting

Definition
A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$,

## Topological setting

Definition
A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces),

## Topological setting

Definition
A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces), $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a finite covering map and $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a continuous map.

## Topological setting

## Definition

A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces), $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a finite covering map and $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a continuous map.

Examples:

## Topological setting

Definition
A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces), $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a finite covering map and $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a continuous map.

Examples:
Self-coverings: when $\iota$ is identity.

## Topological setting

Definition
A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces), $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a finite covering map and $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a continuous map.

Examples:
Self-coverings: when $\iota$ is identity.
Partial self-coverings: when $\iota$ is an embedding.

## Topological setting

Definition
A topological automaton (topological correspondence) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces), $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a finite covering map and $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a continuous map.

Examples:
Self-coverings: when $\iota$ is identity.
Partial self-coverings: when $\iota$ is an embedding.
Finite automata (transducers).

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

Let $\mathcal{M}$ be the graph with one vertex and $|Q|$ arrows $e_{q}, q \in Q$.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

Let $\mathcal{M}$ be the graph with one vertex and $|Q|$ arrows $e_{q}, q \in Q$. Let $\mathcal{M}_{1}$ be the graph with the set of vertices $X$ where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q, x}$ from $x$ to $\tau(q, x)$.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

Let $\mathcal{M}$ be the graph with one vertex and $|Q|$ arrows $e_{q}, q \in Q$. Let $\mathcal{M}_{1}$ be the graph with the set of vertices $X$ where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q, x}$ from $x$ to $\tau(q, x)$. Define $f\left(e_{q, x}\right)=e_{q}$ and $\iota\left(e_{q, x}\right)=e_{\pi(q, x)}$.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

Let $\mathcal{M}$ be the graph with one vertex and $|Q|$ arrows $e_{q}, q \in Q$. Let $\mathcal{M}_{1}$ be the graph with the set of vertices $X$ where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q, x}$ from $x$ to $\tau(q, x)$. Define $f\left(e_{q, x}\right)=e_{q}$ and $\iota\left(e_{q, x}\right)=e_{\pi(q, x)}$. If the automaton is invertible, then $f$ is a covering.

## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

Let $\mathcal{M}$ be the graph with one vertex and $|Q|$ arrows $e_{q}, q \in Q$. Let $\mathcal{M}_{1}$ be the graph with the set of vertices $X$ where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q, x}$ from $x$ to $\tau(q, x)$. Define $f\left(e_{q, x}\right)=e_{q}$ and $\iota\left(e_{q, x}\right)=e_{\pi(q, x)}$. If the automaton is invertible, then $f$ is a covering. The corresponding topological automaton is called the dual Moore diagram of the automaton.

## Dual Moore diagram



## Iterating automata

Let $\mathcal{M}_{0}=\mathcal{M}, f_{0}=f$ and $\iota_{0}=\iota$ and define $f_{n}, \iota_{n}: \mathcal{M}_{n+1} \longrightarrow \mathcal{M}_{n}$ by the pullback diagram

$$
\begin{array}{rlll}
\mathcal{M}_{n+1} & \xrightarrow{\iota_{n}} & \mathcal{M}_{n} \\
\downarrow_{n} & & & \downarrow_{n-1} \\
\mathcal{M}_{n} & & \xrightarrow{\iota_{n-1}} & \mathcal{M}_{n-1} .
\end{array}
$$

## Iterating automata

Let $\mathcal{M}_{0}=\mathcal{M}, f_{0}=f$ and $\iota_{0}=\iota$ and define $f_{n}, \iota_{n}: \mathcal{M}_{n+1} \longrightarrow \mathcal{M}_{n}$ by the pullback diagram


Then the $n$th iteration $\mathcal{F}^{n}$ of the topological automaton $\mathcal{F}$ is the covering $f_{0} \circ f_{1} \circ \cdots \circ f_{n-1}: \mathcal{M}_{n} \longrightarrow \mathcal{M}$ together with the map
$\iota_{0} \circ \iota_{1} \circ \cdots \circ \iota_{n-1}: \mathcal{M}_{n} \longrightarrow \mathcal{M}$.

## Examples:

If $\mathcal{F}$ is a self-covering, then $\mathcal{F}^{n}$ is its $n$th iteration.

## Examples:

If $\mathcal{F}$ is a self-covering, then $\mathcal{F}^{n}$ is its $n$th iteration. If $\mathcal{F}$ corresponds to a partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}, \mathcal{M}_{1} \subset \mathcal{M}$, then $\mathcal{F}^{n}$ corresponds to the partial self-covering $f^{n}: \mathcal{M}_{n} \longrightarrow \mathcal{M}$.

## Examples:

If $\mathcal{F}$ is a self-covering, then $\mathcal{F}^{n}$ is its $n$th iteration. If $\mathcal{F}$ corresponds to a partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}, \mathcal{M}_{1} \subset \mathcal{M}$, then $\mathcal{F}^{n}$ corresponds to the partial self-covering $f^{n}: \mathcal{M}_{n} \longrightarrow \mathcal{M}$.

If $\mathcal{F}$ is the dual Moore diagram of an invertible automaton $\mathcal{A}$, then $\mathcal{F}^{n}$ is the dual Moore diagram of the automaton describing the action of $\mathcal{A}$ on strings of length $n$.



We get three inverse $\operatorname{limits}^{\lim } \operatorname{li}_{f} \mathcal{F}, \lim _{\iota} \mathcal{F}$ and $\lim _{f, \iota} \mathcal{F}$ with self-maps $\iota_{\infty}$, $f_{\infty}$ and $\Delta$.

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton.

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$ using $f_{*}$.

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$ using $f_{*}$. Then $\iota_{*}: \pi_{1}\left(\mathcal{M}_{1}\right) \longrightarrow \pi_{1}(\mathcal{M})$ is a virtual endomorphism of $\pi_{1}(\mathcal{M})$.

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$ using $f_{*}$. Then $\iota_{*}: \pi_{1}\left(\mathcal{M}_{1}\right) \longrightarrow \pi_{1}(\mathcal{M})$ is a virtual endomorphism of $\pi_{1}(\mathcal{M})$. Denote

$$
N_{\iota_{*}}=\bigcap_{n \geq 1, g \in \pi_{1}(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_{*}^{n} \cdot g
$$

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$ using $f_{*}$. Then $\iota_{*}: \pi_{1}\left(\mathcal{M}_{1}\right) \longrightarrow \pi_{1}(\mathcal{M})$ is a virtual endomorphism of $\pi_{1}(\mathcal{M})$.
Denote

$$
N_{\iota_{*}}=\bigcap_{n \geq 1, g \in \pi_{1}(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_{*}^{n} \cdot g
$$

The iterated monodromy group of $\mathcal{F}$ is

$$
\operatorname{IMG}(\mathcal{F})=\pi_{1}(\mathcal{M}) / N_{\iota_{*}}
$$

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$ using $f_{*}$. Then $\iota_{*}: \pi_{1}\left(\mathcal{M}_{1}\right) \longrightarrow \pi_{1}(\mathcal{M})$ is a virtual endomorphism of $\pi_{1}(\mathcal{M})$.
Denote

$$
N_{\iota_{*}}=\bigcap_{n \geq 1, g \in \pi_{1}(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_{*}^{n} \cdot g
$$

The iterated monodromy group of $\mathcal{F}$ is

$$
\operatorname{IMG}(\mathcal{F})=\pi_{1}(\mathcal{M}) / N_{\iota_{*}}
$$

together with the (conjugacy class of) the virtual endomorphism induced by $\iota_{*}$.

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$ using $f_{*}$. Then $\iota_{*}: \pi_{1}\left(\mathcal{M}_{1}\right) \longrightarrow \pi_{1}(\mathcal{M})$ is a virtual endomorphism of $\pi_{1}(\mathcal{M})$.
Denote

$$
N_{\iota_{*}}=\bigcap_{n \geq 1, g \in \pi_{1}(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_{*}^{n} \cdot g
$$

The iterated monodromy group of $\mathcal{F}$ is

$$
\operatorname{IMG}(\mathcal{F})=\pi_{1}(\mathcal{M}) / N_{\iota_{*}}
$$

together with the (conjugacy class of) the virtual endomorphism induced by $\iota_{*}$. Two topological automata are combinatorially equivalent if they have the same iterated monodromy groups.

## Contracting automata

## Definition

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton such that $\mathcal{M}$ is a compact path connected and locally path connected (orbi)space.

## Contracting automata

## Definition

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological automaton such that $\mathcal{M}$ is a compact path connected and locally path connected (orbi)space. $\mathcal{F}$ is contracting if there exists a length structure on $\mathcal{M}$ and $\lambda<1$ such that for every rectifiable path $\gamma$ in $\mathcal{M}_{1}$

$$
\text { length }(\iota(\gamma)) \leq \lambda \cdot \text { length }(\gamma)
$$

where length of $\gamma$ is computed with respect the lift of the length structure by $f$.

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$.

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$,

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting,

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$ (the "Julia set" of $f$ ).

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$ (the "Julia set" of $f$ ). In general it is a complicated space.

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$ (the "Julia set" of $f$ ). In general it is a complicated space. Constructing another combinatorially equivalent contracting topological automaton $\mathcal{F}$, we get approximations of the Julia set.

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$ (the "Julia set" of $f$ ). In general it is a complicated space. Constructing another combinatorially equivalent contracting topological automaton $\mathcal{F}$, we get approximations of the Julia set. Every contracting topological automaton is combinatorially equivalent to the dual Moore diagram of a transducer

## Theorem

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological automaton with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on $\left(\operatorname{IMG}(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$ (the "Julia set" of $f$ ). In general it is a complicated space. Constructing another combinatorially equivalent contracting topological automaton $\mathcal{F}$, we get approximations of the Julia set. Every contracting topological automaton is combinatorially equivalent to the dual Moore diagram of a transducer (not contracting, in general).

## Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$

Consider $f(z)=-\frac{z^{3}}{2}+\frac{3 z}{2}$.

## Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$

Consider $f(z)=-\frac{z^{3}}{2}+\frac{3 z}{2}$. It has three critical points $\infty, 1,-1$, which are fixed under $f$.

Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$

Consider $f(z)=-\frac{z^{3}}{2}+\frac{3 z}{2}$. It has three critical points $\infty, 1,-1$, which are fixed under $f$.

Hence it is a covering of $\mathbb{C} \backslash\{ \pm 1\}$ by the subset $\mathbb{C} \backslash f^{-1}(\{ \pm 1\})=\mathbb{C} \backslash\{ \pm 1, \pm 2\}$.

Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$

Consider $f(z)=-\frac{z^{3}}{2}+\frac{3 z}{2}$. It has three critical points $\infty, 1,-1$, which are fixed under $f$.

Hence it is a covering of $\mathbb{C} \backslash\{ \pm 1\}$ by the subset
$\mathbb{C} \backslash f^{-1}(\{ \pm 1\})=\mathbb{C} \backslash\{ \pm 1, \pm 2\}$. The fundamental group is generated by


Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$

The generators are lifted to


## Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$

The generators are lifted to


We get

$$
\iota_{*}\left(a^{2}\right)=a, \quad \iota_{*}\left(b^{2}\right)=b, \quad \iota_{*}\left(a^{b}\right)=1, \quad \iota_{*}\left(b^{a}\right)=1 .
$$

## Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$



Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$


Wir gehen von zwei gleichseitigen Dreiecken $\triangle A_{1} A_{2} A_{3}$ und $\triangle A_{1} A_{4} A_{5}$ mit der Seite $a$ aus, die an der Ecke $A_{1}$ aneinander-


Fig. 2. stoBen (Fig. 2). Sie bilden zusammen den geschlossenen polygonalen $\mathrm{Zug} p_{1}=A_{1} A_{2} A_{3} A_{4} A_{5}$, der die Ebene in 3 Be reiche teilt:

1. Das Innere von
$\triangle A_{1} A_{2} A_{3}: \mathfrak{F}_{1}$.
2. Das Innere von $\triangle A_{1} A_{4} A_{5}: \mathfrak{B}_{1}^{\prime}$.
3. Den Bereich $\mathfrak{B}_{1}^{\prime \prime}$, der den unendlich fernen Punkt enthält und vom ganzen polygonalen Zug $p_{1}$ begrenzt wird.

In die Mitte jeder der Seiten von $p_{1}$ setzen wir die Spitze eines

Wir gehen von zwei gleichseitigen Dreiecken $\triangle A_{1} A_{2} A_{3}$ und $\triangle A_{1} A_{4} A_{5}$ mit der Seite $a$ aus, die an der Ecke $A_{1}$ aneinander-


Fig. 2. stoBen (Fig. 2). Sie bilden zusammen den geschlossenen polygonalen $\mathrm{Zug} p_{1}=A_{1} A_{2} A_{3} A_{4} A_{5}$, der die Ebene in 3 Be reiche teilt:

1. Das Innere von
$\triangle A_{1} A_{2} A_{3}: \mathfrak{F}_{1}$.
2. Das Innere von $\triangle A_{1} A_{4} A_{5}: \mathfrak{B}_{1}^{\prime}$.
3. Den Bereich $\mathfrak{B}_{1}^{\prime \prime}$, der den unendlich fernen Punkt enthält und vom ganzen polygonalen Zug $p_{1}$ begrenzt wird.

In die Mitte jeder der Seiten von $p_{1}$ setzen wir die Spitze eines

The original picture appears in a paper of Gaston Julia in 1918.

The Julia set of $-\frac{z^{3}}{2}+\frac{3 z}{2}$


## General approach

## General approach

Let $G$ be a finitely generated group and let $\phi: G_{1} \longrightarrow G$ be a surjective virtual endomorphism, which is contracting,

## General approach

Let $G$ be a finitely generated group and let $\phi: G_{1} \longrightarrow G$ be a surjective virtual endomorphism, which is contracting, i.e., there exist constants $N$ and $C$ such that

$$
\ell\left(\phi^{N}(g)\right)<\frac{1}{2} \ell(g)+C
$$

for all $g \in \operatorname{Dom} \phi^{N}$.

## General approach

Let $G$ be a finitely generated group and let $\phi: G_{1} \longrightarrow G$ be a surjective virtual endomorphism, which is contracting, i.e., there exist constants $N$ and $C$ such that

$$
\ell\left(\phi^{N}(g)\right)<\frac{1}{2} \ell(g)+C
$$

for all $g \in \operatorname{Dom} \phi^{N}$.
A model of $(G, \phi)$ is a length space $\mathcal{X}$ on which $G$ acts by isometries, properly and co-compactly and a contracting map $\Phi: \mathcal{X} \longrightarrow \mathcal{X}$ such that

$$
\Phi(\xi \cdot g)=\Phi(\xi) \cdot \phi(g)
$$

for all $g \in \operatorname{Dom} \phi$ and $\xi \in \mathcal{X}$.

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G$,

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}$,

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}$, $f: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by the identity map,

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}$, $f: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by the identity map, $\iota: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by $\Phi$.

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}$, $f: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by the identity map, $\iota: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by $\Phi$.
Then the iterated monodromy group of $\mathcal{F}$ is $\left(G / N_{\phi}, \phi / N_{\phi}\right)$, where $N_{\phi}=\bigcup_{n \geq 1, g \in G} g^{-1} \cdot \operatorname{Dom} \phi^{n} \cdot g$.

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}$, $f: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by the identity map, $\iota: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by $\Phi$.
Then the iterated monodromy group of $\mathcal{F}$ is $\left(G / N_{\phi}, \phi / N_{\phi}\right)$, where $N_{\phi}=\bigcup_{n \geq 1, g \in G} g^{-1} \cdot \operatorname{Dom} \phi^{n} \cdot g$.
The $n$th iteration of this automaton is the automaton constructed in the same way from ( $G, \phi^{n}$ ).

If $(\mathcal{X}, \Phi)$ is a model of $(G, \phi)$, then we get a contracting topological automaton $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}$, $f: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by the identity map, $\iota: \mathcal{X} / G_{1} \longrightarrow \mathcal{X} / G$ is induced by $\Phi$.
Then the iterated monodromy group of $\mathcal{F}$ is $\left(G / N_{\phi}, \phi / N_{\phi}\right)$, where $N_{\phi}=\bigcup_{n \geq 1, g \in G} g^{-1} \cdot \operatorname{Dom} \phi^{n} \cdot g$.
The $n$th iteration of this automaton is the automaton constructed in the same way from ( $G, \phi^{n}$ ).
The inverse limit of the spaces $\mathcal{X} / \operatorname{Dom} \phi^{n}$ with respect to the maps induced by $\Phi$ depends only on $(G, \phi)$ and is called the limit space of $(G, \phi)$.

## Rips complexes

The group $G$ acts on itself by right translations properly and co-compactly.

## Rips complexes

The group $G$ acts on itself by right translations properly and co-compactly. Choosing a coset transversal $R$ of $G$ by $\operatorname{Dom} \phi$ we get a map

$$
\Phi(g):=\phi\left(r^{-1} g\right), \quad r \in R, \quad r^{-1} g \in \operatorname{Dom} \phi
$$

satisfying the condition $\Phi(\xi \cdot g)=\Phi(\xi) \cdot \phi(g)$.

## Rips complexes

The group $G$ acts on itself by right translations properly and co-compactly. Choosing a coset transversal $R$ of $G$ by $\operatorname{Dom} \phi$ we get a map

$$
\Phi(g):=\phi\left(r^{-1} g\right), \quad r \in R, \quad r^{-1} g \in \operatorname{Dom} \phi
$$

satisfying the condition $\Phi(\xi \cdot g)=\Phi(\xi) \cdot \phi(g)$.
It remains to "fill-in" the $G$-space $G$ so that we get a metric space such that an extension of $\Phi$ is contracting.

## Rips complexes

The group $G$ acts on itself by right translations properly and co-compactly. Choosing a coset transversal $R$ of $G$ by Dom $\phi$ we get a map

$$
\Phi(g):=\phi\left(r^{-1} g\right), \quad r \in R, \quad r^{-1} g \in \operatorname{Dom} \phi
$$

satisfying the condition $\Phi(\xi \cdot g)=\Phi(\xi) \cdot \phi(g)$.
It remains to "fill-in" the $G$-space $G$ so that we get a metric space such that an extension of $\Phi$ is contracting.
A natural candidate is a Rips complex of $G$.

## Rips complexes

The group $G$ acts on itself by right translations properly and co-compactly. Choosing a coset transversal $R$ of $G$ by Dom $\phi$ we get a map

$$
\Phi(g):=\phi\left(r^{-1} g\right), \quad r \in R, \quad r^{-1} g \in \operatorname{Dom} \phi
$$

satisfying the condition $\Phi(\xi \cdot g)=\Phi(\xi) \cdot \phi(g)$.
It remains to "fill-in" the $G$-space $G$ so that we get a metric space such that an extension of $\Phi$ is contracting.
A natural candidate is a Rips complex of $G$. If $S=S^{-1} \ni 1$ is a generating set, then define $\Gamma(G, S)$ to be the simplicial complex with vertex set $G$ in which $A \subset G$ is a simplex iff $g^{-1} A \subset S$ for every $g \in A$.

## Rips complexes

The group $G$ acts on itself by right translations properly and co-compactly. Choosing a coset transversal $R$ of $G$ by Dom $\phi$ we get a map

$$
\Phi(g):=\phi\left(r^{-1} g\right), \quad r \in R, \quad r^{-1} g \in \operatorname{Dom} \phi
$$

satisfying the condition $\Phi(\xi \cdot g)=\Phi(\xi) \cdot \phi(g)$.
It remains to "fill-in" the $G$-space $G$ so that we get a metric space such that an extension of $\Phi$ is contracting.
A natural candidate is a Rips complex of $G$. If $S=S^{-1} \ni 1$ is a generating set, then define $\Gamma(G, S)$ to be the simplicial complex with vertex set $G$ in which $A \subset G$ is a simplex iff $g^{-1} A \subset S$ for every $g \in A$. If $\phi\left(r_{1}^{-1} g r_{2}\right) \in S$ for all $r_{1}, r_{2} \in R$ and $g \in S$ such that $r_{1}^{-1} g r_{2} \in \operatorname{Dom} \phi$, then $\Phi: \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is simplicial.

## Cut-and-paste rules

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$.

## Cut-and-paste rules

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$.
The sub-complex $T$ of subsets $A \cdot g$ containing 1 is a fundamental domain of the $G$-action.

## Cut-and-paste rules

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$.
The sub-complex $T$ of subsets $A \cdot g$ containing 1 is a fundamental domain of the $G$-action. The complex $\mathcal{M}=\Gamma(G, S) / G$ is obtained by identifications $\kappa_{h}: A \mapsto A \cdot h$ defined on the set $K_{h}$ of vertices $A \in T$ such that $A \ni h^{-1}$.

## Cut-and-paste rules

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$.
The sub-complex $T$ of subsets $A \cdot g$ containing 1 is a fundamental domain of the $G$-action. The complex $\mathcal{M}=\Gamma(G, S) / G$ is obtained by identifications $\kappa_{h}: A \mapsto A \cdot h$ defined on the set $K_{h}$ of vertices $A \in T$ such that $A \ni h^{-1}$.
The complexes $\mathcal{M}_{n}$ are obtained by taking $d^{n}$ copies of $T$ and pasting them together by copies of $\kappa_{h}$ according to a simple recursive rule.

Theorem
There exists a generating set $S$ of $G$ and a number n such that $\Phi^{n}: \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps $\psi$ satisfying $\psi(\xi \cdot g)=\psi(\xi) \cdot \phi^{n}(g)$ to a contracting map.

## Theorem

There exists a generating set $S$ of $G$ and a number n such that $\Phi^{n}: \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps $\psi$ satisfying $\Psi(\xi \cdot g)=\Psi(\xi) \cdot \phi^{n}(g)$ to a contracting map.

In this way we get a model of the virtual endomorphism ( $G, \phi^{n}$ ), which is good enough to get combinatorial approximations of the Julia sets.

## Theorem

There exists a generating set $S$ of $G$ and a number n such that $\Phi^{n}: \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps $\psi$ satisfying $\psi(\xi \cdot g)=\psi(\xi) \cdot \phi^{n}(g)$ to a contracting map.

In this way we get a model of the virtual endomorphism ( $G, \phi^{n}$ ), which is good enough to get combinatorial approximations of the Julia sets. A more explicit version of the theorem is algorithmic.

## Theorem

There exists a generating set $S$ of $G$ and a number n such that $\Phi^{n}: \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps $\psi$ satisfying $\Psi(\xi \cdot g)=\Psi(\xi) \cdot \phi^{n}(g)$ to a contracting map.

In this way we get a model of the virtual endomorphism ( $G, \phi^{n}$ ), which is good enough to get combinatorial approximations of the Julia sets. A more explicit version of the theorem is algorithmic. There is an algorithm which, given the iterated monodromy group of an expanding dynamical system, produces the complex $T$ and the pasting rules $\kappa_{h}$, thus giving a recurrent description of the complexes $\mathcal{M}_{n}$ approximating the Julia set.

