Simplicial approximations of the Julia sets using Group Theory

Volodymyr Nekrashevych

April 1, 2010 International Group Theory Webinar

V. Nekrashevych (Texas A&M)

Simplicial approximations

April 2010 1 / 21

Topological setting

Definition

A topological automaton

< ロ > < 同 > < 回 > < 回 > < 回

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$,

A (10) A (10)

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces),

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces), $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a finite covering map and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a continuous map.

A (10) A (10)

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces), $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a finite covering map and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a continuous map.

Examples:

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces), $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a finite covering map and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a continuous map.

Examples:

Self-coverings: when ι is identity.

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces), $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a finite covering map and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a continuous map.

Examples:

Self-coverings: when ι is identity. Partial self-coverings: when ι is an embedding.

A topological automaton (topological correspondence) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces), $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a finite covering map and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a continuous map.

Examples:

Self-coverings: when ι is identity. Partial self-coverings: when ι is an embedding. Finite automata (transducers).

- 4 周 ト - 4 日 ト - 4 日 ト

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{X}, \quad \pi: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{Q},$$

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{X}, \quad \pi: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*.

★ Ξ ►

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} imes \mathsf{X} \longrightarrow \mathsf{X}, \quad \pi: \mathbf{Q} imes \mathsf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation.

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} imes \mathsf{X} \longrightarrow \mathsf{X}, \quad \pi: \mathbf{Q} imes \mathsf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{X}, \quad \pi: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Let \mathcal{M} be the graph with one vertex and |Q| arrows e_q , $q \in Q$.

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{X}, \quad \pi: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Let \mathcal{M} be the graph with one vertex and |Q| arrows e_q , $q \in Q$. Let \mathcal{M}_1 be the graph with the set of vertices X where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q,x}$ from x to $\tau(q,x)$.

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} imes \mathsf{X} \longrightarrow \mathsf{X}, \quad \pi: \mathbf{Q} imes \mathsf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Let \mathcal{M} be the graph with one vertex and |Q| arrows e_q , $q \in Q$. Let \mathcal{M}_1 be the graph with the set of vertices X where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q,x}$ from x to $\tau(q,x)$. Define $f(e_{q,x}) = e_q$ and $\iota(e_{q,x}) = e_{\pi(q,x)}$.

- 4 間 5 - 4 三 5 - 4 三 5

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{X}, \quad \pi: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Let \mathcal{M} be the graph with one vertex and |Q| arrows e_q , $q \in Q$. Let \mathcal{M}_1 be the graph with the set of vertices X where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q,x}$ from x to $\tau(q,x)$. Define $f(e_{q,x}) = e_q$ and $\iota(e_{q,x}) = e_{\pi(q,x)}$. If the automaton is invertible, then f is a covering.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$au: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{X}, \quad \pi: \mathbf{Q} \times \mathbf{X} \longrightarrow \mathbf{Q},$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Let \mathcal{M} be the graph with one vertex and |Q| arrows e_q , $q \in Q$. Let \mathcal{M}_1 be the graph with the set of vertices X where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q,x}$ from x to $\tau(q,x)$. Define $f(e_{q,x}) = e_q$ and $\iota(e_{q,x}) = e_{\pi(q,x)}$. If the automaton is invertible, then f is a covering. The corresponding topological automaton is called the *dual Moore diagram* of the automaton.

V. Nekrashevych (Texas A&M)

Dual Moore diagram

V. Nekrashevych (Texas A&M)

Simplicial approximations

(ロ) (部) (目) (日) (日)

Let $\mathcal{M}_0 = \mathcal{M}$, $f_0 = f$ and $\iota_0 = \iota$ and define $f_n, \iota_n : \mathcal{M}_{n+1} \longrightarrow \mathcal{M}_n$ by the pullback diagram

$$\begin{array}{cccc} \mathcal{M}_{n+1} & \stackrel{\iota_n}{\longrightarrow} & \mathcal{M}_n \\ & & & & \downarrow f_{n-1} \\ \mathcal{M}_n & \stackrel{\iota_{n-1}}{\longrightarrow} & \mathcal{M}_{n-1}. \end{array}$$

Let $\mathcal{M}_0 = \mathcal{M}$, $f_0 = f$ and $\iota_0 = \iota$ and define $f_n, \iota_n : \mathcal{M}_{n+1} \longrightarrow \mathcal{M}_n$ by the pullback diagram

$$\begin{array}{cccc} \mathcal{M}_{n+1} & \xrightarrow{\iota_n} & \mathcal{M}_n \\ & & & \downarrow_{f_n} & & \downarrow_{f_{n-1}} \\ \mathcal{M}_n & \xrightarrow{\iota_{n-1}} & \mathcal{M}_{n-1}. \end{array}$$

Then the *n*th iteration \mathcal{F}^n of the topological automaton \mathcal{F} is the covering $f_0 \circ f_1 \circ \cdots \circ f_{n-1} : \mathcal{M}_n \longrightarrow \mathcal{M}$ together with the map $\iota_0 \circ \iota_1 \circ \cdots \circ \iota_{n-1} : \mathcal{M}_n \longrightarrow \mathcal{M}$.

Examples:

If \mathcal{F} is a self-covering, then \mathcal{F}^n is its *n*th iteration.

(ロ) (部) (目) (日) (日)

Examples:

If \mathcal{F} is a self-covering, then \mathcal{F}^n is its *n*th iteration. If \mathcal{F} corresponds to a partial self-covering $f : \mathcal{M}_1 \longrightarrow \mathcal{M}, \ \mathcal{M}_1 \subset \mathcal{M}$, then \mathcal{F}^n corresponds to the partial self-covering $f^n : \mathcal{M}_n \longrightarrow \mathcal{M}$.

イロト イヨト イヨト

Examples:

If \mathcal{F} is a self-covering, then \mathcal{F}^n is its *n*th iteration. If \mathcal{F} corresponds to a partial self-covering $f : \mathcal{M}_1 \longrightarrow \mathcal{M}, \ \mathcal{M}_1 \subset \mathcal{M}$, then \mathcal{F}^n corresponds to the partial self-covering $f^n : \mathcal{M}_n \longrightarrow \mathcal{M}$.

If \mathcal{F} is the dual Moore diagram of an invertible automaton \mathcal{A} , then \mathcal{F}^n is the dual Moore diagram of the automaton describing the action of \mathcal{A} on strings of length n.

< ロ > < 団 > < 団 > < 団 > < 団 > <

▲ ■ → Q ○
April 2010 7 / 21

・ロト ・聞ト ・ヨト ・ヨト

We get three inverse limits $\lim_{f} \mathcal{F}$, $\lim_{\iota} \mathcal{F}$ and $\lim_{f,\iota} \mathcal{F}$ with self-maps ι_{∞} , f_{∞} and Δ .

3 🕨 🖌 3

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton.

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$ using f_* .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$ using f_* . Then $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ is a virtual endomorphism of $\pi_1(\mathcal{M})$.

イロト イポト イヨト イヨト 二日

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$ using f_* . Then $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ is a virtual endomorphism of $\pi_1(\mathcal{M})$. Denote

$$N_{\iota_*} = igcap_{n \ge 1, g \in \pi_1(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_*^n \cdot g$$

イロト 不得 とくまとう きょう

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$ using f_* . Then $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ is a virtual endomorphism of $\pi_1(\mathcal{M})$. Denote

$$N_{\iota_*} = \bigcap_{n \ge 1, g \in \pi_1(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_*^n \cdot g$$

The iterated monodromy group of \mathcal{F} is

$$\mathrm{IMG}\left(\mathcal{F}\right) = \pi_1(\mathcal{M})/N_{\iota_*}$$

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$ using f_* . Then $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ is a virtual endomorphism of $\pi_1(\mathcal{M})$. Denote

$$N_{\iota_*} = \bigcap_{n \ge 1, g \in \pi_1(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_*^n \cdot g$$

The iterated monodromy group of ${\mathcal F}$ is

$$\mathrm{IMG}\left(\mathcal{F}\right) = \pi_1(\mathcal{M})/N_{\iota_*}$$

together with the (conjugacy class of) the virtual endomorphism induced by ι_* .

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$ using f_* . Then $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ is a virtual endomorphism of $\pi_1(\mathcal{M})$. Denote

$$N_{\iota_*} = \bigcap_{n \ge 1, g \in \pi_1(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_*^n \cdot g$$

The iterated monodromy group of ${\mathcal F}$ is

$$\mathrm{IMG}\left(\mathcal{F}\right) = \pi_1(\mathcal{M})/N_{\iota_*}$$

together with the (conjugacy class of) the virtual endomorphism induced by ι_* . Two topological automata are *combinatorially equivalent* if they have the same iterated monodromy groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Contracting automata

Definition

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton such that \mathcal{M} is a compact path connected and locally path connected (orbi)space.

Contracting automata

Definition

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological automaton such that \mathcal{M} is a compact path connected and locally path connected (orbi)space. \mathcal{F} is *contracting* if there exists a length structure on \mathcal{M} and $\lambda < 1$ such that for every rectifiable path γ in \mathcal{M}_1

$$\operatorname{length}(\iota(\gamma)) \leq \lambda \cdot \operatorname{length}(\gamma),$$

where length of γ is computed with respect the lift of the length structure by f.

超す イヨト イヨト

Theorem

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} .
Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_1 \longrightarrow \mathcal{M}$,

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting,

→ □ → → □ → → □

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n>0} \mathcal{M}_n$ of backward iterations of f

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n\geq 0} \mathcal{M}_n$ of backward iterations of f (the "Julia set" of f).

(日) (同) (三) (三)

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n\geq 0} \mathcal{M}_n$ of backward iterations of f (the "Julia set" of f). In general it is a complicated space.

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n\geq 0} \mathcal{M}_n$ of backward iterations of f (the "Julia set" of f). In general it is a complicated space. Constructing another combinatorially equivalent contracting topological automaton \mathcal{F} , we get approximations of the Julia set.

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n\geq 0} \mathcal{M}_n$ of backward iterations of f (the "Julia set" of f). In general it is a complicated space. Constructing another combinatorially equivalent contracting topological automaton \mathcal{F} , we get approximations of the Julia set. Every contracting topological automaton is combinatorially equivalent to the dual Moore diagram of a transducer

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological automaton with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is an automaton associated with an expanding partial self-covering $f: \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n\geq 0} \mathcal{M}_n$ of backward iterations of f (the "Julia set" of f). In general it is a complicated space. Constructing another combinatorially equivalent contracting topological automaton \mathcal{F} , we get approximations of the Julia set. Every contracting topological automaton is combinatorially equivalent to the dual Moore diagram of a transducer (not contracting, in general).

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

Consider $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

Consider $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$. It has three critical points $\infty, 1, -1$, which are fixed under f.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Example: $-\frac{z^3}{2} + \frac{3z}{2}$

Consider $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$. It has three critical points $\infty, 1, -1$, which are fixed under f.

Hence it is a covering of $\mathbb{C} \setminus \{\pm 1\}$ by the subset $\mathbb{C} \setminus f^{-1}(\{\pm 1\}) = \mathbb{C} \setminus \{\pm 1, \pm 2\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ □ ● のへで

Example: $-\frac{z^3}{2} + \frac{3z}{2}$

Consider $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$. It has three critical points $\infty, 1, -1$, which are fixed under f.

Hence it is a covering of $\mathbb{C} \setminus \{\pm 1\}$ by the subset $\mathbb{C} \setminus f^{-1}(\{\pm 1\}) = \mathbb{C} \setminus \{\pm 1, \pm 2\}$. The fundamental group is generated by

イロト イポト イヨト イヨト

Example:
$$-\frac{z^{3}}{2} + \frac{3z}{2}$$

The generators are lifted to

・ロト ・聞ト ・ヨト ・ヨト

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

The generators are lifted to

We get

$$\iota_*(a^2) = a, \quad \iota_*(b^2) = b, \quad \iota_*(a^b) = 1, \quad \iota_*(b^a) = 1.$$

・ロト ・聞ト ・ヨト ・ヨト

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

April 2010 13 / 21

・ロト・4回ト・4回ト・4回ト・4日ト

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

V. Nekrashevych (Texas A&M)

Simplicial approximations

April 2010 14 / 21

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

3. Den Bereich \mathfrak{B}_1' , der den unendlich fernen Punkt enthält und vom ganzen polygonalen Zug p_1 begrenzt wird.

In die Mitte jeder der Seiten von p_1 setzen wir die Spitze eines

・ロト ・聞ト ・ヨト ・ヨト

In die Mitte jeder der Seiten von p_1 setzen wir die Spitze eines

The original picture appears in a paper of Gaston Julia in 1918.

April 2010 15 / 21

The Julia set of
$$-\frac{z^3}{2} + \frac{3z}{2}$$

April 2010 16 / 21

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

General approach

V. Nekrashevych (Texas A&M)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Let G be a finitely generated group and let $\phi : G_1 \longrightarrow G$ be a surjective virtual endomorphism, which is *contracting*,

Let G be a finitely generated group and let $\phi : G_1 \longrightarrow G$ be a surjective virtual endomorphism, which is *contracting*, i.e., there exist constants N and C such that

$$\ell(\phi^{\sf N}(g)) < \frac{1}{2}\ell(g) + C$$

for all $g \in \text{Dom } \phi^N$.

Let G be a finitely generated group and let $\phi : G_1 \longrightarrow G$ be a surjective virtual endomorphism, which is *contracting*, i.e., there exist constants N and C such that

$$\ell(\phi^{\sf N}(g)) < \frac{1}{2}\ell(g) + C$$

for all $g \in \text{Dom } \phi^N$.

A model of (G, ϕ) is a length space \mathcal{X} on which G acts by isometries, properly and co-compactly and a contracting map $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ such that

$$\Phi(\xi \cdot g) = \Phi(\xi) \cdot \phi(g)$$

for all $g \in \text{Dom } \phi$ and $\xi \in \mathcal{X}$.

イロト イポト イヨト イヨト 二日

If (\mathcal{X}, Φ) is a model of (G, ϕ) , then we get a contracting topological automaton $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$, where $\mathcal{M} = \mathcal{X}/G$,

If (\mathcal{X}, Φ) is a model of (G, ϕ) , then we get a contracting topological automaton $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$, where $\mathcal{M} = \mathcal{X}/G$, $\mathcal{M}_1 = \mathcal{X}/G_1$,

If (\mathcal{X}, Φ) is a model of (G, ϕ) , then we get a contracting topological automaton $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$, where $\mathcal{M} = \mathcal{X}/G$, $\mathcal{M}_1 = \mathcal{X}/G_1$, $f : \mathcal{X}/G_1 \longrightarrow \mathcal{X}/G$ is induced by the identity map,

イロト 不得 とくまとう きょう

Then the iterated monodromy group of \mathcal{F} is $(G/N_{\phi}, \phi/N_{\phi})$, where $N_{\phi} = \bigcup_{n \geq 1, g \in G} g^{-1} \cdot \operatorname{Dom} \phi^n \cdot g$.

イロト イポト イヨト イヨト 二日

Then the iterated monodromy group of \mathcal{F} is $(G/N_{\phi}, \phi/N_{\phi})$, where $N_{\phi} = \bigcup_{n \ge 1, g \in G} g^{-1} \cdot \operatorname{Dom} \phi^n \cdot g$.

The *n*th iteration of this automaton is the automaton constructed in the same way from (G, ϕ^n) .

イロト イポト イヨト イヨト 二日

Then the iterated monodromy group of \mathcal{F} is $(G/N_{\phi}, \phi/N_{\phi})$, where $N_{\phi} = \bigcup_{n \ge 1, g \in G} g^{-1} \cdot \operatorname{Dom} \phi^n \cdot g$.

The *n*th iteration of this automaton is the automaton constructed in the same way from (G, ϕ^n) .

The inverse limit of the spaces $\mathcal{X}/\text{Dom }\phi^n$ with respect to the maps induced by Φ depends only on (G, ϕ) and is called the *limit space* of (G, ϕ) .

The group G acts on itself by right translations properly and co-compactly.

The group G acts on itself by right translations properly and co-compactly. Choosing a coset transversal R of G by $Dom \phi$ we get a map

$$\Phi(g) := \phi(r^{-1}g), \qquad r \in R, \quad r^{-1}g \in \operatorname{Dom} \phi$$

satisfying the condition $\Phi(\xi \cdot g) = \Phi(\xi) \cdot \phi(g)$.

The group G acts on itself by right translations properly and co-compactly. Choosing a coset transversal R of G by $Dom \phi$ we get a map

$$\Phi(g) := \phi(r^{-1}g), \qquad r \in R, \quad r^{-1}g \in \operatorname{Dom} \phi$$

satisfying the condition $\Phi(\xi \cdot g) = \Phi(\xi) \cdot \phi(g)$.

It remains to "fill-in" the G-space G so that we get a metric space such that an extension of Φ is contracting.

The group G acts on itself by right translations properly and co-compactly. Choosing a coset transversal R of G by $Dom \phi$ we get a map

$$\Phi(g) := \phi(r^{-1}g), \qquad r \in R, \quad r^{-1}g \in \operatorname{Dom} \phi$$

satisfying the condition $\Phi(\xi \cdot g) = \Phi(\xi) \cdot \phi(g)$.

It remains to "fill-in" the G-space G so that we get a metric space such that an extension of Φ is contracting.

A natural candidate is a *Rips complex* of G.

The group G acts on itself by right translations properly and co-compactly. Choosing a coset transversal R of G by $Dom \phi$ we get a map

$$\Phi(g) := \phi(r^{-1}g), \qquad r \in R, \quad r^{-1}g \in \operatorname{Dom} \phi$$

satisfying the condition $\Phi(\xi \cdot g) = \Phi(\xi) \cdot \phi(g)$.

It remains to "fill-in" the G-space G so that we get a metric space such that an extension of Φ is contracting.

A natural candidate is a *Rips complex* of *G*. If $S = S^{-1} \ni 1$ is a generating set, then define $\Gamma(G, S)$ to be the simplicial complex with vertex set *G* in which $A \subset G$ is a simplex iff $g^{-1}A \subset S$ for every $g \in A$.
The group G acts on itself by right translations properly and co-compactly. Choosing a coset transversal R of G by $Dom \phi$ we get a map

$$\Phi(g) := \phi(r^{-1}g), \qquad r \in R, \quad r^{-1}g \in \operatorname{Dom} \phi$$

satisfying the condition $\Phi(\xi \cdot g) = \Phi(\xi) \cdot \phi(g)$.

It remains to "fill-in" the G-space G so that we get a metric space such that an extension of Φ is contracting.

A natural candidate is a *Rips complex* of *G*. If $S = S^{-1} \ni 1$ is a generating set, then define $\Gamma(G, S)$ to be the simplicial complex with vertex set *G* in which $A \subset G$ is a simplex iff $g^{-1}A \subset S$ for every $g \in A$. If $\phi(r_1^{-1}gr_2) \in S$ for all $r_1, r_2 \in R$ and $g \in S$ such that $r_1^{-1}gr_2 \in \text{Dom }\phi$, then $\Phi : \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is simplicial.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$.

(日) (同) (三) (三)

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$. The sub-complex T of subsets $A \cdot g$ containing 1 is a fundamental domain of the *G*-action.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$. The sub-complex T of subsets $A \cdot g$ containing 1 is a fundamental domain of the G-action. The complex $\mathcal{M} = \Gamma(G, S)/G$ is obtained by identifications $\kappa_h : A \mapsto A \cdot h$ defined on the set K_h of vertices $A \in T$ such that $A \ni h^{-1}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Baricentric subdivision of $\Gamma(G, S)$ coincides with the geometric realization of the poset of the sets of the form $A \cdot g$ for $A \subset S$ and $g \in G$. The sub-complex T of subsets $A \cdot g$ containing 1 is a fundamental domain of the G-action. The complex $\mathcal{M} = \Gamma(G, S)/G$ is obtained by identifications $\kappa_h : A \mapsto A \cdot h$ defined on the set K_h of vertices $A \in T$ such that $A \ni h^{-1}$.

The complexes \mathcal{M}_n are obtained by taking d^n copies of \mathcal{T} and pasting them together by copies of κ_h according to a simple recursive rule.

< ロト < 同ト < ヨト < ヨト = ヨ

There exists a generating set S of G and a number n such that $\Phi^n : \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps Ψ satisfying $\Psi(\xi \cdot g) = \Psi(\xi) \cdot \phi^n(g)$ to a contracting map.

回 と く ヨ と く ヨ と

There exists a generating set S of G and a number n such that $\Phi^n : \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps Ψ satisfying $\Psi(\xi \cdot g) = \Psi(\xi) \cdot \phi^n(g)$ to a contracting map.

In this way we get a model of the virtual endomorphism (G, ϕ^n) , which is good enough to get combinatorial approximations of the Julia sets.

(4) (5) (4) (5)

There exists a generating set S of G and a number n such that $\Phi^n : \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps Ψ satisfying $\Psi(\xi \cdot g) = \Psi(\xi) \cdot \phi^n(g)$ to a contracting map.

In this way we get a model of the virtual endomorphism (G, ϕ^n) , which is good enough to get combinatorial approximations of the Julia sets. A more explicit version of the theorem is algorithmic.

(4) (5) (4) (5)

There exists a generating set S of G and a number n such that $\Phi^n : \Gamma(G, S) \longrightarrow \Gamma(G, S)$ is homotopic through maps Ψ satisfying $\Psi(\xi \cdot g) = \Psi(\xi) \cdot \phi^n(g)$ to a contracting map.

In this way we get a model of the virtual endomorphism (G, ϕ^n) , which is good enough to get combinatorial approximations of the Julia sets. A more explicit version of the theorem is algorithmic. There is an algorithm which, given the iterated monodromy group of an expanding dynamical system, produces the complex T and the pasting rules κ_h , thus giving a recurrent description of the complexes \mathcal{M}_n approximating the Julia set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >