The geometry of spheres in free abelian groups

Moon Duchin University of Michigan

joint work with Samuel Lelièvre and Christopher Mooney

Group Theory Webinar, 25 March 2010

Introduction

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_{n} having this property, and let $n \rightarrow \infty$.

Introduction

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_{n} having this property, and let $n \rightarrow \infty$. Example: $\operatorname{Prob}\left(\right.$ two random integers are relatively prime) $=6 / \pi^{2}$.

Introduction

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_{n} having this property, and let $n \rightarrow \infty$. Example: $\operatorname{Prob}\left(\right.$ two random integers are relatively prime) $=6 / \pi^{2}$. Geometric interpretation is a ball-average:

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \sum_{x \in B_{n}} \frac{1}{n} f(x)
$$

Introduction

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_{n} having this property, and let $n \rightarrow \infty$. Example: $\operatorname{Prob}\left(\right.$ two random integers are relatively prime) $=6 / \pi^{2}$. Geometric interpretation is a ball-average:

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \sum_{x \in B_{n}} \frac{1}{n} f(x)
$$

Strictly harder problem: averaging over spheres.

Introduction

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_{n} having this property, and let $n \rightarrow \infty$. Example: $\operatorname{Prob}\left(\right.$ two random integers are relatively prime) $=6 / \pi^{2}$. Geometric interpretation is a ball-average:

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \sum_{x \in B_{n}} \frac{1}{n} f(x)
$$

Strictly harder problem: averaging over spheres.
We will study sphere-averages:

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \frac{1}{n} f(x)
$$

Cone measure

Given finite genset $\left(\mathbb{Z}^{d}, S\right)$,

Figure: Some gensets: $\quad S_{\text {std }}= \pm\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}, S_{\text {hex }}= \pm\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{1}+\mathrm{e}_{2}\right\}$, $S_{\text {chess }}=\{(\pm 2, \pm 1),(\pm 1, \pm 2)\}$ (with irrelevant generator thrown in).

Cone measure

Given finite genset $\left(\mathbb{Z}^{d}, S\right)$, let Q be the convex hull of S in \mathbb{R}^{d},

Figure: Convex hulls Q.

Cone measure

Given finite genset $\left(\mathbb{Z}^{d}, S\right)$, let Q be the convex hull of S in \mathbb{R}^{d}, let $L=\partial Q$,

Figure: Boundary polyhedra L.

Cone measure

Given finite genset $\left(\mathbb{Z}^{d}, S\right)$, let Q be the convex hull of S in \mathbb{R}^{d}, let $L=\partial Q$, and let \hat{A} be the cone from $A \subseteq L$ to $\mathbf{0}$, so that $Q=\hat{L}$.

Figure: A cone.

Cone measure

Given finite genset $\left(\mathbb{Z}^{d}, S\right)$, let Q be the convex hull of S in \mathbb{R}^{d}, let $L=\partial Q$, and let \hat{A} be the cone from $A \subseteq L$ to $\mathbf{0}$, so that $Q=\hat{L}$. Define the cone measure by $\mu(A)=\mu_{L}(A)=\frac{\operatorname{Vol}(\hat{A})}{\operatorname{Vol}(Q)}$.

Figure: Cone measure.

Cone measure

Given finite genset $\left(\mathbb{Z}^{d}, S\right)$, let Q be the convex hull of S in \mathbb{R}^{d}, let $L=\partial Q$, and let \hat{A} be the cone from $A \subseteq L$ to $\mathbf{0}$, so that $Q=\hat{L}$. Define the cone measure by $\mu(A)=\mu_{L}(A)=\frac{\operatorname{Vol}(\hat{A})}{\operatorname{Vol}(Q)}$.

Figure: Cone measure.

As we will discuss below, $\frac{1}{n} S_{n} \rightarrow L$ as a Gromov-Hausdorff limit. We show counting measure on spheres converges to cone measure on L.

Limit shape, limit measure

- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called homogeneous if $g(a x)=a g(x)$ for $a \geq 0$.

Limit shape, limit measure

- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called homogeneous if $g(a x)=a g(x)$ for $a \geq 0$.
- $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ coarsely homogeneous if \exists homog g with $f \stackrel{ \pm}{\rightleftharpoons}$, meaning $|g(x)-f(x)|$ is uniformly bounded over $x \in \mathbb{Z}^{d}$.

Limit shape, limit measure

- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called homogeneous if $g(a x)=a g(x)$ for $a \geq 0$.
- $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ coarsely homogeneous if \exists homog g with $f \stackrel{ \pm}{\rightleftharpoons}$, meaning $|g(x)-f(x)|$ is uniformly bounded over $x \in \mathbb{Z}^{d}$.
- f is asymptotically homogeneous if \exists homog g with $f \sim g$, meaning $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$.

Limit shape, limit measure

- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called homogeneous if $g(a x)=a g(x)$ for $a \geq 0$.
- $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ coarsely homogeneous if \exists homog g with $f \stackrel{ \pm}{ }$, meaning $|g(x)-f(x)|$ is uniformly bounded over $x \in \mathbb{Z}^{d}$.
- f is asymptotically homogeneous if \exists homog g with $f \sim g$, meaning $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. (So $f \doteq g, g \neq 0 \Longrightarrow f \sim g$.)

Limit shape, limit measure

- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called homogeneous if $g(a x)=a g(x)$ for $a \geq 0$.
- $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ coarsely homogeneous if \exists homog g with $f \doteq g$, meaning $|g(x)-f(x)|$ is uniformly bounded over $x \in \mathbb{Z}^{d}$.
- f is asymptotically homogeneous if \exists homog g with $f \sim g$, meaning $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. (So $f \doteq g, g \neq 0 \Longrightarrow f \sim g$.)

Theorem (Limit shape and limit measure)
For any finite presentation $\left(\mathbb{Z}^{d}, S\right)$ and any function $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ asymptotic to a homogeneous $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \frac{1}{n} f(x)=\int_{L} g(x) d \mu(x)
$$

So group averaging problem reduces to a problem in convex geometry.

Word length is coarsely homogeneous

- Linduces a Minkowski norm $\|\cdot\|_{L}$ (unique norm on \mathbb{R}^{d} with L as unit sphere) - Ex: std induces ℓ^{1}

Word length is coarsely homogeneous

- Linduces a Minkowski norm $\|\cdot\|_{L}$ (unique norm on \mathbb{R}^{d} with L as unit sphere) - Ex: std induces ℓ^{1}
- The annular region $\Delta_{n} L:=n Q \backslash(n-1) Q$ is covered by $S_{n-1}+Q$.

Figure: The chess-knight metric.

Word length is coarsely homogeneous

- Linduces a Minkowski norm $\|\cdot\|_{L}$ (unique norm on \mathbb{R}^{d} with L as unit sphere) - Ex: std induces ℓ^{1}
- The annular region $\Delta_{n} L:=n Q \backslash(n-1) Q$ is covered by $S_{n-1}+Q$.
- How much word-length is used to fill in Q ? Let $K=\max \left|\mathbb{Z}^{2} \cap Q\right|$. Then $|\mathrm{w}|$ and $\|\mathrm{w}\|_{L}$ differ by at most K. (Burago 1992)

Figure: The chess-knight metric.

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=1
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=2
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=3
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=4
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=5
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=6
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=7
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=8
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=9
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=10
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=11
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=12
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=13
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=14
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=15
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=16
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=17
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=18
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=19
$$

Convergence to the limit shape

\mathbb{Z}^{2} with $S=\left\{6 \mathrm{e}_{1}, \mathrm{e}_{1}, 6 \mathrm{e}_{2}, \mathrm{e}_{2}\right\}$. Watch $\frac{1}{n} S_{n}$ converge to L.

$$
n=20
$$

Application: Density

Theorem (Density)
For any asymptotically homogeneous function $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \sum_{x \in B_{n}} \frac{1}{n} f(x)=\left(\frac{d}{d+1}\right) \lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \frac{1}{n} f(x) .
$$

Application: Density

Theorem (Density)
For any asymptotically homogeneous function $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \sum_{x \in B_{n}} \frac{1}{n} f(x)=\left(\frac{d}{d+1}\right) \lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \frac{1}{n} f(x)
$$

Example: for any genset on \mathbb{Z}^{2}, the expected position of a point in B_{n} is on $S_{2 n / 3}$.

Application: Density

Theorem (Density)
For any asymptotically homogeneous function $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \sum_{x \in B_{n}} \frac{1}{n} f(x)=\left(\frac{d}{d+1}\right) \lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|} \sum_{x \in S_{n}} \frac{1}{n} f(x)
$$

Example: for any genset on \mathbb{Z}^{2}, the expected position of a point in B_{n} is on $S_{2 n / 3}$.

Notably different from scale-invariant functions on \mathbb{Z}^{d}, or from any functions on hyperbolic groups, where ball-average equals sphere-average.

Introducing sprawl

Question: what is the average distance between two points in a large sphere?

$$
E(G, S):=\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|^{2}} \sum_{x, y \in S_{n}} \frac{1}{n} d(x, y)
$$

Introducing sprawl

Question: what is the average distance between two points in a large sphere?

$$
E(G, S):=\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|^{2}} \sum_{x, y \in S_{n}} \frac{1}{n} d(x, y)
$$

Note that since $0 \leq d(x, y) \leq 2 n$, the value is always between 0 and 2 . $E=2$ means that one can almost always pass through the origin without taking a significant detour.

Introducing sprawl

Question: what is the average distance between two points in a large sphere?

$$
E(G, S):=\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|^{2}} \sum_{x, y \in S_{n}} \frac{1}{n} d(x, y)
$$

Note that since $0 \leq d(x, y) \leq 2 n$, the value is always between 0 and 2 . $E=2$ means that one can almost always pass through the origin without taking a significant detour. (Sounds like hyperbolicity.)

Introducing sprawl

Question: what is the average distance between two points in a large sphere?

$$
E(G, S):=\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|^{2}} \sum_{x, y \in S_{n}} \frac{1}{n} d(x, y)
$$

Note that since $0 \leq d(x, y) \leq 2 n$, the value is always between 0 and 2 . $E=2$ means that one can almost always pass through the origin without taking a significant detour. (Sounds like hyperbolicity.)

Theorem

- Trees can have any $0 \leq E \leq 2$, or E may not exist.
- If G is a non-elem. hyperbolic group, then $E(G, S)=2$ for all S.
- $E\left(\mathbb{Z}^{d}, S\right)$ depends on S.
- For $\left(\mathbb{Z}^{d}, S\right)$, we have $E(G, S)=\int_{L^{2}}\|x-y\|_{L} d \mu^{2}$

Introducing sprawl

Question: what is the average distance between two points in a large sphere?

$$
E(G, S):=\lim _{n \rightarrow \infty} \frac{1}{\left|S_{n}\right|^{2}} \sum_{x, y \in S_{n}} \frac{1}{n} d(x, y)
$$

Note that since $0 \leq d(x, y) \leq 2 n$, the value is always between 0 and 2 . $E=2$ means that one can almost always pass through the origin without taking a significant detour. (Sounds like hyperbolicity.)

Theorem

- Trees can have any $0 \leq E \leq 2$, or E may not exist.
- If G is a non-elem. hyperbolic group, then $E(G, S)=2$ for all S.
- $E\left(\mathbb{Z}^{d}, S\right)$ depends on S.
- For $\left(\mathbb{Z}^{d}, S\right)$, we have $E(G, S)=\int_{L^{2}}\|x-y\|_{L} d \mu^{2}=: E(L)$.

Note $E(L)=E(T L)$ for $L \in G L(d, \mathbb{R})$.

Sprawl in \mathbb{Z}^{2}

We developed the cutline algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

Sprawl in \mathbb{Z}^{2}

We developed the cutline algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

$$
E\left(P_{4}\right)=\frac{4}{3}
$$

$$
E\left(P_{6}\right)=\frac{23}{18}
$$

$$
E\left(P_{8}\right)=\frac{1+2 \sqrt{2}}{3}
$$

Sprawl in \mathbb{Z}^{2}

We developed the cutline algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

$$
E\left(P_{4}\right)=\frac{4}{3}
$$

$$
E\left(P_{8}\right)=\frac{1+2 \sqrt{2}}{3}
$$

$$
E\left(P_{n}\right) \rightarrow E\left(S^{1}\right)=\frac{4}{\pi}
$$

Sprawl in \mathbb{Z}^{2}

We developed the cutline algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

$$
E\left(P_{4}\right)=\frac{4}{3}
$$

$$
E\left(P_{8}\right)=\frac{1+2 \sqrt{2}}{3}
$$

$$
E\left(P_{n}\right) \rightarrow E\left(S^{1}\right)=\frac{4}{\pi}
$$

Figure: Ranges of sprawls.

Sprawls of hexagons and three-generator presentations

We know that $E(\Omega)$ can take all values in [4/ $\pi, 4 / 3]$, which implies that $E\left(\mathbb{Z}^{2}, S\right)$ can take a dense set of values in that range. (Rational approximation.)

Conjecture
That's it.

Sprawls of hexagons and three-generator presentations

We know that $E(\Omega)$ can take all values in [4/ $\pi, 4 / 3]$, which implies that $E\left(\mathbb{Z}^{2}, S\right)$ can take a dense set of values in that range. (Rational approximation.)

Conjecture
That's it. $\quad\left\{E(\Omega): \Omega \subset \mathbb{R}^{2}\right.$ convex, cent.sym. $\}=[4 / \pi, 4 / 3]$.

Sprawls of hexagons and three-generator presentations

We know that $E(\Omega)$ can take all values in [4/ $\pi, 4 / 3]$, which implies that $E\left(\mathbb{Z}^{2}, S\right)$ can take a dense set of values in that range. (Rational approximation.)

Conjecture
That's it. $\quad\left\{E(\Omega): \Omega \subset \mathbb{R}^{2}\right.$ convex, cent.sym. $\}=[4 / \pi, 4 / 3]$.
Besides lots of empirical evidence, here is some good rigorous evidence.
Theorem

$$
\{E(H): \text { hexagons } H\}=[23 / 18,4 / 3] .
$$

Thus, $\frac{23}{18} \leq E\left(\mathbb{Z}^{2}, S\right) \leq \frac{4}{3}$ whenever $|S| \leq 6$.

Sprawl in \mathbb{Z}^{d}

As $d \rightarrow \infty$, we find $E\left(\right.$ Sphere $\left._{d}\right) \rightarrow \sqrt{2}, \quad E\left(\right.$ Cube $\left._{d}\right) \rightarrow 2$.

Sprawl in \mathbb{Z}^{d}

As $d \rightarrow \infty$, we find $E\left(\right.$ Sphere $\left._{d}\right) \rightarrow \sqrt{2}, \quad E\left(\right.$ Cube $\left._{d}\right) \rightarrow 2$.

Figure: Ranges of sprawls: $d=2,3,4,5,100, \infty$.

Sprawl in \mathbb{Z}^{d}

As $d \rightarrow \infty$, we find $E\left(\right.$ Sphere $\left._{d}\right) \rightarrow \sqrt{2}, \quad E\left(\right.$ Cube $\left._{d}\right) \rightarrow 2$.

Figure: Ranges of sprawls: $d=2,3,4,5,100, \infty$.
Theorem
$E\left(\mathbb{Z}^{d}, \mathrm{std}\right)=E\left(\mathrm{Orth}_{d}\right)=\frac{3 d-2}{2 d-1} \rightarrow \frac{3}{2}$.

Sprawl in \mathbb{Z}^{d}

As $d \rightarrow \infty$, we find $E\left(\right.$ Sphere $\left._{d}\right) \rightarrow \sqrt{2}, \quad E\left(\right.$ Cube $\left._{d}\right) \rightarrow 2$.

Figure: Ranges of sprawls: $d=2,3,4,5,100, \infty$.
Theorem
$E\left(\mathbb{Z}^{d}, \mathrm{std}\right)=E\left(\mathrm{Orth}_{d}\right)=\frac{3 d-2}{2 d-1} \rightarrow \frac{3}{2}$.

Sprawl in \mathbb{Z}^{d}

As $d \rightarrow \infty$, we find $E\left(\right.$ Sphere $\left._{d}\right) \rightarrow \sqrt{2}, \quad E\left(\right.$ Cube $\left._{d}\right) \rightarrow 2$.

Figure: Ranges of sprawls: $d=2,3,4,5,100, \infty$.
Theorem
$E\left(\mathbb{Z}^{d}, \mathrm{std}\right)=E\left(\mathrm{Orth}_{d}\right)=\frac{3 d-2}{2 d-1} \rightarrow \frac{3}{2}$.
Conclusion: to make a free abelian group look as hyperbolic as possible, use the nonstandard generators $S_{\text {cube }}=\left\{ \pm \mathrm{e}_{1} \pm \mathrm{e}_{2} \cdots \pm \mathrm{e}_{d}\right\}$.

