The geometry of spheres in free abelian groups

Moon Duchin University of Michigan

joint work with Samuel Lelièvre and Christopher Mooney

Group Theory Webinar, 25 March 2010

Duchin Lelièvre Mooney (2010)

The geometry of spheres in \mathbb{Z}^d

Group Theory Webinar 3-25

1 / 11

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_n having this property, and let $n \to \infty$.

イロト 不得 トイヨト イヨト 二日

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_n having this property, and let $n \to \infty$.

Example: Prob(two random integers are relatively prime) = $6/\pi^2$.

イロト 不得 トイヨト イヨト 二日

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_n having this property, and let $n \to \infty$.

Example: Prob(two random integers are relatively prime) = $6/\pi^2$. Geometric interpretation is a ball-average:

$$\lim_{n\to\infty}\frac{1}{|B_n|}\sum_{\mathbf{x}\in B_n}\frac{1}{n}f(\mathbf{x}).$$

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_n having this property, and let $n \to \infty$.

Example: Prob(two random integers are relatively prime) = $6/\pi^2$. Geometric interpretation is a ball-average:

$$\lim_{n\to\infty}\frac{1}{|B_n|}\sum_{\mathbf{x}\in B_n}\frac{1}{n}f(\mathbf{x}).$$

Strictly harder problem: averaging over spheres.

イロト 不得 トイヨト イヨト 二日

A familiar question: given a property whose density you want to meausre in a metric space, find the proportion of points in the ball B_n having this property, and let $n \to \infty$.

Example: Prob(two random integers are relatively prime) = $6/\pi^2$. Geometric interpretation is a ball-average:

$$\lim_{n\to\infty}\frac{1}{|B_n|}\sum_{\mathbf{x}\in B_n}\frac{1}{n}f(\mathbf{x}).$$

Strictly harder problem: averaging over spheres. We will study sphere-averages:

$$\lim_{n\to\infty}\frac{1}{|S_n|}\sum_{\mathbf{x}\in S_n}\frac{1}{n}f(\mathbf{x}).$$

Given finite genset (\mathbb{Z}^d, S) ,

 $\begin{array}{ll} \mbox{Figure: Some gensets:} & S_{std} = \pm \{e_1,e_2\}, \ S_{hex} = \pm \{e_1,e_2,e_1+e_2\}, \\ S_{chess} = \{(\pm 2,\pm 1),(\pm 1,\pm 2)\} \ (\mbox{with irrelevant generator thrown in}). \end{array}$

Duchin Lelièvre Mooney (2010)

Group Theory Webinar 3-25

3 / 11

Given finite genset (\mathbb{Z}^d, S) , let Q be the convex hull of S in \mathbb{R}^d ,

Figure: Convex hulls Q.

Duchin Lelièvre Mooney (2010)

The geometry of spheres in \mathbb{Z}^d

Group Theory Webinar 3-25

|▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → ○ � @

3 / 11

Given finite genset (\mathbb{Z}^d, S) , let Q be the convex hull of S in \mathbb{R}^d , let $L = \partial Q$,

Figure: Boundary polyhedra *L*.

Given finite genset (\mathbb{Z}^d, S) , let Q be the convex hull of S in \mathbb{R}^d , let $L = \partial Q$, and let \hat{A} be the cone from $A \subseteq L$ to $\mathbf{0}$, so that $Q = \hat{L}$.

Figure: A cone.

3 / 11

Given finite genset (\mathbb{Z}^d, S) , let Q be the convex hull of S in \mathbb{R}^d , let $L = \partial Q$, and let \hat{A} be the cone from $A \subseteq L$ to $\mathbf{0}$, so that $Q = \hat{L}$. Define the *cone measure* by $\mu(A) = \mu_L(A) = \frac{\operatorname{Vol}(\hat{A})}{\operatorname{Vol}(Q)}$.

Given finite genset (\mathbb{Z}^d, S) , let Q be the convex hull of S in \mathbb{R}^d , let $L = \partial Q$, and let \hat{A} be the cone from $A \subseteq L$ to $\mathbf{0}$, so that $Q = \hat{L}$. Define the *cone measure* by $\mu(A) = \mu_L(A) = \frac{\operatorname{Vol}(\hat{A})}{\operatorname{Vol}(Q)}$.

As we will discuss below, $\frac{1}{n}S_n \rightarrow L$ as a Gromov-Hausdorff limit. We show counting measure on spheres converges to cone measure on L.

• $g: \mathbb{R}^d \to \mathbb{R}$ is called *homogeneous* if g(ax) = ag(x) for $a \ge 0$.

- $g: \mathbb{R}^d \to \mathbb{R}$ is called *homogeneous* if g(ax) = ag(x) for $a \ge 0$.
- f: Z^d → R coarsely homogeneous if ∃ homog g with f ⁺ g, meaning |g(x) f(x)| is uniformly bounded over x ∈ Z^d.

- $g: \mathbb{R}^d \to \mathbb{R}$ is called *homogeneous* if g(ax) = ag(x) for $a \ge 0$.
- f: Z^d → ℝ coarsely homogeneous if ∃ homog g with f ⁺ g, meaning |g(x) f(x)| is uniformly bounded over x ∈ Z^d.
- f is asymptotically homogeneous if ∃ homog g with f ~ g, meaning f(x)/g(x) → 1 as x → ∞.

- $g: \mathbb{R}^d \to \mathbb{R}$ is called *homogeneous* if g(ax) = ag(x) for $a \ge 0$.
- f: Z^d → ℝ coarsely homogeneous if ∃ homog g with f ⁺ g, meaning |g(x) f(x)| is uniformly bounded over x ∈ Z^d.
- f is asymptotically homogeneous if \exists homog g with $f \sim g$, meaning $f(x)/g(x) \rightarrow 1$ as $x \rightarrow \infty$. (So $f \stackrel{+}{\asymp} g, g \neq 0 \implies f \sim g$.)

- $g: \mathbb{R}^d \to \mathbb{R}$ is called *homogeneous* if g(ax) = ag(x) for $a \ge 0$.
- f: Z^d → ℝ coarsely homogeneous if ∃ homog g with f ⁺ g, meaning |g(x) f(x)| is uniformly bounded over x ∈ Z^d.
- f is asymptotically homogeneous if \exists homog g with $f \sim g$, meaning $f(x)/g(x) \to 1$ as $x \to \infty$. (So $f \stackrel{+}{\asymp} g, g \neq 0 \implies f \sim g$.)

Theorem (Limit shape and limit measure)

For any finite presentation (\mathbb{Z}^d, S) and any function $f : \mathbb{Z}^d \to \mathbb{R}$ asymptotic to a homogeneous $g : \mathbb{R}^d \to \mathbb{R}$,

$$\lim_{n\to\infty}\frac{1}{|S_n|}\sum_{\mathbf{x}\in S_n}\frac{1}{n}f(\mathbf{x})=\int_L g(\mathbf{x})\ d\mu(\mathbf{x}).$$

So group averaging problem reduces to a problem in convex geometry.

Word length is coarsely homogeneous

 L induces a Minkowski norm || · ||_L (unique norm on ℝ^d with L as unit sphere) — Ex: std induces ℓ¹

- 4 同 2 4 日 2 4 日 2 - 日

Word length is coarsely homogeneous

- L induces a Minkowski norm || · ||_L (unique norm on ℝ^d with L as unit sphere) — Ex: std induces ℓ¹
- The annular region $\Delta_n L := nQ \setminus (n-1)Q$ is covered by $S_{n-1} + Q$.

Figure: The chess-knight metric.

Word length is coarsely homogeneous

- L induces a Minkowski norm || · ||_L (unique norm on ℝ^d with L as unit sphere) — Ex: std induces ℓ¹
- The annular region $\Delta_n L := nQ \setminus (n-1)Q$ is covered by $S_{n-1} + Q$.
- How much word-length is used to fill in Q? Let K = max |Z² ∩ Q|. Then |w| and ||w||_L differ by at most K. (Burago 1992)

Figure: The chess-knight metric.

Duchin Lelièvre Mooney (2010)

The geometry of spheres in \mathbb{Z}^d

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{ 6e_1, e_1, 6e_2, e_2 \}$. Watch $\frac{1}{n} S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

 \mathbb{Z}^2 with $S = \{6e_1, e_1, 6e_2, e_2\}$. Watch $\frac{1}{n}S_n$ converge to L.

Duchin Lelièvre Mooney (2010)

Group Theory Webinar 3-25 6 / 11

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem (Density)

For any asymptotically homogeneous function $f : \mathbb{Z}^d \to \mathbb{R}$,

$$\lim_{n\to\infty}\frac{1}{|B_n|}\sum_{\mathbf{x}\in B_n}\frac{1}{n}f(\mathbf{x})=\left(\frac{d}{d+1}\right)\lim_{n\to\infty}\frac{1}{|S_n|}\sum_{\mathbf{x}\in S_n}\frac{1}{n}f(\mathbf{x}).$$

Duchin Lelièvre Mooney (2010)

Theorem (Density)

For any asymptotically homogeneous function $f : \mathbb{Z}^d \to \mathbb{R}$,

$$\lim_{n\to\infty}\frac{1}{|B_n|}\sum_{\mathbf{x}\in B_n}\frac{1}{n}f(\mathbf{x})=\left(\frac{d}{d+1}\right)\lim_{n\to\infty}\frac{1}{|S_n|}\sum_{\mathbf{x}\in S_n}\frac{1}{n}f(\mathbf{x}).$$

Example: for any genset on \mathbb{Z}^2 , the expected position of a point in B_n is on $S_{2n/3}$.

Theorem (Density)

For any asymptotically homogeneous function $f : \mathbb{Z}^d \to \mathbb{R}$,

$$\lim_{n\to\infty}\frac{1}{|B_n|}\sum_{\mathbf{x}\in B_n}\frac{1}{n}f(\mathbf{x})=\left(\frac{d}{d+1}\right)\lim_{n\to\infty}\frac{1}{|S_n|}\sum_{\mathbf{x}\in S_n}\frac{1}{n}f(\mathbf{x}).$$

Example: for any genset on \mathbb{Z}^2 , the expected position of a point in B_n is on $S_{2n/3}$.

Notably different from scale-invariant functions on \mathbb{Z}^d , or from any functions on hyperbolic groups, where ball-average equals sphere-average.

7 / 11

Question: what is the average distance between two points in a large sphere?

$$E(G,S) := \lim_{n\to\infty} \frac{1}{|S_n|^2} \sum_{x,y\in S_n} \frac{1}{n} d(x,y).$$

Question: what is the average distance between two points in a large sphere?

$$E(G,S) := \lim_{n\to\infty} \frac{1}{|S_n|^2} \sum_{x,y\in S_n} \frac{1}{n} d(x,y).$$

Note that since $0 \le d(x, y) \le 2n$, the value is always between 0 and 2. E = 2 means that one can almost always pass through the origin without taking a significant detour.

Question: what is the average distance between two points in a large sphere?

$$E(G,S) := \lim_{n\to\infty} \frac{1}{|S_n|^2} \sum_{x,y\in S_n} \frac{1}{n} d(x,y).$$

Note that since $0 \le d(x, y) \le 2n$, the value is always between 0 and 2. E = 2 means that one can almost always pass through the origin without taking a significant detour. (Sounds like hyperbolicity.)

Question: what is the average distance between two points in a large sphere?

$$E(G,S):=\lim_{n\to\infty}\frac{1}{|S_n|^2}\sum_{x,y\in S_n}\frac{1}{n}d(x,y).$$

Note that since $0 \le d(x, y) \le 2n$, the value is always between 0 and 2. E = 2 means that one can almost always pass through the origin without taking a significant detour. (Sounds like hyperbolicity.)

Theorem

- Trees can have any $0 \le E \le 2$, or E may not exist.
- If G is a non-elem. hyperbolic group, then E(G, S) = 2 for all S.
- $E(\mathbb{Z}^d, S)$ depends on S.
- For (\mathbb{Z}^d, S) , we have $E(G, S) = \int_{L^2} \|\mathbf{x} \mathbf{y}\|_L \ d\mu^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

8 / 11

Question: what is the average distance between two points in a large sphere?

$$E(G,S) := \lim_{n\to\infty} \frac{1}{|S_n|^2} \sum_{x,y\in S_n} \frac{1}{n} d(x,y).$$

Note that since $0 \le d(x, y) \le 2n$, the value is always between 0 and 2. E = 2 means that one can almost always pass through the origin without taking a significant detour. (Sounds like hyperbolicity.)

Theorem

- Trees can have any $0 \le E \le 2$, or E may not exist.
- If G is a non-elem. hyperbolic group, then E(G, S) = 2 for all S.
- $E(\mathbb{Z}^d, S)$ depends on S.

• For (\mathbb{Z}^d, S) , we have $E(G, S) = \int_{L^2} \|x - y\|_L \ d\mu^2 =: E(L)$.

Note E(L) = E(TL) for $L \in GL(d, \mathbb{R})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

We developed the *cutline* algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

We developed the *cutline* algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

イロト 不得 トイヨト イヨト 二日

We developed the *cutline* algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

We developed the *cutline* algorithm for computing sprawls of polygons and used it to make calculations, showing the extent of dependence on S.

The geometry of spheres in \mathbb{Z}^d

We know that $E(\Omega)$ can take all values in $[4/\pi, 4/3]$, which implies that $E(\mathbb{Z}^2, S)$ can take a dense set of values in that range. (Rational approximation.)

Conjecture

That's it.

We know that $E(\Omega)$ can take all values in $[4/\pi, 4/3]$, which implies that $E(\mathbb{Z}^2, S)$ can take a dense set of values in that range. (Rational approximation.)

Conjecture

That's it. $\{E(\Omega) : \Omega \subset \mathbb{R}^2 \text{ convex, cent.sym.}\} = [4/\pi, 4/3].$

We know that $E(\Omega)$ can take all values in $[4/\pi, 4/3]$, which implies that $E(\mathbb{Z}^2, S)$ can take a dense set of values in that range. (Rational approximation.)

Conjecture

That's it. $\{E(\Omega) : \Omega \subset \mathbb{R}^2 \text{ convex, cent.sym.}\} = [4/\pi, 4/3].$

Besides lots of empirical evidence, here is some good rigorous evidence.

Theorem

$$\{E(H): \text{ hexagons } H\} = [23/18, 4/3].$$

Thus, $\frac{23}{18} \leq E(\mathbb{Z}^2, S) \leq \frac{4}{3}$ whenever $|S| \leq 6$.

10 / 11

As $d \to \infty$, we find $E(\text{Sphere}_d) \to \sqrt{2}$, $E(\text{Cube}_d) \to 2$.

Duchin Lelièvre Mooney (2010)

The geometry of spheres in \mathbb{Z}^d

Figure: Ranges of sprawls: $d = 2, 3, 4, 5, 100, \infty$.

Duchin Lelièvre Mooney (2010)

Figure: Ranges of sprawls: $d = 2, 3, 4, 5, 100, \infty$.

Theorem

$$E(\mathbb{Z}^d, \mathsf{std}) = E(\mathsf{Orth}_d) = \frac{3d-2}{2d-1} \to \frac{3}{2}.$$

Duchin Lelièvre Mooney (2010)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Ranges of sprawls: $d = 2, 3, 4, 5, 100, \infty$.

Theorem

$$E(\mathbb{Z}^d, \mathsf{std}) = E(\mathsf{Orth}_d) = \frac{3d-2}{2d-1} \to \frac{3}{2}.$$

Duchin Lelièvre Mooney (2010)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Ranges of sprawls: $d = 2, 3, 4, 5, 100, \infty$.

Theorem

$$E(\mathbb{Z}^d, \operatorname{std}) = E(\operatorname{Orth}_d) = \frac{3d-2}{2d-1} \to \frac{3}{2}.$$

Conclusion: to make a free abelian group look as hyperbolic as possible, use the nonstandard generators $S_{cube} = \{\pm e_1 \pm e_2 \cdots \pm e_d\}$.

Duchin Lelièvre Mooney (2010)

→ ▲ 臣 ▶ ▲ 臣 ▶ 臣 の Q @