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Introduction

A familiar question: given a property whose density you want to meausre
in a metric space, find the proportion of points in the ball Bn having this
property, and let n→∞.

Example: Prob(two random integers are relatively prime)= 6/π2.
Geometric interpretation is a ball-average:

lim
n→∞

1
|Bn|

∑
x∈Bn

1
n f (x).

Strictly harder problem: averaging over spheres.
We will study sphere-averages:

lim
n→∞

1
|Sn|

∑
x∈Sn

1
n f (x).
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Cone measure

Given finite genset (Zd ,S),

let Q be the convex hull of S in Rd ,
let L = ∂Q, and let Â be the cone from A ⊆ L to 0, so that Q = L̂.
Define the cone measure by µ(A) = µL(A) = Vol(Â)

Vol(Q) .

Figure: Some gensets: Sstd = ±{e1, e2}, Shex = ±{e1, e2, e1 + e2},
Schess = {(±2,±1), (±1,±2)} (with irrelevant generator thrown in).

As we will discuss below, 1
nSn → L as a Gromov-Hausdorff limit. We show

counting measure on spheres converges to cone measure on L.
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Limit shape, limit measure

g : Rd → R is called homogeneous if g(ax) = ag(x) for a ≥ 0.

f : Zd → R coarsely homogeneous if ∃ homog g with f +� g ,
meaning |g(x)− f (x)| is uniformly bounded over x ∈ Zd .
f is asymptotically homogeneous if ∃ homog g with f ∼ g ,
meaning f (x)/g(x)→ 1 as x →∞. (So f +� g , g 6= 0 =⇒ f ∼ g .)

Theorem (Limit shape and limit measure)

For any finite presentation (Zd , S) and any function f : Zd → R
asymptotic to a homogeneous g : Rd → R,

lim
n→∞

1
|Sn|

∑
x∈Sn

1
n f (x) =

∫
L
g(x) dµ(x).

So group averaging problem reduces to a problem in convex geometry.

Duchin Lelièvre Mooney (2010) The geometry of spheres in Zd Group Theory Webinar 3-25 4 / 11



Limit shape, limit measure

g : Rd → R is called homogeneous if g(ax) = ag(x) for a ≥ 0.
f : Zd → R coarsely homogeneous if ∃ homog g with f +� g ,
meaning |g(x)− f (x)| is uniformly bounded over x ∈ Zd .

f is asymptotically homogeneous if ∃ homog g with f ∼ g ,
meaning f (x)/g(x)→ 1 as x →∞. (So f +� g , g 6= 0 =⇒ f ∼ g .)

Theorem (Limit shape and limit measure)

For any finite presentation (Zd , S) and any function f : Zd → R
asymptotic to a homogeneous g : Rd → R,

lim
n→∞

1
|Sn|

∑
x∈Sn

1
n f (x) =

∫
L
g(x) dµ(x).

So group averaging problem reduces to a problem in convex geometry.

Duchin Lelièvre Mooney (2010) The geometry of spheres in Zd Group Theory Webinar 3-25 4 / 11



Limit shape, limit measure

g : Rd → R is called homogeneous if g(ax) = ag(x) for a ≥ 0.
f : Zd → R coarsely homogeneous if ∃ homog g with f +� g ,
meaning |g(x)− f (x)| is uniformly bounded over x ∈ Zd .
f is asymptotically homogeneous if ∃ homog g with f ∼ g ,
meaning f (x)/g(x)→ 1 as x →∞.

(So f +� g , g 6= 0 =⇒ f ∼ g .)

Theorem (Limit shape and limit measure)

For any finite presentation (Zd , S) and any function f : Zd → R
asymptotic to a homogeneous g : Rd → R,

lim
n→∞

1
|Sn|

∑
x∈Sn

1
n f (x) =

∫
L
g(x) dµ(x).

So group averaging problem reduces to a problem in convex geometry.

Duchin Lelièvre Mooney (2010) The geometry of spheres in Zd Group Theory Webinar 3-25 4 / 11



Limit shape, limit measure

g : Rd → R is called homogeneous if g(ax) = ag(x) for a ≥ 0.
f : Zd → R coarsely homogeneous if ∃ homog g with f +� g ,
meaning |g(x)− f (x)| is uniformly bounded over x ∈ Zd .
f is asymptotically homogeneous if ∃ homog g with f ∼ g ,
meaning f (x)/g(x)→ 1 as x →∞. (So f +� g , g 6= 0 =⇒ f ∼ g .)

Theorem (Limit shape and limit measure)

For any finite presentation (Zd , S) and any function f : Zd → R
asymptotic to a homogeneous g : Rd → R,

lim
n→∞

1
|Sn|

∑
x∈Sn

1
n f (x) =

∫
L
g(x) dµ(x).

So group averaging problem reduces to a problem in convex geometry.

Duchin Lelièvre Mooney (2010) The geometry of spheres in Zd Group Theory Webinar 3-25 4 / 11



Limit shape, limit measure

g : Rd → R is called homogeneous if g(ax) = ag(x) for a ≥ 0.
f : Zd → R coarsely homogeneous if ∃ homog g with f +� g ,
meaning |g(x)− f (x)| is uniformly bounded over x ∈ Zd .
f is asymptotically homogeneous if ∃ homog g with f ∼ g ,
meaning f (x)/g(x)→ 1 as x →∞. (So f +� g , g 6= 0 =⇒ f ∼ g .)

Theorem (Limit shape and limit measure)

For any finite presentation (Zd , S) and any function f : Zd → R
asymptotic to a homogeneous g : Rd → R,

lim
n→∞

1
|Sn|

∑
x∈Sn

1
n f (x) =

∫
L
g(x) dµ(x).

So group averaging problem reduces to a problem in convex geometry.
Duchin Lelièvre Mooney (2010) The geometry of spheres in Zd Group Theory Webinar 3-25 4 / 11



Word length is coarsely homogeneous

L induces a Minkowski norm ‖ · ‖L
(unique norm on Rd with L as unit sphere) — Ex: std induces `1

The annular region ∆nL := nQ \ (n − 1)Q is covered by Sn−1 + Q.
How much word-length is used to fill in Q? Let K = max |Z2 ∩ Q|.
Then |w| and ‖w‖L differ by at most K . (Burago 1992)

Figure: The chess-knight metric.
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Convergence to the limit shape

Z2 with S = { 6e1, e1, 6e2, e2 }. Watch 1
n Sn converge to L.

n = 1
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Application: Density

Theorem (Density)
For any asymptotically homogeneous function f : Zd → R,

lim
n→∞

1
|Bn|

∑
x∈Bn

1
n f (x) =

( d
d + 1

)
lim

n→∞
1
|Sn|

∑
x∈Sn

1
n f (x).

Example: for any genset on Z2, the expected position of a point in Bn is
on S2n/3.

Notably different from scale-invariant functions on Zd , or from any
functions on hyperbolic groups, where ball-average equals sphere-average.
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Introducing sprawl

Question: what is the average distance between two points in a large
sphere?

E (G , S) := lim
n→∞

1
|Sn|2

∑
x ,y∈Sn

1
nd(x , y).

Note that since 0 ≤ d(x , y) ≤ 2n, the value is always between 0 and 2.
E = 2 means that one can almost always pass through the origin without
taking a significant detour. (Sounds like hyperbolicity.)

Theorem
Trees can have any 0 ≤ E ≤ 2, or E may not exist.
If G is a non-elem. hyperbolic group, then E (G ,S) = 2 for all S.
E (Zd ,S) depends on S.
For (Zd ,S), we have E (G ,S) =

∫
L2 ‖x − y‖L dµ2 =: E (L).

Note E (L) = E (TL) for L ∈ GL(d ,R).
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Sprawl in Z2

We developed the cutline algorithm for computing sprawls of polygons and
used it to make calculations, showing the extent of dependence on S.

E (P4) = 4
3 E (P6) = 23

18

E (P8) = 1+2
√

2
3 E (Pn)→ E (S1) = 4

π

1.25 1.35

Figure: Ranges of sprawls.
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Sprawls of hexagons and three-generator presentations

We know that E (Ω) can take all values in [4/π, 4/3], which implies that
E (Z2,S) can take a dense set of values in that range. (Rational
approximation.)

Conjecture
That’s it.

{E (Ω) : Ω ⊂ R2 convex, cent.sym.} = [4/π, 4/3].

Besides lots of empirical evidence, here is some good rigorous evidence.

Theorem

{E (H) : hexagons H} = [23/18, 4/3] .

Thus, 23
18 ≤ E (Z2, S) ≤ 4

3 whenever |S| ≤ 6.
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Sprawl in Zd

As d →∞, we find E (Sphered )→
√
2, E (Cubed )→ 2.

1 24
π

4
3

3
2

√
2

Figure: Ranges of sprawls: d = 2, 3, 4, 5, 100,∞.
Theorem
E (Zd , std) = E (Orthd ) = 3d−2

2d−1 →
3
2 .

Conclusion: to make a free abelian group look as hyperbolic as possible,
use the nonstandard generators Scube = {±e1 ± e2 · · · ± ed}.
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