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Equations

u(x1, ..., xk) = 1
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Free products

Usually the left side u of any equation u = 1 over any group G is

element of a free product

GX = G ∗ F (X ),

where

X = {x1, ..., xk}
is considered as the set of variables.
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Free products in variety

We think that more naturally is to take free product in the variety
L = Var(G ) generated by G .

So we assume that F (X ) = FL(X ) is a free group in the variety L,
and

GX = G ∗L F (X )

is a free product in this variety.

Vitaly Roman’kov
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Equations

An equation w = 1 in k
variables is defined by any
element w ∈ GX .
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SAT and NSAT

An equation w = 1 is SAT if it is satisfiable (has a solution)
in G .

An equation w = 1 is NSAT if it is non-satisfiable (has no
solutions) in G .

Vitaly Roman’kov



Introduction
Equations over groups
Asymptotic densities
Free abelian groups

Free nilpotent groups
Free groups

Stratification

Let T be a countable set equipped with a size (or length) function
s : T → N such that for every n ∈ N the ball

Bn = {t ∈ T | s(t) ≤ n}

is finite.

The size function s induces a volume stratification of the set T :

T = ∪∞r=0Br ,

which gives a ”direction” to infinity in T .

Vitaly Roman’kov



Introduction
Equations over groups
Asymptotic densities
Free abelian groups

Free nilpotent groups
Free groups

Stratification

Let T be a countable set equipped with a size (or length) function
s : T → N such that for every n ∈ N the ball

Bn = {t ∈ T | s(t) ≤ n}

is finite.

The size function s induces a volume stratification of the set T :

T = ∪∞r=0Br ,

which gives a ”direction” to infinity in T .

Vitaly Roman’kov



Introduction
Equations over groups
Asymptotic densities
Free abelian groups

Free nilpotent groups
Free groups

Relative frequency

For a subset A ⊆ T and a finite subset B ⊂ T we define a relative
frequency

d(A|B) =
|A ∩ B |
|B |

,

Now, one can define the r -frequency (or r -density) of A with
respect to the stratification T (or the size function s) by

dr (A) = d(A|Br ).

Vitaly Roman’kov
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Asymptotic density

Now, the asymptotic density of A with respect to the stratification
T is defined as the following limit

ad(A) = lim sup
r→∞

dr (A)

If the actual limit

sad(A) = lim
r→∞

dr (A)

exists then we call it the strict asymptotic density of A.
A is called generic if sad(A) = 1 and it is negligible if sad(A) = 0.

Vitaly Roman’kov
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Uniform asymptotic density of power sets in free abelian
groups

The asymptotic density of any power set γZk ⊆ Zk is almost
obvious. But we need in estimates on the convergence rates that
we could not find in the literature.

Proposition 1.

Let γ, k ∈ N+. Then

1) sad(γZk) = 1/γk ;

2) |dr (γZk)− 1/γk | ≤ 2k+1k
rγk−1 for every r ≥ γ,

3) dr (γZk) converges to 1/γk uniformly in γ.
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Primitive and γ-primitive elements of free abelian groups

An element x = xγ11 ...x
γk
k ∈ A(X ), where A(X ) is the free abelian

group with basis X is called

primitive (visuable)

if and only if it is a member of some basis of A(X ), or,
equivalently, gcd(γ1, ..., γk) = 1.
It is called

γ-primitive (γ−visuable)

if and only if it is γ-power of some primitive element, or,
equivalently, gcd(γ1, ..., γk) = γ.

Vitaly Roman’kov
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Asymptotic density of sets of γ−primitive elements in free
abelian groups

Let Pk,γ be the set of all γ-primitive elements in the free abelian
group A(X ) of rank k.

The following result is well-known in number theory. In the case
k = 2 it was proved by F. Mertens (1874), in full generality it is
due to Christopher (1956). Below ζ(k) =

∑∞
n=1 = 1/nk denotes

Riemann zeta-function.

Proposition 2.

For each γ ∈ N we have

sad(Pk,γ) =
1

γkζ(k)
.

Vitaly Roman’kov
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Uniform asymptotic density of γ-primitive sets in free
abelian groups

Also we need in estimates on the convergence rates for the sets
Pk,γ .

Proposition 3.

Let γ, k ∈ N+, γ ≥ 2. Then

1) For every ε ≥ 0 there exists r(ε) ∈ N+ such that
|dr (Pk,γ)− 1

γkζ(k)
| ≤ ε

γk−1

for every r ≥ r(ε).
2) dr (Pk,γ) converges to 1

γkζ(k)
uniformly in γ.
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FREE ABELIAN GROUPS
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Equations

Let
A = Zm

be a free abelian group with basis {a1, ..., am} (m ≥ 1).

Now
F (X ) = Zk

is the free abelian group with basis {x1, ..., xk} (k ≥ 1),

and
AX = A× F (X ) = Zm+k

is the free abelian group with basis {a1, ..., am, x1, ..., xk}.

Vitaly Roman’kov
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Satisfiable equations

Every element w ∈ AX can be uniquely written in the form

w = xγ11 ...x
γk
k aα1

1 ...a
αm
m ,

where γ1, ..., γk , α1, ..., αm ∈ Z.
We call γ = gcd(γ1, ..., γk) the exponent of w and denote it as
γ = exp(w). In the exceptional case γ1 = ... = γk = 0 we define
exp(u) = 0.

Vitaly Roman’kov
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Satisfiable equations

Lemma 1.

An equation w = 1 of non-zero exponent γ = exp(u) has a
solution in A if and only if γ|gcd(α1, ..., αm). For k = 1 and
γ1 = ±γ 6= 0 there is the unique solution

x1 = a
−α1/γ1
1 ...a

−αm/γ1
m . When exp(u) = 0 a solution exists if

and only if α1 = ... = αm = 0 (every tuple of k elements is a
solution).

Vitaly Roman’kov
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Stratification

For a free abelian group Zq a length function l : Zq → N will
usually be the restriction to Zq of || · ||∞−norm from Rq.

The norm || · || of an element w is defined as

||w || = max{|γ1|, ..., |γk |, |α1|, ..., |αm|}.

The function l : AX → N is defined as l(u) = ||u||.
There are the boxes Br = {w ∈ AX : l(w) ≤ r}, and their slices
Br (γ) = {w ∈ AX : l(w) ≤ r , exp(w) = γ}, for γ = 0, 1, 2, ....

Vitaly Roman’kov



Introduction
Equations over groups
Asymptotic densities
Free abelian groups

Free nilpotent groups
Free groups

One-variable equations

Theorem 1.

For r ,m ∈ N+

| dr (SAT (A, 1))− Zr (m)

r
|= O

(
Zr (m − 1)

r2

)
,

where

Zr (k) =
r∑

n=1

= 1/nk

Vitaly Roman’kov
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One-variable equations

Corollary 1.

The set SAT (A, 1) is negligible, and NSAT (A, 1) is generic.

Vitaly Roman’kov
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Multi-variable equations

Theorem 2.

Assume that k ≥ 2,m ≥ 1. Then the set SAT (A, k) has the
asymptotic density

sad(SAT (A, k)) =
ζ(k + m)

ζ(k)
.

Vitaly Roman’kov
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FREE NILPOTENT GROUPS
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Free nilpotent groups

Let

N = Nmc

be a free nilpotent group of rank m and class c with basis
{a1, ..., am}.

Now

F (X ) = FNc (X ) = Nkc

is the free nilpotent group of rank k and class c with basis
{x1, ..., xk}.

Vitaly Roman’kov
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Normal forms

Then every element u ∈ NX can be uniquely written in the form:

u = xγ11 ...x
γk
k aα1

1 ...a
αm
m

p∏
j=1

b
δj
j .

where b1 < ... < bp denote the set of all basic commutators of
weights ≥ 2 on a1, ..., am, x1, ..., xk . . We assume that the ordering
of all basic commutators of weight j ≥ 2 is such that first sj−1
ones depend in ai only, and other pj−1 − sj−1 of them occur at
least one of xj .

Vitaly Roman’kov
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Norm

The norm || · || of an element u ∈ NX is defined as

||u|| = max{|γi |, |αl |, |δj | (i = 1, ..., k; l = 1, ...,m; j = 1, ..., p)}.

The function l : NX → N is defined as l(u) = ||u||. There are the
boxes: Br = {u ∈ NX : l(u) ≤ r}, and the slices:
Br ,γ = {u ∈ NX : l(u) ≤ r , γ = exp(u) = gcd(γ1, ..., γk) (or 0 if
γ1 = ... = γk = 0)}.
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Main theorem

Now we can formulate our main assertions for nilpotent case.

Theorem 3.

Assume that k,m ≥ 2, c ≥ 2. Then the set SAT (N, k) has the
asymptotic density

ad(SAT (N, k)) ≥ ζ(k + m + s)

ζ(k)
, (1)

where s denote the total number of all basic commutators at
a1, ..., am of weights 2, ..., c − 1.

Vitaly Roman’kov
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FREE GROUPS
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Preliminaries

Let

F = Fm

be a free group of rank m ≥ 2 with basis F = Fm = {f1, ..., fm},
and

F (X ) = Fk

is the free group of rank k ≥ 1 with basis X = {x1, ..., xk}.
Then

FX = F ∗ F (X ) = Fm+k

is a space of all equations with variables from X and constants
from F .

Vitaly Roman’kov
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As before, FX has the ball and spherical stratifications:

∪∞r=0Br = FX ,∪∞r=0Sr = FX ,

relative to basis F ∪ X .

Vitaly Roman’kov
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Connection between solvability of equations in free and
free abelian groups

As usual, AX = A× A(X ) is the free abelian group of rank m + k ,
the standard epimorphic image for µ : FX → FX/F

′
X = AX . A basis

of AX is taken as {a1, ..., am}, and µ(fi ) = ai , µ(xj) = xj .
For a ∈ A put

Sr (a) = {f ∈ Sr : µ(f ) = a} = µ−1(a) ∩ Sr .

Vitaly Roman’kov
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Connection between solvability of equations in free and
free abelian groups

We need to recall two known results that relate asymptotics in Fq
and Aq.
Theorem by Sharp (2001). Let a ∈ Aq and r ∈ N. Then

limr→∞ |σqrq/2( |Sr (a)||Sr | + |Sr+1(a)|
|Sr+1| )− 2

(2π)q/2
e−||a||

2
2/2σ

2r | = 0,

uniformly in a ∈ A.

Here σ2 = 1√
2q−1(1 + (q+

√
2q−1

q−
√
2q−1)1/2).

Vitaly Roman’kov
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Corollary

Corollary 1. There is a constant c ∈ N such that for any a ∈ Aq

and r ∈ N |S2r+δa (a)|
|S2r+δa |

≤ c
rq/2

,

where δa = 0 if ||a||1 is even, and δa = 1 if ||a||1 is odd.

Vitaly Roman’kov
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Rivin’s theorem

Theorem by Rivin (1999). For any D ⊆ Rq, q ≥ 2,

limr→∞
1
|Sr | |{w ∈ Sr |µ(w)/r1/2 ∈ D}| = 1

(2π)q/2σq

∫
D e−||t||

2
2/2σ

2
dt.

Vitaly Roman’kov
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Asymptotic of one-variable equations

Theorem 4.

The set SAT (F , 1) is negligible relative to both ball and spherical
stratifications, so sad(SAT (F , 1)) = 0, sad(NSAT (F , 1)) = 1.

Vitaly Roman’kov
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Split equations

We say that an equation u = 1, u ∈ FX , splits if u = vg−1, and so
it is equivalent to equation

v = v(x1, ..., xk) = g ,

where v = v(x1, ..., xk) ∈ F (X ) and g ∈ F .
Denote by V (F , k) the set of all split equations in k variables over
F . Also let

SATV (F , k)

and
NSATV (F , k)

be the sets of all satisfiable and all unsatisfiable split equations
from V (F , k).

Vitaly Roman’kov
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Conditions of satisfiability

The image of an element u ∈ FX under µ : FX → AX can be
uniquely written as

uµ = xγ11 ...x
γk
k aα1

1 ...a
αm
m .

We define exp(u) = exp(uµ) = gcd(γ1, ..., γk).

Lemma 2.

Let u ∈ V (F , k). If exp(u) = 1 then u ∈ SATV (F , k).

Vitaly Roman’kov
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Lemma

Lemma 3.

Let k ≥ m. Then for every ε > 0 there exists 0 < α < 1 and a
number r0 = r(ε, α) ∈ N such that for every r ≥ r0 the following
inequality holds

|Vα(F , k) ∩ Sr |
|V (F , k) ∩ Sr |

≤ ε.

Here Vα(F , k) = {vg ∈ V (F , k)| |g | ≤ α|vg |}.

Vitaly Roman’kov
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Main theorem

Assume that k ≥ 2 and k ≥ m. Then the asymptotic density of the
set SATV (F , k) can be estimated as follows:

Theorem 5.

ad(SATV (F , k)) ≥ 2
(2k−1)ζ(k) .

The set NSAT (F , k) can be estimated too.

Vitaly Roman’kov
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