ASYMPTOTIC PROPERTIES OF SOLVABLE EQUATIONS IN GROUPS

伺 ト く ヨ ト く ヨ ト

Vitaly Roman'kov

Omsk State Dostoevskii University, Russia

joint with Robert Gilman and Alexei Myasnikov

Stevens Institute of Technology, Hoboken, USA; McGill University, Montreal, Canada

伺 ト イ ヨ ト イ ヨ ト

INTRODUCTION

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Equations

$u(x_1,...,x_k)=1$

æ

Usually the left side u of any equation u = 1 over any group G is

element of a free product

$$G_X = G * F(X),$$

where

$$X = \{x_1, ..., x_k\}$$

is considered as the set of variables Vitaly Roman'kov

Free products in variety

We think that more naturally is to take free product in the variety $\mathcal{L} = Var(G)$ generated by G.

So we assume that $F(X) = F_{\mathcal{L}}(X)$ is a free group in the variety \mathcal{L} , and

I ≡ →

$$G_X = G *_{\mathcal{L}} F(X)$$

is a free product in this variety.

Free products in variety

We think that more naturally is to take free product in the variety $\mathcal{L} = Var(G)$ generated by G.

So we assume that $F(X) = F_{\mathcal{L}}(X)$ is a free group in the variety \mathcal{L} , and

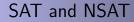
伺 ト く ヨ ト く ヨ ト

$$G_X = G *_{\mathcal{L}} F(X)$$

is a free product in this variety.

An equation w = 1 in k variables is defined by any element $w \in G_X$.

Vitaly Roman'kov



An equation w = 1 is SAT if it is satisfiable (has a solution) in G.

An equation w = 1 is **NSAT** if it is non-satisfiable (has no solutions) in *G*.

伺 ト く ヨ ト く ヨ ト

Stratification

Let T be a countable set equipped with a *size* (or length) function $s: T \to \mathbb{N}$ such that for every $n \in \mathbb{N}$ the *ball*

$$B_n = \{t \in T \mid s(t) \le n\}$$

is finite.

The size function s induces a volume stratification of the set T:

· < E > < E >

$$T=\cup_{r=0}^{\infty}B_r,$$

which gives a "direction" to infinity in T.

Stratification

Let T be a countable set equipped with a size (or length) function $s: T \to \mathbb{N}$ such that for every $n \in \mathbb{N}$ the ball

$$B_n = \{t \in T \mid s(t) \le n\}$$

is finite.

The size function s induces a volume stratification of the set T:

伺 ト く ヨ ト く ヨ ト

$$T=\cup_{r=0}^{\infty}B_r,$$

which gives a "direction" to infinity in T.

Relative frequency

For a subset $A \subseteq T$ and a finite subset $B \subset T$ we define a relative frequency

$$d(A|B)=\frac{|A\cap B|}{|B|},$$

Now, one can define the *r*-frequency (or *r*-density) of A with respect to the stratification T (or the size function s) by

$$d_r(A) = d(A|B_r).$$

A (10) < (10) < (10) </p>

ヨート

Relative frequency

For a subset $A \subseteq T$ and a finite subset $B \subset T$ we define a relative frequency

$$d(A|B)=\frac{|A\cap B|}{|B|},$$

Now, one can define the *r*-frequency (or *r*-density) of A with respect to the stratification T (or the size function s) by

$$d_r(A) = d(A|B_r).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Asymptotic density

Now, the asymptotic density of A with respect to the stratification T is defined as the following limit

$$ad(A) = \limsup_{r \to \infty} d_r(A)$$

If the actual limit

$$sad(A) = \lim_{r \to \infty} d_r(A)$$

exists then we call it the strict asymptotic density of A. A is called generic if sad(A) = 1 and it is negligible if sad(A) = 0.

Asymptotic density

Now, the asymptotic density of A with respect to the stratification T is defined as the following limit

$$ad(A) = \limsup_{r \to \infty} d_r(A)$$

If the actual limit

$$sad(A) = \lim_{r \to \infty} d_r(A)$$

exists then we call it the strict asymptotic density of A. A is called generic if sad(A) = 1 and it is negligible if sad(A) = 0.

Uniform asymptotic density of power sets in free abelian groups

The asymptotic density of any power set $\gamma \mathbb{Z}^k \subseteq \mathbb{Z}^k$ is almost obvious. But we need in estimates on the convergence rates that we could not find in the literature.

Proposition 1.

Let
$$\gamma, k \in \mathbb{N}^+$$
. Then
1) $sad(\gamma \mathbb{Z}^k) = 1/\gamma^k$;
2) $|d_r(\gamma \mathbb{Z}^k) - 1/\gamma^k| \le \frac{2^{k+1}k}{r\gamma^{k-1}}$ for every $r \ge \gamma$,
3) $d_r(\gamma \mathbb{Z}^k)$ converges to $1/\gamma^k$ uniformly in γ

Primitive and γ -primitive elements of free abelian groups

An element $x = x_1^{\gamma_1} ... x_k^{\gamma_k} \in A(X)$, where A(X) is the free abelian group with basis X is called

primitive (visuable)

if and only if it is a member of some basis of A(X), or, equivalently, $gcd(\gamma_1, ..., \gamma_k) = 1$. It is called

 γ -primitive (γ -visuable)

if and only if it is γ -power of some primitive element, or, equivalently, $gcd(\gamma_1, ..., \gamma_k) = \gamma$.

イロン 不同 とくほう イロン

Asymptotic density of sets of $\gamma-{\rm primitive}$ elements in free abelian groups

Let $P_{k,\gamma}$ be the set of all γ -primitive elements in the free abelian group A(X) of rank k.

The following result is well-known in number theory. In the case k = 2 it was proved by F. Mertens (1874), in full generality it is due to Christopher (1956). Below $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ denotes Riemann zeta-function.

Proposition 2.

For each $\gamma \in \mathbf{N}$ we have

$$\mathsf{sad}(\mathsf{P}_{k,\gamma}) = rac{1}{\gamma^k \zeta(k)}.$$

Uniform asymptotic density of γ -primitive sets in free abelian groups

Also we need in estimates on the convergence rates for the sets $P_{k,\gamma}$.

Proposition 3.

Let $\gamma, k \in \mathbb{N}^+, \gamma \geq 2$. Then 1) For every $\varepsilon \geq 0$ there exists $r(\varepsilon) \in \mathbb{N}^+$ such that $|d_r(P_{k,\gamma}) - \frac{1}{\gamma^k \zeta(k)}| \leq \frac{\varepsilon}{\gamma^{k-1}}$ for every $r \geq r(\varepsilon)$. 2) $d_r(P_{k,\gamma})$ converges to $\frac{1}{\gamma^k \zeta(k)}$ uniformly in γ .

- 4 回 2 - 4 □ 2 - 4 □

FREE ABELIAN GROUPS

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

Equations

Let $A = \mathbb{Z}^m$ be a free abelian group with basis $\{a_1, ..., a_m\}$ $(m \ge 1)$. Now $F(X) = \mathbb{Z}^k$ is the free abelian group with basis $\{x_1, ..., x_k\}$ $(k \ge 1)$, and $A_X = A \times F(X) = \mathbb{Z}^{m+k}$ is the free abelian group with basis $\{a_1, ..., a_m, x_1, ..., x_k\}$.

Satisfiable equations

Every element $w \in A_X$ can be uniquely written in the form

$$w = x_1^{\gamma_1} \dots x_k^{\gamma_k} a_1^{\alpha_1} \dots a_m^{\alpha_m},$$

where $\gamma_1, ..., \gamma_k, \alpha_1, ..., \alpha_m \in \mathbf{Z}$. We call $\gamma = gcd(\gamma_1, ..., \gamma_k)$ the exponent of w and denote it as $\gamma = exp(w)$. In the exceptional case $\gamma_1 = ... = \gamma_k = 0$ we define exp(u) = 0.

- 4 同 6 4 日 6 4 日 6

Satisfiable equations

Lemma 1.

An equation w = 1 of non-zero exponent $\gamma = exp(u)$ has a solution in A if and only if $\gamma | gcd(\alpha_1, ..., \alpha_m)$. For k = 1 and $\gamma_1 = \pm \gamma \neq 0$ there is the unique solution $x_1 = a_1^{-\alpha_1/\gamma_1}...a_m^{-\alpha_m/\gamma_1}$. When exp(u) = 0 a solution exists if and only if $\alpha_1 = ... = \alpha_m = 0$ (every tuple of k elements is a solution).

(日)

Stratification

For a free abelian group Z^q a length function $I : Z^q \to N$ will usually be the restriction to Z^q of $|| \cdot ||_{\infty}$ -norm from \mathbf{R}^q .

The norm $|| \cdot ||$ of an element w is defined as

 $||w|| = max\{|\gamma_1|, ..., |\gamma_k|, |\alpha_1|, ..., |\alpha_m|\}.$

The function $I : A_X \to \mathbf{N}$ is defined as I(u) = ||u||. There are the boxes $B_r = \{w \in A_X : I(w) \le r\}$, and their slices $B_r(\gamma) = \{w \in A_X : I(w) \le r, exp(w) = \gamma\}$, for $\gamma = 0, 1, 2, ...$

イロン 不同 とくほう イロン

One-variable equations

Theorem 1.

For $r, m \in \mathbb{N}^+$

$$| d_r(SAT(A,1)) - \frac{\mathcal{Z}_r(m)}{r} | = O\left(\frac{\mathcal{Z}_r(m-1)}{r^2}\right),$$

where

$$\mathcal{Z}_r(k) = \sum_{n=1}^r = 1/n^k$$

イロン イロン イヨン イヨン

э

One-variable equations

Corollary 1.

The set SAT(A, 1) is negligible, and NSAT(A, 1) is generic.

イロン 不聞 とくほとう ほどう

3

Multi-variable equations

Theorem 2.

Assume that $k \ge 2, m \ge 1$. Then the set SAT(A, k) has the asymptotic density

$$sad(SAT(A,k)) = \frac{\zeta(k+m)}{\zeta(k)}$$

(人間) ト く ヨ ト く ヨ ト

FREE NILPOTENT GROUPS

▲御▶ ▲理▶ ▲理▶

э

Free nilpotent groups

Let

 $N = N_{mc}$

be a free nilpotent group of rank m and class c with basis $\{a_1, ..., a_m\}$.

Now

$$F(X) = F_{\mathcal{N}_c}(X) = N_{kc}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

is the free nilpotent group of rank k and class c with basis $\{x_1, ..., x_k\}$.

Then every element $u \in N_X$ can be uniquely written in the form:

$$u = x_1^{\gamma_1} ... x_k^{\gamma_k} a_1^{\alpha_1} ... a_m^{\alpha_m} \prod_{j=1}^p b_j^{\delta_j}.$$

where $b_1 < ... < b_p$ denote the set of all basic commutators of weights ≥ 2 on $a_1, ..., a_m, x_1, ..., x_k$. We assume that the ordering of all basic commutators of weight $j \ge 2$ is such that first s_{j-1} ones depend in a_i only, and other $p_{j-1} - s_{j-1}$ of them occur at least one of x_j .

コマン きょう きょう

Norm

The norm $|| \cdot ||$ of an element $u \in N_X$ is defined as

$$||u|| = max\{|\gamma_i|, |\alpha_l|, |\delta_j| \ (i = 1, ..., k; l = 1, ..., m; j = 1, ..., p)\}.$$

The function $I : N_X \to \mathbb{N}$ is defined as I(u) = ||u||. There are the boxes: $B_r = \{u \in N_X : I(u) \le r\}$, and the slices: $B_{r,\gamma} = \{u \in N_X : I(u) \le r, \gamma = exp(u) = gcd(\gamma_1, ..., \gamma_k) \text{ (or 0 if } \gamma_1 = ... = \gamma_k = 0)\}.$

< ロ > < 同 > < 三 > < 三 > 、

Norm

The norm $|| \cdot ||$ of an element $u \in N_X$ is defined as

$$||u|| = max\{|\gamma_i|, |\alpha_l|, |\delta_j| \ (i = 1, ..., k; l = 1, ..., m; j = 1, ..., p)\}.$$

The function $I: N_X \to \mathbb{N}$ is defined as I(u) = ||u||. There are the boxes: $B_r = \{u \in N_X : I(u) \le r\}$, and the slices: $B_{r,\gamma} = \{u \in N_X : I(u) \le r, \gamma = exp(u) = gcd(\gamma_1, ..., \gamma_k) \text{ (or 0 if } \gamma_1 = ... = \gamma_k = 0)\}.$

Main theorem

Now we can formulate our main assertions for nilpotent case.

Theorem 3.

Assume that $k, m \ge 2, c \ge 2$. Then the set SAT(N, k) has the asymptotic density

$$ad(SAT(N,k)) \ge \frac{\zeta(k+m+s)}{\zeta(k)},$$
 (1)

where s denote the total number of all basic commutators at $a_1, ..., a_m$ of weights 2, ..., c - 1.

FREE GROUPS

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Preliminaries

Let

 $F = F_m$

be a free group of rank $m \geq 2$ with basis $\mathcal{F} = \mathcal{F}_m = \{f_1, ..., f_m\}$, and

 $F(X) = F_k$

is the free group of rank $k \ge 1$ with basis $X = \{x_1, ..., x_k\}$. Then

$$F_X = F * F(X) = F_{m+k}$$

is a space of all equations with variables from X and constants from F.

As before, F_X has the ball and spherical stratifications:

$$\cup_{r=0}^{\infty}B_r=F_X, \cup_{r=0}^{\infty}S_r=F_X,$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

relative to basis $\mathcal{F} \cup X$.

Connection between solvability of equations in free and free abelian groups

As usual, $A_X = A \times A(X)$ is the free abelian group of rank m + k, the standard epimorphic image for $\mu : F_X \to F_X/F'_X = A_X$. A basis of A_X is taken as $\{a_1, ..., a_m\}$, and $\mu(f_i) = a_i, \mu(x_j) = x_j$. For $a \in A$ put

$$S_r(a) = \{f \in S_r : \mu(f) = a\} = \mu^{-1}(a) \cap S_r.$$

- 4 同 6 4 日 6 4 日 6

Connection between solvability of equations in free and free abelian groups

We need to recall two known results that relate asymptotics in F_q and A_q . **Theorem by Sharp (2001).** Let $a \in A_q$ and $r \in \mathbb{N}$. Then

$$\begin{split} \lim_{r \to \infty} |\sigma^q r^{q/2} (\frac{|S_r(a)|}{|S_r|} + \frac{|S_{r+1}(a)|}{|S_{r+1}|}) - \frac{2}{(2\pi)^{q/2}} e^{-||a||_2^2/2\sigma^2 r}| = 0, \\ \text{uniformly in } a \in A. \end{split}$$

Here
$$\sigma^2 = \frac{1}{\sqrt{2q-1}} (1 + (\frac{q+\sqrt{2q-1}}{q-\sqrt{2q-1}})^{1/2}).$$

Corollary

Corollary 1. There is a constant $c \in \mathbb{N}$ such that for any $a \in A_q$ and $r \in \mathbb{N} \frac{|S_{2r+\delta_a}(a)|}{|S_{2r+\delta_a}|} \leq \frac{c}{r^{q/2}}$,

(日)

3

where $\delta_a = 0$ if $||a||_1$ is even, and $\delta_a = 1$ if $||a||_1$ is odd.

Rivin's theorem

Theorem by Rivin (1999). For any $D \subseteq \mathbb{R}^q$, $q \ge 2$,

$$\lim_{r\to\infty} \frac{1}{|S_r|} |\{w \in S_r | \mu(w)/r^{1/2} \in D\}| = \frac{1}{(2\pi)^{q/2}\sigma^q} \int_D e^{-||t||_2^2/2\sigma^2} dt.$$

э

《曰》《聞》《臣》《臣》

Asymptotic of one-variable equations

Theorem 4.

The set SAT(F, 1) is negligible relative to both ball and spherical stratifications, so sad(SAT(F, 1)) = 0, sad(NSAT(F, 1)) = 1.

(日)

Split equations

We say that an equation u = 1, $u \in F_X$, splits if $u = vg^{-1}$, and so it is equivalent to equation

$$v = v(x_1, ..., x_k) = g,$$

where $v = v(x_1, ..., x_k) \in F(X)$ and $g \in F$. Denote by V(F, k) the set of all split equations in k variables over F. Also let

$SAT_V(F,k)$

and

$NSAT_V(F, k)$

be the sets of all satisfiable and all unsatisfiable split equations from V(F, k).

Conditions of satisfiability

The image of an element $u \in F_X$ under $\mu : F_X \to A_X$ can be uniquely written as

$$u^{\mu}=x_1^{\gamma_1}...x_k^{\gamma_k}a_1^{\alpha_1}...a_m^{\alpha_m}.$$

(日) (同) (三) (三)

We define $exp(u) = exp(u^{\mu}) = gcd(\gamma_1, ..., \gamma_k)$.

Lemma 2.

Let $u \in V(F, k)$. If exp(u) = 1 then $u \in SAT_V(F, k)$.

Conditions of satisfiability

The image of an element $u \in F_X$ under $\mu : F_X \to A_X$ can be uniquely written as

$$u^{\mu} = x_1^{\gamma_1} ... x_k^{\gamma_k} a_1^{\alpha_1} ... a_m^{\alpha_m}$$

We define $exp(u) = exp(u^{\mu}) = gcd(\gamma_1, ..., \gamma_k)$.

Lemma 2.

Let $u \in V(F, k)$. If exp(u) = 1 then $u \in SAT_V(F, k)$.

Lemma

Lemma 3.

Let $k \ge m$. Then for every $\varepsilon > 0$ there exists $0 < \alpha < 1$ and a number $r_0 = r(\varepsilon, \alpha) \in \mathbb{N}$ such that for every $r \ge r_0$ the following inequality holds

$$\frac{|V_{\alpha}(F,k)\cap S_r|}{|V(F,k)\cap S_r|}\leq \varepsilon.$$

イロト イポト イヨト イヨト

Here $V_{\alpha}(F, k) = \{ vg \in V(F, k) | |g| \le \alpha |vg| \}.$

Assume that $k \ge 2$ and $k \ge m$. Then the asymptotic density of the set $SAT_V(F, k)$ can be estimated as follows:

(日) (同) (三) (三)

Theorem 5.

 $ad(SAT_V(F,k)) \geq \frac{2}{(2k-1)\zeta(k)}.$

The set NSAT(F, k) can be estimated too.

Assume that $k \ge 2$ and $k \ge m$. Then the asymptotic density of the set $SAT_V(F, k)$ can be estimated as follows:

イロト イポト イヨト イヨト

Theorem 5.

$$ad(SAT_V(F,k)) \geq \frac{2}{(2k-1)\zeta(k)}.$$

The set NSAT(F, k) can be estimated too.