
Hoboken Conference in honor of Bob Gilman

On a question of Bob Gilman:
Multi-pass Automata and Group Word Problems

Paul Schupp

University of Illinois

at Urbana-Champaign

Joint work with

Tullio Ceccherini-Silberstein, Michel Coornaert, Francesca Fiorenzi

September 2012, Hoboken

Paul Schupp (UIUC) Hoboken, September 2012 1 / 29



The Chomsky Hierarchy of Formal Languages

Let Σ be a finite alphabet. A word over Σ is a finite sequence of
elements of Σ, ie. a finite sequence of letters. Σ∗ denotes the set of all
words over Σ. With the operation of concatenation of words, Σ∗ is the
free monoid over Σ. A language L is a subset of Σ∗.

1 Regular languages are the languages accepted by finite automata.
2 Context-free languages are the languages accepted by pushdown

automata.
3 Context-sensitive languages are the languages accepted by linear

bounded Turing machines.
This is the same as the class of languages in linear space.

4 Computably enumerable languages are the languages accepted
by Turing machines.

Paul Schupp (UIUC) Hoboken, September 2012 2 / 29



The Chomsky Hierarchy of Formal Languages

Let Σ be a finite alphabet. A word over Σ is a finite sequence of
elements of Σ, ie. a finite sequence of letters. Σ∗ denotes the set of all
words over Σ. With the operation of concatenation of words, Σ∗ is the
free monoid over Σ. A language L is a subset of Σ∗.

1 Regular languages are the languages accepted by finite automata.
2 Context-free languages are the languages accepted by pushdown

automata.
3 Context-sensitive languages are the languages accepted by linear

bounded Turing machines.
This is the same as the class of languages in linear space.

4 Computably enumerable languages are the languages accepted
by Turing machines.

Paul Schupp (UIUC) Hoboken, September 2012 2 / 29



The Chomsky Hierarchy of Formal Languages

Let Σ be a finite alphabet. A word over Σ is a finite sequence of
elements of Σ, ie. a finite sequence of letters. Σ∗ denotes the set of all
words over Σ. With the operation of concatenation of words, Σ∗ is the
free monoid over Σ. A language L is a subset of Σ∗.

1 Regular languages are the languages accepted by finite automata.
2 Context-free languages are the languages accepted by pushdown

automata.
3 Context-sensitive languages are the languages accepted by linear

bounded Turing machines.
This is the same as the class of languages in linear space.

4 Computably enumerable languages are the languages accepted
by Turing machines.

Paul Schupp (UIUC) Hoboken, September 2012 2 / 29



The Chomsky Hierarchy of Formal Languages

Let Σ be a finite alphabet. A word over Σ is a finite sequence of
elements of Σ, ie. a finite sequence of letters. Σ∗ denotes the set of all
words over Σ. With the operation of concatenation of words, Σ∗ is the
free monoid over Σ. A language L is a subset of Σ∗.

1 Regular languages are the languages accepted by finite automata.
2 Context-free languages are the languages accepted by pushdown

automata.
3 Context-sensitive languages are the languages accepted by linear

bounded Turing machines.
This is the same as the class of languages in linear space.

4 Computably enumerable languages are the languages accepted
by Turing machines.

Paul Schupp (UIUC) Hoboken, September 2012 2 / 29



The Chomsky Hierarchy of Formal Languages

Let Σ be a finite alphabet. A word over Σ is a finite sequence of
elements of Σ, ie. a finite sequence of letters. Σ∗ denotes the set of all
words over Σ. With the operation of concatenation of words, Σ∗ is the
free monoid over Σ. A language L is a subset of Σ∗.

1 Regular languages are the languages accepted by finite automata.
2 Context-free languages are the languages accepted by pushdown

automata.
3 Context-sensitive languages are the languages accepted by linear

bounded Turing machines.
This is the same as the class of languages in linear space.

4 Computably enumerable languages are the languages accepted
by Turing machines.

Paul Schupp (UIUC) Hoboken, September 2012 2 / 29



The Chomsky Hierarchy of Formal Languages

Let Σ be a finite alphabet. A word over Σ is a finite sequence of
elements of Σ, ie. a finite sequence of letters. Σ∗ denotes the set of all
words over Σ. With the operation of concatenation of words, Σ∗ is the
free monoid over Σ. A language L is a subset of Σ∗.

1 Regular languages are the languages accepted by finite automata.
2 Context-free languages are the languages accepted by pushdown

automata.
3 Context-sensitive languages are the languages accepted by linear

bounded Turing machines.
This is the same as the class of languages in linear space.

4 Computably enumerable languages are the languages accepted
by Turing machines.

Paul Schupp (UIUC) Hoboken, September 2012 2 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Group Word Problems and Formal Languages

If we have a finitely generated presentation of a group G = 〈X : R〉, we
describe elements of G as words in the group alphabet Σ = X ∪ X−1.
The Russian computer scientist Anisimov, in 1973, introduced the
point of view of considering the word problem of G as a formal
language. So define the word problem of G to be the formal language

WP(G) = {w ∈ Σ∗ : w = 1} in G. What does formal language theory

have to do with group theory? How do the formal language properties
of WP(G) relate to the algebric properties of G?

1 Thm. (Anisimov) WP(G) is a regular language if and only if G is
finite.

2 Thm. (Muller - S) WP(G) is a context-free language if and only if
G is virtualy free.

3 Thm. (Higman Embedding Theorem) WP(G) is a computably
enumerable language if and only if G can be embedded in a
finitely presented group.

Paul Schupp (UIUC) Hoboken, September 2012 3 / 29



Linear space is very difficult to deal with

It is very difficult to make any definitive statements about linear space.
The famous example is the “LBA Problem”, the question of whether or
not the classs of languages in linear space is closed under
complementation. This was an open problem for more than twenty
years. Everyone thought the answer was “No” but could not prove the
result. Then at essentially the same time, Neil Immerman and

Szelepcsenyi really believed that the correct answer was “Yes”, in
which case they just wrote down the proof. The proof is only about two
pages and no only does not use any result proved in the intervening
twenty years, it does not even introduce any new definitions. In fact,
they proved that any reasonable space class is closed under
complementation.

Whether or not nondeterminstic linear bounded automata are
equivalent to deterministic linear bounded automata is still open.

Paul Schupp (UIUC) Hoboken, September 2012 4 / 29



Linear space is very difficult to deal with

It is very difficult to make any definitive statements about linear space.
The famous example is the “LBA Problem”, the question of whether or
not the classs of languages in linear space is closed under
complementation. This was an open problem for more than twenty
years. Everyone thought the answer was “No” but could not prove the
result. Then at essentially the same time, Neil Immerman and

Szelepcsenyi really believed that the correct answer was “Yes”, in
which case they just wrote down the proof. The proof is only about two
pages and no only does not use any result proved in the intervening
twenty years, it does not even introduce any new definitions. In fact,
they proved that any reasonable space class is closed under
complementation.

Whether or not nondeterminstic linear bounded automata are
equivalent to deterministic linear bounded automata is still open.

Paul Schupp (UIUC) Hoboken, September 2012 4 / 29



Linear space is very difficult to deal with

It is very difficult to make any definitive statements about linear space.
The famous example is the “LBA Problem”, the question of whether or
not the classs of languages in linear space is closed under
complementation. This was an open problem for more than twenty
years. Everyone thought the answer was “No” but could not prove the
result. Then at essentially the same time, Neil Immerman and

Szelepcsenyi really believed that the correct answer was “Yes”, in
which case they just wrote down the proof. The proof is only about two
pages and no only does not use any result proved in the intervening
twenty years, it does not even introduce any new definitions. In fact,
they proved that any reasonable space class is closed under
complementation.

Whether or not nondeterminstic linear bounded automata are
equivalent to deterministic linear bounded automata is still open.

Paul Schupp (UIUC) Hoboken, September 2012 4 / 29



Linear space is very difficult to deal with

It is very difficult to make any definitive statements about linear space.
The famous example is the “LBA Problem”, the question of whether or
not the classs of languages in linear space is closed under
complementation. This was an open problem for more than twenty
years. Everyone thought the answer was “No” but could not prove the
result. Then at essentially the same time, Neil Immerman and

Szelepcsenyi really believed that the correct answer was “Yes”, in
which case they just wrote down the proof. The proof is only about two
pages and no only does not use any result proved in the intervening
twenty years, it does not even introduce any new definitions. In fact,
they proved that any reasonable space class is closed under
complementation.

Whether or not nondeterminstic linear bounded automata are
equivalent to deterministic linear bounded automata is still open.

Paul Schupp (UIUC) Hoboken, September 2012 4 / 29



Linear space is very difficult to deal with

It is very difficult to make any definitive statements about linear space.
The famous example is the “LBA Problem”, the question of whether or
not the classs of languages in linear space is closed under
complementation. This was an open problem for more than twenty
years. Everyone thought the answer was “No” but could not prove the
result. Then at essentially the same time, Neil Immerman and

Szelepcsenyi really believed that the correct answer was “Yes”, in
which case they just wrote down the proof. The proof is only about two
pages and no only does not use any result proved in the intervening
twenty years, it does not even introduce any new definitions. In fact,
they proved that any reasonable space class is closed under
complementation.

Whether or not nondeterminstic linear bounded automata are
equivalent to deterministic linear bounded automata is still open.

Paul Schupp (UIUC) Hoboken, September 2012 4 / 29



Too many group word problems

Most garden variety groups have their word problems in linear space.
If a language is in linear space then it is decidable in single exponential
time. So if WP(G) /∈ EXPTIME(n) then WP(G) is not in linear space.

Bob Gilman has asked if there is a class of formal languages more
general than context-free languages but less general than linear
bounded languages for which one can say something about group
word problems in the class. After a very preliminary look, the following

class of languages at least seems interesting in that respect.

Paul Schupp (UIUC) Hoboken, September 2012 5 / 29



Too many group word problems

Most garden variety groups have their word problems in linear space.
If a language is in linear space then it is decidable in single exponential
time. So if WP(G) /∈ EXPTIME(n) then WP(G) is not in linear space.

Bob Gilman has asked if there is a class of formal languages more
general than context-free languages but less general than linear
bounded languages for which one can say something about group
word problems in the class. After a very preliminary look, the following

class of languages at least seems interesting in that respect.

Paul Schupp (UIUC) Hoboken, September 2012 5 / 29



Too many group word problems

Most garden variety groups have their word problems in linear space.
If a language is in linear space then it is decidable in single exponential
time. So if WP(G) /∈ EXPTIME(n) then WP(G) is not in linear space.

Bob Gilman has asked if there is a class of formal languages more
general than context-free languages but less general than linear
bounded languages for which one can say something about group
word problems in the class. After a very preliminary look, the following

class of languages at least seems interesting in that respect.

Paul Schupp (UIUC) Hoboken, September 2012 5 / 29



Too many group word problems

Most garden variety groups have their word problems in linear space.
If a language is in linear space then it is decidable in single exponential
time. So if WP(G) /∈ EXPTIME(n) then WP(G) is not in linear space.

Bob Gilman has asked if there is a class of formal languages more
general than context-free languages but less general than linear
bounded languages for which one can say something about group
word problems in the class. After a very preliminary look, the following

class of languages at least seems interesting in that respect.

Paul Schupp (UIUC) Hoboken, September 2012 5 / 29



Multi-Pass Automata

Roughly speaking, a deterministic k -pass automaton M works like an
ordinary deterministic PDA in that it can only move forward on the
read-only input tape, and has a pushdown stack and can read only the
top letter on the stack. However, the automaton can read the input
tape k -times. If k = 1 the machine is just a deterministic pushdown
automaton.

There is a special right end-marker, denoted ], which marks the end of
an input word. There is a counter keeping track of which pass the
automaton is on in reading the input. If the automaton reads the end
marker ] and the number of passes so far is less than k , then,
depending on the number of the pass, on the control state and the top
of the stack (including the case that the stack is empty), the machine
changes state, the pass-counter is increased by1, and the reading
head is reset to the beginning of the tape.

Paul Schupp (UIUC) Hoboken, September 2012 6 / 29



Multi-Pass Automata

Roughly speaking, a deterministic k -pass automaton M works like an
ordinary deterministic PDA in that it can only move forward on the
read-only input tape, and has a pushdown stack and can read only the
top letter on the stack. However, the automaton can read the input
tape k -times. If k = 1 the machine is just a deterministic pushdown
automaton.

There is a special right end-marker, denoted ], which marks the end of
an input word. There is a counter keeping track of which pass the
automaton is on in reading the input. If the automaton reads the end
marker ] and the number of passes so far is less than k , then,
depending on the number of the pass, on the control state and the top
of the stack (including the case that the stack is empty), the machine
changes state, the pass-counter is increased by1, and the reading
head is reset to the beginning of the tape.

Paul Schupp (UIUC) Hoboken, September 2012 6 / 29



Multi-Pass Automata

Roughly speaking, a deterministic k -pass automaton M works like an
ordinary deterministic PDA in that it can only move forward on the
read-only input tape, and has a pushdown stack and can read only the
top letter on the stack. However, the automaton can read the input
tape k -times. If k = 1 the machine is just a deterministic pushdown
automaton.

There is a special right end-marker, denoted ], which marks the end of
an input word. There is a counter keeping track of which pass the
automaton is on in reading the input. If the automaton reads the end
marker ] and the number of passes so far is less than k , then,
depending on the number of the pass, on the control state and the top
of the stack (including the case that the stack is empty), the machine
changes state, the pass-counter is increased by1, and the reading
head is reset to the beginning of the tape.

Paul Schupp (UIUC) Hoboken, September 2012 6 / 29



The automaton has two special halt states, Ha which is accepting and
Hr which is rejecting. If the automaton reads the end-marker on pass k
then the machine, depending on its state and the top of the stack, halts
in either Ha or Hr . The machine M accepts an input exactly if it halts in
the accepting state Ha on its final pass. As usual the language L(M)
accepted by M is the set of all words accepted by M.

Paul Schupp (UIUC) Hoboken, September 2012 7 / 29



The automaton has two special halt states, Ha which is accepting and
Hr which is rejecting. If the automaton reads the end-marker on pass k
then the machine, depending on its state and the top of the stack, halts
in either Ha or Hr . The machine M accepts an input exactly if it halts in
the accepting state Ha on its final pass. As usual the language L(M)
accepted by M is the set of all words accepted by M.

Paul Schupp (UIUC) Hoboken, September 2012 7 / 29



An Example

Since we are interested in group word problems, our automata can
continue working when they encounter an empty stack. As a

motivating example consider the word problem for the free abelian
group of rank two.

Let G = Z2 with presentation G = 〈a,b; ab = ba〉.

The associated word problem is then the language consisting of words
which have exponent sum 0 on both a and b.

This word problem is accepted by a 2-pass automaton M.
One the first pass M checks if the exponent sum on a in w is 0.
One the second pass M checks if the exponent sum on b in w is 0.
M accepts at the end of the second pass if and only if both conditions
are met.

Paul Schupp (UIUC) Hoboken, September 2012 8 / 29



An Example

Since we are interested in group word problems, our automata can
continue working when they encounter an empty stack. As a

motivating example consider the word problem for the free abelian
group of rank two.

Let G = Z2 with presentation G = 〈a,b; ab = ba〉.

The associated word problem is then the language consisting of words
which have exponent sum 0 on both a and b.

This word problem is accepted by a 2-pass automaton M.
One the first pass M checks if the exponent sum on a in w is 0.
One the second pass M checks if the exponent sum on b in w is 0.
M accepts at the end of the second pass if and only if both conditions
are met.

Paul Schupp (UIUC) Hoboken, September 2012 8 / 29



An Example

Since we are interested in group word problems, our automata can
continue working when they encounter an empty stack. As a

motivating example consider the word problem for the free abelian
group of rank two.

Let G = Z2 with presentation G = 〈a,b; ab = ba〉.

The associated word problem is then the language consisting of words
which have exponent sum 0 on both a and b.

This word problem is accepted by a 2-pass automaton M.
One the first pass M checks if the exponent sum on a in w is 0.
One the second pass M checks if the exponent sum on b in w is 0.
M accepts at the end of the second pass if and only if both conditions
are met.

Paul Schupp (UIUC) Hoboken, September 2012 8 / 29



An Example

Since we are interested in group word problems, our automata can
continue working when they encounter an empty stack. As a

motivating example consider the word problem for the free abelian
group of rank two.

Let G = Z2 with presentation G = 〈a,b; ab = ba〉.

The associated word problem is then the language consisting of words
which have exponent sum 0 on both a and b.

This word problem is accepted by a 2-pass automaton M.
One the first pass M checks if the exponent sum on a in w is 0.
One the second pass M checks if the exponent sum on b in w is 0.
M accepts at the end of the second pass if and only if both conditions
are met.

Paul Schupp (UIUC) Hoboken, September 2012 8 / 29



An Example

Since we are interested in group word problems, our automata can
continue working when they encounter an empty stack. As a

motivating example consider the word problem for the free abelian
group of rank two.

Let G = Z2 with presentation G = 〈a,b; ab = ba〉.

The associated word problem is then the language consisting of words
which have exponent sum 0 on both a and b.

This word problem is accepted by a 2-pass automaton M.
One the first pass M checks if the exponent sum on a in w is 0.
One the second pass M checks if the exponent sum on b in w is 0.
M accepts at the end of the second pass if and only if both conditions
are met.

Paul Schupp (UIUC) Hoboken, September 2012 8 / 29



A Formal Definition of Multi-pass Automata

Let Σ be a finite alphabet and let k ≥ 1 be a positive integer. A k -pass
automaton is a -tuple

M = ({1, ..., k},Q,Σ, Γ, ], δ,q0, {Ha,Hr})

where as usual, Q is a finite set of states,
Σ is the input alphabet,
Γ ⊇ Σ is the stack alphabet
and q0 ∈ Q is the initial state. The end-marker ] is a letter not in Γ. and

we assume that all input words end with ]
The distinct states Ha and Hr are not in Q. The transition function δ is

mainly a function

δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ Q × ({ε} ∪ Γ ∪ Γ2)

Paul Schupp (UIUC) Hoboken, September 2012 9 / 29



A Formal Definition of Multi-pass Automata

Let Σ be a finite alphabet and let k ≥ 1 be a positive integer. A k -pass
automaton is a -tuple

M = ({1, ..., k},Q,Σ, Γ, ], δ,q0, {Ha,Hr})

where as usual, Q is a finite set of states,
Σ is the input alphabet,
Γ ⊇ Σ is the stack alphabet
and q0 ∈ Q is the initial state. The end-marker ] is a letter not in Γ. and

we assume that all input words end with ]
The distinct states Ha and Hr are not in Q. The transition function δ is

mainly a function

δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ Q × ({ε} ∪ Γ ∪ Γ2)

Paul Schupp (UIUC) Hoboken, September 2012 9 / 29



A Formal Definition of Multi-pass Automata

Let Σ be a finite alphabet and let k ≥ 1 be a positive integer. A k -pass
automaton is a -tuple

M = ({1, ..., k},Q,Σ, Γ, ], δ,q0, {Ha,Hr})

where as usual, Q is a finite set of states,
Σ is the input alphabet,
Γ ⊇ Σ is the stack alphabet
and q0 ∈ Q is the initial state. The end-marker ] is a letter not in Γ. and

we assume that all input words end with ]
The distinct states Ha and Hr are not in Q. The transition function δ is

mainly a function

δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ Q × ({ε} ∪ Γ ∪ Γ2)

Paul Schupp (UIUC) Hoboken, September 2012 9 / 29



A Formal Definition of Multi-pass Automata

Let Σ be a finite alphabet and let k ≥ 1 be a positive integer. A k -pass
automaton is a -tuple

M = ({1, ..., k},Q,Σ, Γ, ], δ,q0, {Ha,Hr})

where as usual, Q is a finite set of states,
Σ is the input alphabet,
Γ ⊇ Σ is the stack alphabet
and q0 ∈ Q is the initial state. The end-marker ] is a letter not in Γ. and

we assume that all input words end with ]
The distinct states Ha and Hr are not in Q. The transition function δ is

mainly a function

δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ Q × ({ε} ∪ Γ ∪ Γ2)

Paul Schupp (UIUC) Hoboken, September 2012 9 / 29



There are two kinds of transitions here. The interpretation of

δ(q, σ, γ) = (q′, λ)

where q,q′ ∈ Q, σ ∈ Σ, and γ ∈ Γ ∪ {ε} is that
if the machine is in state q and reading the letter σ on the input tape
with γ or ε on top of the stack,
then the the automaton changes state to q′, replaces γ by λ and
advances the input tape. Since we are considering deterministic

machines, there is no loss of generality in having the automaton either
delete the top letter, or rewrite it, or rewrite it and add a single letter.

Paul Schupp (UIUC) Hoboken, September 2012 10 / 29



There are two kinds of transitions here. The interpretation of

δ(q, σ, γ) = (q′, λ)

where q,q′ ∈ Q, σ ∈ Σ, and γ ∈ Γ ∪ {ε} is that
if the machine is in state q and reading the letter σ on the input tape
with γ or ε on top of the stack,
then the the automaton changes state to q′, replaces γ by λ and
advances the input tape. Since we are considering deterministic

machines, there is no loss of generality in having the automaton either
delete the top letter, or rewrite it, or rewrite it and add a single letter.

Paul Schupp (UIUC) Hoboken, September 2012 10 / 29



The interpretation of
δ(q, ε, γ) = (q′, λ)

where q,q′ ∈ Q, σ ∈ Σ, and γ ∈ Γ is that
if the machine is in state q
with γ on top of the stack,
then, independent of the input letter
the the automaton changes state to q′, replaces γ by λ.
In this case the input tape is NOT advanced. Such transitions are
called ε-transitions. Since we are considering deterministic machines,

there are not both transitions δ(q, σ, γ) and δ(q, ε, γ). Note that the
machine cannot make an ε-transition on empty stack. We will need this
information later.

Paul Schupp (UIUC) Hoboken, September 2012 11 / 29



The interpretation of
δ(q, ε, γ) = (q′, λ)

where q,q′ ∈ Q, σ ∈ Σ, and γ ∈ Γ is that
if the machine is in state q
with γ on top of the stack,
then, independent of the input letter
the the automaton changes state to q′, replaces γ by λ.
In this case the input tape is NOT advanced. Such transitions are
called ε-transitions. Since we are considering deterministic machines,

there are not both transitions δ(q, σ, γ) and δ(q, ε, γ). Note that the
machine cannot make an ε-transition on empty stack. We will need this
information later.

Paul Schupp (UIUC) Hoboken, September 2012 11 / 29



A k -pass automaton M accepts a word w ∈ Σ if,
when started in its initial state with an empty stack and with w] written
on the input tape,
the automaton halts in state Ha at the end of the k -th pass. We write

M ` w if M accepts w . The language accepted by M is

L(M) := {w ∈ Σ∗ : M ` w} ⊂ Σ∗

A multi-pass language) is a language accepted by a k -pass automaton
for some k . LetM denote the class of all multi-pass languages.

Paul Schupp (UIUC) Hoboken, September 2012 12 / 29



A k -pass automaton M accepts a word w ∈ Σ if,
when started in its initial state with an empty stack and with w] written
on the input tape,
the automaton halts in state Ha at the end of the k -th pass. We write

M ` w if M accepts w . The language accepted by M is

L(M) := {w ∈ Σ∗ : M ` w} ⊂ Σ∗

A multi-pass language) is a language accepted by a k -pass automaton
for some k . LetM denote the class of all multi-pass languages.

Paul Schupp (UIUC) Hoboken, September 2012 12 / 29



A k -pass automaton M accepts a word w ∈ Σ if,
when started in its initial state with an empty stack and with w] written
on the input tape,
the automaton halts in state Ha at the end of the k -th pass. We write

M ` w if M accepts w . The language accepted by M is

L(M) := {w ∈ Σ∗ : M ` w} ⊂ Σ∗

A multi-pass language) is a language accepted by a k -pass automaton
for some k . LetM denote the class of all multi-pass languages.

Paul Schupp (UIUC) Hoboken, September 2012 12 / 29



A k -pass automaton M accepts a word w ∈ Σ if,
when started in its initial state with an empty stack and with w] written
on the input tape,
the automaton halts in state Ha at the end of the k -th pass. We write

M ` w if M accepts w . The language accepted by M is

L(M) := {w ∈ Σ∗ : M ` w} ⊂ Σ∗

A multi-pass language) is a language accepted by a k -pass automaton
for some k . LetM denote the class of all multi-pass languages.

Paul Schupp (UIUC) Hoboken, September 2012 12 / 29



Closure under Inverse Homomorphism

The basic question about a class of formal languages is:
What closure properties does the class have?
So we need to investigate this question for the classM of multi-pass
languages.

If Z and Σ are finite alphabets, a homomorphism

φ : Z ∗ → Σ∗

is defined by its images φ(ζi) = ui .

Observation. The classM is closed under inverse homomorphism.
That is, if φ : Z ∗ → Σ∗ is a homomorphism and L ⊆ Σ∗ is multi-pass
then K = {w ∈ Z ∗, φ(w) ∈ L} is multi-pass.

Paul Schupp (UIUC) Hoboken, September 2012 13 / 29



Closure under Inverse Homomorphism

The basic question about a class of formal languages is:
What closure properties does the class have?
So we need to investigate this question for the classM of multi-pass
languages.

If Z and Σ are finite alphabets, a homomorphism

φ : Z ∗ → Σ∗

is defined by its images φ(ζi) = ui .

Observation. The classM is closed under inverse homomorphism.
That is, if φ : Z ∗ → Σ∗ is a homomorphism and L ⊆ Σ∗ is multi-pass
then K = {w ∈ Z ∗, φ(w) ∈ L} is multi-pass.

Paul Schupp (UIUC) Hoboken, September 2012 13 / 29



Closure under Inverse Homomorphism

The basic question about a class of formal languages is:
What closure properties does the class have?
So we need to investigate this question for the classM of multi-pass
languages.

If Z and Σ are finite alphabets, a homomorphism

φ : Z ∗ → Σ∗

is defined by its images φ(ζi) = ui .

Observation. The classM is closed under inverse homomorphism.
That is, if φ : Z ∗ → Σ∗ is a homomorphism and L ⊆ Σ∗ is multi-pass
then K = {w ∈ Z ∗, φ(w) ∈ L} is multi-pass.

Paul Schupp (UIUC) Hoboken, September 2012 13 / 29



Closure under Inverse Homomorphism

The basic question about a class of formal languages is:
What closure properties does the class have?
So we need to investigate this question for the classM of multi-pass
languages.

If Z and Σ are finite alphabets, a homomorphism

φ : Z ∗ → Σ∗

is defined by its images φ(ζi) = ui .

Observation. The classM is closed under inverse homomorphism.
That is, if φ : Z ∗ → Σ∗ is a homomorphism and L ⊆ Σ∗ is multi-pass
then K = {w ∈ Z ∗, φ(w) ∈ L} is multi-pass.

Paul Schupp (UIUC) Hoboken, September 2012 13 / 29



Proof. Let M accept L. Consider the multi-pass automaton M̂ over Z
which
on reading a letter ζ ∈ Z simulates M on reading φ(ζ).

Closure under inverse homorphism is the basic property needed to
consider group word problems.

Paul Schupp (UIUC) Hoboken, September 2012 14 / 29



Proof. Let M accept L. Consider the multi-pass automaton M̂ over Z
which
on reading a letter ζ ∈ Z simulates M on reading φ(ζ).

Closure under inverse homorphism is the basic property needed to
consider group word problems.

Paul Schupp (UIUC) Hoboken, September 2012 14 / 29



Proof. Let M accept L. Consider the multi-pass automaton M̂ over Z
which
on reading a letter ζ ∈ Z simulates M on reading φ(ζ).

Closure under inverse homorphism is the basic property needed to
consider group word problems.

Paul Schupp (UIUC) Hoboken, September 2012 14 / 29



Observation. Whether or not a finitely generated group G has a
multi-pass word problem is independent of presentation. If G has
multi-pass word problem then every finitely generated subgroup of G
also has multi-pass word problem. Proof. Let G = 〈X ; R〉 be a finitely

generated presentation of G.
such that WP(G) is a multi-pass language.
Let H = 〈Y ; S〉 be a finitely generated group and suppose that there is
an injective homomorphism φ : H → G.
Then w ∈WP(H) if and only if φ(w) ∈WP(G)

and thus WP(H) is multi-pass.

Observation. The class of groups with multi-pass word problem is
closed under extension by finite groups. Once one has closure under
finitely generated subgroups the argument is the same as for
context-free groups.

Paul Schupp (UIUC) Hoboken, September 2012 15 / 29



Observation. Whether or not a finitely generated group G has a
multi-pass word problem is independent of presentation. If G has
multi-pass word problem then every finitely generated subgroup of G
also has multi-pass word problem. Proof. Let G = 〈X ; R〉 be a finitely

generated presentation of G.
such that WP(G) is a multi-pass language.
Let H = 〈Y ; S〉 be a finitely generated group and suppose that there is
an injective homomorphism φ : H → G.
Then w ∈WP(H) if and only if φ(w) ∈WP(G)

and thus WP(H) is multi-pass.

Observation. The class of groups with multi-pass word problem is
closed under extension by finite groups. Once one has closure under
finitely generated subgroups the argument is the same as for
context-free groups.

Paul Schupp (UIUC) Hoboken, September 2012 15 / 29



Observation. Whether or not a finitely generated group G has a
multi-pass word problem is independent of presentation. If G has
multi-pass word problem then every finitely generated subgroup of G
also has multi-pass word problem. Proof. Let G = 〈X ; R〉 be a finitely

generated presentation of G.
such that WP(G) is a multi-pass language.
Let H = 〈Y ; S〉 be a finitely generated group and suppose that there is
an injective homomorphism φ : H → G.
Then w ∈WP(H) if and only if φ(w) ∈WP(G)

and thus WP(H) is multi-pass.

Observation. The class of groups with multi-pass word problem is
closed under extension by finite groups. Once one has closure under
finitely generated subgroups the argument is the same as for
context-free groups.

Paul Schupp (UIUC) Hoboken, September 2012 15 / 29



Observation. Whether or not a finitely generated group G has a
multi-pass word problem is independent of presentation. If G has
multi-pass word problem then every finitely generated subgroup of G
also has multi-pass word problem. Proof. Let G = 〈X ; R〉 be a finitely

generated presentation of G.
such that WP(G) is a multi-pass language.
Let H = 〈Y ; S〉 be a finitely generated group and suppose that there is
an injective homomorphism φ : H → G.
Then w ∈WP(H) if and only if φ(w) ∈WP(G)

and thus WP(H) is multi-pass.

Observation. The class of groups with multi-pass word problem is
closed under extension by finite groups. Once one has closure under
finitely generated subgroups the argument is the same as for
context-free groups.

Paul Schupp (UIUC) Hoboken, September 2012 15 / 29



Observation. Whether or not a finitely generated group G has a
multi-pass word problem is independent of presentation. If G has
multi-pass word problem then every finitely generated subgroup of G
also has multi-pass word problem. Proof. Let G = 〈X ; R〉 be a finitely

generated presentation of G.
such that WP(G) is a multi-pass language.
Let H = 〈Y ; S〉 be a finitely generated group and suppose that there is
an injective homomorphism φ : H → G.
Then w ∈WP(H) if and only if φ(w) ∈WP(G)

and thus WP(H) is multi-pass.

Observation. The class of groups with multi-pass word problem is
closed under extension by finite groups. Once one has closure under
finitely generated subgroups the argument is the same as for
context-free groups.

Paul Schupp (UIUC) Hoboken, September 2012 15 / 29



Observation. Whether or not a finitely generated group G has a
multi-pass word problem is independent of presentation. If G has
multi-pass word problem then every finitely generated subgroup of G
also has multi-pass word problem. Proof. Let G = 〈X ; R〉 be a finitely

generated presentation of G.
such that WP(G) is a multi-pass language.
Let H = 〈Y ; S〉 be a finitely generated group and suppose that there is
an injective homomorphism φ : H → G.
Then w ∈WP(H) if and only if φ(w) ∈WP(G)

and thus WP(H) is multi-pass.

Observation. The class of groups with multi-pass word problem is
closed under extension by finite groups. Once one has closure under
finitely generated subgroups the argument is the same as for
context-free groups.

Paul Schupp (UIUC) Hoboken, September 2012 15 / 29



Closure under Interleaved Products

Definition
Let Σ1,Σ2 be two finite alphabets and let Li ⊂ Σ∗i
be multi-pass languages for i = 1,2. Note that there is no hypothesis
on how Σ1 and Σ2 overlap.
Let Σ = Σ1 ∪ Σ2 and denote by πi : Σ∗ : Σ∗i
the monoid homomophism defined by setting

πi(a) = a if a ∈ Σi and πi(a) = ε otherwise .

We call the language

L = {w ∈ Σ∗ : πi(w) ∈ Li i = 1,2}

the interleaved product of the languages L1 and L2.

Paul Schupp (UIUC) Hoboken, September 2012 16 / 29



Closure under Interleaved Products

Definition
Let Σ1,Σ2 be two finite alphabets and let Li ⊂ Σ∗i
be multi-pass languages for i = 1,2. Note that there is no hypothesis
on how Σ1 and Σ2 overlap.
Let Σ = Σ1 ∪ Σ2 and denote by πi : Σ∗ : Σ∗i
the monoid homomophism defined by setting

πi(a) = a if a ∈ Σi and πi(a) = ε otherwise .

We call the language

L = {w ∈ Σ∗ : πi(w) ∈ Li i = 1,2}

the interleaved product of the languages L1 and L2.

Paul Schupp (UIUC) Hoboken, September 2012 16 / 29



If the two alphabets are disjoint then L is the shuffle product of L1 and
L2.

If L1 = L2 then L is the intersection of L1 and L2.
There does not seem to be a standard name if the overlap of the
alphabets is arbitrary.

Proposition
The interleaved product of multi-pass languages is again a multi-pass
language.

Paul Schupp (UIUC) Hoboken, September 2012 17 / 29



If the two alphabets are disjoint then L is the shuffle product of L1 and
L2.

If L1 = L2 then L is the intersection of L1 and L2.
There does not seem to be a standard name if the overlap of the
alphabets is arbitrary.

Proposition
The interleaved product of multi-pass languages is again a multi-pass
language.

Paul Schupp (UIUC) Hoboken, September 2012 17 / 29



If the two alphabets are disjoint then L is the shuffle product of L1 and
L2.

If L1 = L2 then L is the intersection of L1 and L2.
There does not seem to be a standard name if the overlap of the
alphabets is arbitrary.

Proposition
The interleaved product of multi-pass languages is again a multi-pass
language.

Paul Schupp (UIUC) Hoboken, September 2012 17 / 29



If the two alphabets are disjoint then L is the shuffle product of L1 and
L2.

If L1 = L2 then L is the intersection of L1 and L2.
There does not seem to be a standard name if the overlap of the
alphabets is arbitrary.

Proposition
The interleaved product of multi-pass languages is again a multi-pass
language.

Paul Schupp (UIUC) Hoboken, September 2012 17 / 29



Let Li be accepted by a ki -pass automaton Mi and let k = k1 + k2.
It is clear how to construct a k -pass automaton M̂ accepting the
product of the Li .
On the first k1 passes M̂ simulates M1 on the successive letters which
are in Σ1.

On reading the end-marker ] at the end of pass k1, the machine M̂
goes to different subsets of states depending on whether M1 would
halt and accept, or whether M1 would reject.
In either case, the reading head is reset to the beginning of the input
tape.
M̂ then begins simulating M2 on the next k2 passes on the letters
belonging to Σ2. On reading the end-marker at the end of pass k1 + k2,

if M2 would accept and M1 also accepted, then M̂ accepts.
If either would have rejected then M̂ rejects. Observation. The class of

multi-pass languages is closed under both intersection and union.

Paul Schupp (UIUC) Hoboken, September 2012 18 / 29



Let Li be accepted by a ki -pass automaton Mi and let k = k1 + k2.
It is clear how to construct a k -pass automaton M̂ accepting the
product of the Li .
On the first k1 passes M̂ simulates M1 on the successive letters which
are in Σ1.

On reading the end-marker ] at the end of pass k1, the machine M̂
goes to different subsets of states depending on whether M1 would
halt and accept, or whether M1 would reject.
In either case, the reading head is reset to the beginning of the input
tape.
M̂ then begins simulating M2 on the next k2 passes on the letters
belonging to Σ2. On reading the end-marker at the end of pass k1 + k2,

if M2 would accept and M1 also accepted, then M̂ accepts.
If either would have rejected then M̂ rejects. Observation. The class of

multi-pass languages is closed under both intersection and union.

Paul Schupp (UIUC) Hoboken, September 2012 18 / 29



Let Li be accepted by a ki -pass automaton Mi and let k = k1 + k2.
It is clear how to construct a k -pass automaton M̂ accepting the
product of the Li .
On the first k1 passes M̂ simulates M1 on the successive letters which
are in Σ1.

On reading the end-marker ] at the end of pass k1, the machine M̂
goes to different subsets of states depending on whether M1 would
halt and accept, or whether M1 would reject.
In either case, the reading head is reset to the beginning of the input
tape.
M̂ then begins simulating M2 on the next k2 passes on the letters
belonging to Σ2. On reading the end-marker at the end of pass k1 + k2,

if M2 would accept and M1 also accepted, then M̂ accepts.
If either would have rejected then M̂ rejects. Observation. The class of

multi-pass languages is closed under both intersection and union.

Paul Schupp (UIUC) Hoboken, September 2012 18 / 29



Let Li be accepted by a ki -pass automaton Mi and let k = k1 + k2.
It is clear how to construct a k -pass automaton M̂ accepting the
product of the Li .
On the first k1 passes M̂ simulates M1 on the successive letters which
are in Σ1.

On reading the end-marker ] at the end of pass k1, the machine M̂
goes to different subsets of states depending on whether M1 would
halt and accept, or whether M1 would reject.
In either case, the reading head is reset to the beginning of the input
tape.
M̂ then begins simulating M2 on the next k2 passes on the letters
belonging to Σ2. On reading the end-marker at the end of pass k1 + k2,

if M2 would accept and M1 also accepted, then M̂ accepts.
If either would have rejected then M̂ rejects. Observation. The class of

multi-pass languages is closed under both intersection and union.

Paul Schupp (UIUC) Hoboken, September 2012 18 / 29



Closure under direct products

Corollary. If the finitely generated groups G1 and G2 have multi-pass
word problems,
then their direct product has a multi-pass word problem. All finitely

generated virtually free groups are multi-pass since they have
deterministic context-free word problems. Thus F2 × F2 is multi-pass.

Stallings’ example of a finitely generated subgroup of F2 × F2 which is
not finitely presented is the kernel of the homomorphism

F2 × F2 → 〈t〉

defined by a,b, c,d all go to t . SoM contains groups which are not

finitely presented. Mikhailova’s theorem shows that F2 × F2 has

unsolvable membership problem.
So we begin to see unsolvable problems.

Paul Schupp (UIUC) Hoboken, September 2012 19 / 29



Closure under direct products

Corollary. If the finitely generated groups G1 and G2 have multi-pass
word problems,
then their direct product has a multi-pass word problem. All finitely

generated virtually free groups are multi-pass since they have
deterministic context-free word problems. Thus F2 × F2 is multi-pass.

Stallings’ example of a finitely generated subgroup of F2 × F2 which is
not finitely presented is the kernel of the homomorphism

F2 × F2 → 〈t〉

defined by a,b, c,d all go to t . SoM contains groups which are not

finitely presented. Mikhailova’s theorem shows that F2 × F2 has

unsolvable membership problem.
So we begin to see unsolvable problems.

Paul Schupp (UIUC) Hoboken, September 2012 19 / 29



Closure under direct products

Corollary. If the finitely generated groups G1 and G2 have multi-pass
word problems,
then their direct product has a multi-pass word problem. All finitely

generated virtually free groups are multi-pass since they have
deterministic context-free word problems. Thus F2 × F2 is multi-pass.

Stallings’ example of a finitely generated subgroup of F2 × F2 which is
not finitely presented is the kernel of the homomorphism

F2 × F2 → 〈t〉

defined by a,b, c,d all go to t . SoM contains groups which are not

finitely presented. Mikhailova’s theorem shows that F2 × F2 has

unsolvable membership problem.
So we begin to see unsolvable problems.

Paul Schupp (UIUC) Hoboken, September 2012 19 / 29



Closure under direct products

Corollary. If the finitely generated groups G1 and G2 have multi-pass
word problems,
then their direct product has a multi-pass word problem. All finitely

generated virtually free groups are multi-pass since they have
deterministic context-free word problems. Thus F2 × F2 is multi-pass.

Stallings’ example of a finitely generated subgroup of F2 × F2 which is
not finitely presented is the kernel of the homomorphism

F2 × F2 → 〈t〉

defined by a,b, c,d all go to t . SoM contains groups which are not

finitely presented. Mikhailova’s theorem shows that F2 × F2 has

unsolvable membership problem.
So we begin to see unsolvable problems.

Paul Schupp (UIUC) Hoboken, September 2012 19 / 29



Closure under direct products

Corollary. If the finitely generated groups G1 and G2 have multi-pass
word problems,
then their direct product has a multi-pass word problem. All finitely

generated virtually free groups are multi-pass since they have
deterministic context-free word problems. Thus F2 × F2 is multi-pass.

Stallings’ example of a finitely generated subgroup of F2 × F2 which is
not finitely presented is the kernel of the homomorphism

F2 × F2 → 〈t〉

defined by a,b, c,d all go to t . SoM contains groups which are not

finitely presented. Mikhailova’s theorem shows that F2 × F2 has

unsolvable membership problem.
So we begin to see unsolvable problems.

Paul Schupp (UIUC) Hoboken, September 2012 19 / 29



Closure under direct products

Corollary. If the finitely generated groups G1 and G2 have multi-pass
word problems,
then their direct product has a multi-pass word problem. All finitely

generated virtually free groups are multi-pass since they have
deterministic context-free word problems. Thus F2 × F2 is multi-pass.

Stallings’ example of a finitely generated subgroup of F2 × F2 which is
not finitely presented is the kernel of the homomorphism

F2 × F2 → 〈t〉

defined by a,b, c,d all go to t . SoM contains groups which are not

finitely presented. Mikhailova’s theorem shows that F2 × F2 has

unsolvable membership problem.
So we begin to see unsolvable problems.

Paul Schupp (UIUC) Hoboken, September 2012 19 / 29



Semi-direct Products

A very similar argument shows that if G1 and G2 are multi-pass and
G2 acts on G1 by a finite group of automorphisms, then
the corresponding semi-direct product is multi-pass. As before, check

that the product of the letters representing elements of G2 is the
identity.
Using the state set, we can remember the multiplication table of the
finite group of automorphisms and the image of each generator of G1
under a given automorphism.
Now on reading a generator x of G1, simulate reading the image of x
under the automorphism associated to the product of the generators of
G2 read so far.
On reading a generator of G2 update the automorphism. In particular,

if F = 〈x1, ..., xn〉 is free
and φ is an automorphism of F of finite order then the mapping torus

〈F , t : txi t−1 = φ(xi)〉
is multi-pass.Paul Schupp (UIUC) Hoboken, September 2012 20 / 29



Semi-direct Products

A very similar argument shows that if G1 and G2 are multi-pass and
G2 acts on G1 by a finite group of automorphisms, then
the corresponding semi-direct product is multi-pass. As before, check

that the product of the letters representing elements of G2 is the
identity.
Using the state set, we can remember the multiplication table of the
finite group of automorphisms and the image of each generator of G1
under a given automorphism.
Now on reading a generator x of G1, simulate reading the image of x
under the automorphism associated to the product of the generators of
G2 read so far.
On reading a generator of G2 update the automorphism. In particular,

if F = 〈x1, ..., xn〉 is free
and φ is an automorphism of F of finite order then the mapping torus

〈F , t : txi t−1 = φ(xi)〉
is multi-pass.Paul Schupp (UIUC) Hoboken, September 2012 20 / 29



Semi-direct Products

A very similar argument shows that if G1 and G2 are multi-pass and
G2 acts on G1 by a finite group of automorphisms, then
the corresponding semi-direct product is multi-pass. As before, check

that the product of the letters representing elements of G2 is the
identity.
Using the state set, we can remember the multiplication table of the
finite group of automorphisms and the image of each generator of G1
under a given automorphism.
Now on reading a generator x of G1, simulate reading the image of x
under the automorphism associated to the product of the generators of
G2 read so far.
On reading a generator of G2 update the automorphism. In particular,

if F = 〈x1, ..., xn〉 is free
and φ is an automorphism of F of finite order then the mapping torus

〈F , t : txi t−1 = φ(xi)〉
is multi-pass.Paul Schupp (UIUC) Hoboken, September 2012 20 / 29



Semi-direct Products

A very similar argument shows that if G1 and G2 are multi-pass and
G2 acts on G1 by a finite group of automorphisms, then
the corresponding semi-direct product is multi-pass. As before, check

that the product of the letters representing elements of G2 is the
identity.
Using the state set, we can remember the multiplication table of the
finite group of automorphisms and the image of each generator of G1
under a given automorphism.
Now on reading a generator x of G1, simulate reading the image of x
under the automorphism associated to the product of the generators of
G2 read so far.
On reading a generator of G2 update the automorphism. In particular,

if F = 〈x1, ..., xn〉 is free
and φ is an automorphism of F of finite order then the mapping torus

〈F , t : txi t−1 = φ(xi)〉
is multi-pass.Paul Schupp (UIUC) Hoboken, September 2012 20 / 29



Rewriting one-relator groups and mapping tori

The standard way to study a one-relator group is to rewrite the group
as an HNN-extension of a one-relator group with shorter defining
relator. This may require adding a root of a generator if no generator
has exponent sum 0.

Observation. The one-relator groups

Gm,n = 〈xymxyn〉,m,n ∈ Z

are multi-pass.

Consider the group 〈x , y ; xy−2xy−5〉.
So σx = 2, σy = −7. Add a square root to y .
Thus subsititue x → xy7, y → y2, giving

xy7y−4xy7y−10 = xy3xy−3.

Paul Schupp (UIUC) Hoboken, September 2012 21 / 29



Rewriting one-relator groups and mapping tori

The standard way to study a one-relator group is to rewrite the group
as an HNN-extension of a one-relator group with shorter defining
relator. This may require adding a root of a generator if no generator
has exponent sum 0.

Observation. The one-relator groups

Gm,n = 〈xymxyn〉,m,n ∈ Z

are multi-pass.

Consider the group 〈x , y ; xy−2xy−5〉.
So σx = 2, σy = −7. Add a square root to y .
Thus subsititue x → xy7, y → y2, giving

xy7y−4xy7y−10 = xy3xy−3.

Paul Schupp (UIUC) Hoboken, September 2012 21 / 29



Rewriting one-relator groups and mapping tori

The standard way to study a one-relator group is to rewrite the group
as an HNN-extension of a one-relator group with shorter defining
relator. This may require adding a root of a generator if no generator
has exponent sum 0.

Observation. The one-relator groups

Gm,n = 〈xymxyn〉,m,n ∈ Z

are multi-pass.

Consider the group 〈x , y ; xy−2xy−5〉.
So σx = 2, σy = −7. Add a square root to y .
Thus subsititue x → xy7, y → y2, giving

xy7y−4xy7y−10 = xy3xy−3.

Paul Schupp (UIUC) Hoboken, September 2012 21 / 29



We rewrite by subscripting occurrences of x by the exponent sum on y .
preceeding the occurrence, giving the relator x0x3 in the base.
We can, of course, eliminate x3 by a Tietze transformation. Giving

G = 〈x0, x1, x2, y ; yx0y−1 = x1, yx1y−1 = x2, yx2y−1 = x0
−1〉

So G is the mapping torus of the indicated automorphism.

Paul Schupp (UIUC) Hoboken, September 2012 22 / 29



We rewrite by subscripting occurrences of x by the exponent sum on y .
preceeding the occurrence, giving the relator x0x3 in the base.
We can, of course, eliminate x3 by a Tietze transformation. Giving

G = 〈x0, x1, x2, y ; yx0y−1 = x1, yx1y−1 = x2, yx2y−1 = x0
−1〉

So G is the mapping torus of the indicated automorphism.

Paul Schupp (UIUC) Hoboken, September 2012 22 / 29



How often does rewriting a two-generator
one-relator group yield a mapping torus?

Obtaining a mapping torus is not a generic property. This is proved by
Nathan Dunfield and Dylan Thurston in A random tunnnel-number one
3-manifold does not fiber over the circle. Computer experiments show
that the fraction of two-generator one-relator groups which rewrite to
mapping tori is between .90 and .92.

Paul Schupp (UIUC) Hoboken, September 2012 23 / 29



How often does rewriting a two-generator
one-relator group yield a mapping torus?

Obtaining a mapping torus is not a generic property. This is proved by
Nathan Dunfield and Dylan Thurston in A random tunnnel-number one
3-manifold does not fiber over the circle. Computer experiments show
that the fraction of two-generator one-relator groups which rewrite to
mapping tori is between .90 and .92.

Paul Schupp (UIUC) Hoboken, September 2012 23 / 29



How often does rewriting a two-generator
one-relator group yield a mapping torus?

Obtaining a mapping torus is not a generic property. This is proved by
Nathan Dunfield and Dylan Thurston in A random tunnnel-number one
3-manifold does not fiber over the circle. Computer experiments show
that the fraction of two-generator one-relator groups which rewrite to
mapping tori is between .90 and .92.

Paul Schupp (UIUC) Hoboken, September 2012 23 / 29



Basic groups

Definition. A basic group is a group which is the free product of finitely
many finite groups and a finitely generated free group.

The canonical presentation of a basic group is to take the multiplication
table presentations for the finite factors and the free presentation for
the free factor. In the canonical presentation, every element has a
unique representation as a reduced word- no two successive letters
come from the same finite factor and the word is reduced on the free
generators.

A context-free language is semi-simple if it is accepted by a single
state deterministic pushdown automata which accepts by empty stack
and is allowed to continue working on empty stack.

Paul Schupp (UIUC) Hoboken, September 2012 24 / 29



Basic groups

Definition. A basic group is a group which is the free product of finitely
many finite groups and a finitely generated free group.

The canonical presentation of a basic group is to take the multiplication
table presentations for the finite factors and the free presentation for
the free factor. In the canonical presentation, every element has a
unique representation as a reduced word- no two successive letters
come from the same finite factor and the word is reduced on the free
generators.

A context-free language is semi-simple if it is accepted by a single
state deterministic pushdown automata which accepts by empty stack
and is allowed to continue working on empty stack.

Paul Schupp (UIUC) Hoboken, September 2012 24 / 29



Basic groups

Definition. A basic group is a group which is the free product of finitely
many finite groups and a finitely generated free group.

The canonical presentation of a basic group is to take the multiplication
table presentations for the finite factors and the free presentation for
the free factor. In the canonical presentation, every element has a
unique representation as a reduced word- no two successive letters
come from the same finite factor and the word is reduced on the free
generators.

A context-free language is semi-simple if it is accepted by a single
state deterministic pushdown automata which accepts by empty stack
and is allowed to continue working on empty stack.

Paul Schupp (UIUC) Hoboken, September 2012 24 / 29



Basic groups

Definition. A basic group is a group which is the free product of finitely
many finite groups and a finitely generated free group.

The canonical presentation of a basic group is to take the multiplication
table presentations for the finite factors and the free presentation for
the free factor. In the canonical presentation, every element has a
unique representation as a reduced word- no two successive letters
come from the same finite factor and the word is reduced on the free
generators.

A context-free language is semi-simple if it is accepted by a single
state deterministic pushdown automata which accepts by empty stack
and is allowed to continue working on empty stack.

Paul Schupp (UIUC) Hoboken, September 2012 24 / 29



Basic groups

Definition. A basic group is a group which is the free product of finitely
many finite groups and a finitely generated free group.

The canonical presentation of a basic group is to take the multiplication
table presentations for the finite factors and the free presentation for
the free factor. In the canonical presentation, every element has a
unique representation as a reduced word- no two successive letters
come from the same finite factor and the word is reduced on the free
generators.

A context-free language is semi-simple if it is accepted by a single
state deterministic pushdown automata which accepts by empty stack
and is allowed to continue working on empty stack.

Paul Schupp (UIUC) Hoboken, September 2012 24 / 29



Theorem. (Haring-Smith) The following are equivalent for a finitely
generated group G.

1 G is basic.
2 G has a presentation such that WP(G) is semi-simple.
3 G has a presentation Π such that in the Cayley graph Γ(Π)), there

are only finitely many simple closed paths through a vertex.

Example. Consider the modular group G = 〈x ; x2〉 ∗ 〈b; b3〉.

Shapiro’s Question. Suppose that a finitely generated group G has a
presentation Π such that in the Cayley graph Γ(Π)) geodesics are
unique. What can one say about G?

Conjecture. G is basic.

Paul Schupp (UIUC) Hoboken, September 2012 25 / 29



Theorem. (Haring-Smith) The following are equivalent for a finitely
generated group G.

1 G is basic.
2 G has a presentation such that WP(G) is semi-simple.
3 G has a presentation Π such that in the Cayley graph Γ(Π)), there

are only finitely many simple closed paths through a vertex.

Example. Consider the modular group G = 〈x ; x2〉 ∗ 〈b; b3〉.

Shapiro’s Question. Suppose that a finitely generated group G has a
presentation Π such that in the Cayley graph Γ(Π)) geodesics are
unique. What can one say about G?

Conjecture. G is basic.

Paul Schupp (UIUC) Hoboken, September 2012 25 / 29



Theorem. (Haring-Smith) The following are equivalent for a finitely
generated group G.

1 G is basic.
2 G has a presentation such that WP(G) is semi-simple.
3 G has a presentation Π such that in the Cayley graph Γ(Π)), there

are only finitely many simple closed paths through a vertex.

Example. Consider the modular group G = 〈x ; x2〉 ∗ 〈b; b3〉.

Shapiro’s Question. Suppose that a finitely generated group G has a
presentation Π such that in the Cayley graph Γ(Π)) geodesics are
unique. What can one say about G?

Conjecture. G is basic.

Paul Schupp (UIUC) Hoboken, September 2012 25 / 29



Theorem. (Haring-Smith) The following are equivalent for a finitely
generated group G.

1 G is basic.
2 G has a presentation such that WP(G) is semi-simple.
3 G has a presentation Π such that in the Cayley graph Γ(Π)), there

are only finitely many simple closed paths through a vertex.

Example. Consider the modular group G = 〈x ; x2〉 ∗ 〈b; b3〉.

Shapiro’s Question. Suppose that a finitely generated group G has a
presentation Π such that in the Cayley graph Γ(Π)) geodesics are
unique. What can one say about G?

Conjecture. G is basic.

Paul Schupp (UIUC) Hoboken, September 2012 25 / 29



Theorem. (Haring-Smith) The following are equivalent for a finitely
generated group G.

1 G is basic.
2 G has a presentation such that WP(G) is semi-simple.
3 G has a presentation Π such that in the Cayley graph Γ(Π)), there

are only finitely many simple closed paths through a vertex.

Example. Consider the modular group G = 〈x ; x2〉 ∗ 〈b; b3〉.

Shapiro’s Question. Suppose that a finitely generated group G has a
presentation Π such that in the Cayley graph Γ(Π)) geodesics are
unique. What can one say about G?

Conjecture. G is basic.

Paul Schupp (UIUC) Hoboken, September 2012 25 / 29



Closure under complementation

Observation. The class of multi-pass languages is closed under
complementation
The idea is of course, interchange to which of the special states Ha
and Hr the automaton goes at the end of the final pass.

The possible problem is that the automaton could go into a loop
making ε-transitions without advancing the tape and thus never read
the final end-marker.
Show that every automaton is equivalent to a normalized automaton
which always reads to the end-marker on the last pass. The proof is

exactly the same as the proof for deterministic pushdown automata as
given in Hopcroft and Ullman.

Paul Schupp (UIUC) Hoboken, September 2012 26 / 29



Closure under complementation

Observation. The class of multi-pass languages is closed under
complementation
The idea is of course, interchange to which of the special states Ha
and Hr the automaton goes at the end of the final pass.

The possible problem is that the automaton could go into a loop
making ε-transitions without advancing the tape and thus never read
the final end-marker.
Show that every automaton is equivalent to a normalized automaton
which always reads to the end-marker on the last pass. The proof is

exactly the same as the proof for deterministic pushdown automata as
given in Hopcroft and Ullman.

Paul Schupp (UIUC) Hoboken, September 2012 26 / 29



Closure under complementation

Observation. The class of multi-pass languages is closed under
complementation
The idea is of course, interchange to which of the special states Ha
and Hr the automaton goes at the end of the final pass.

The possible problem is that the automaton could go into a loop
making ε-transitions without advancing the tape and thus never read
the final end-marker.
Show that every automaton is equivalent to a normalized automaton
which always reads to the end-marker on the last pass. The proof is

exactly the same as the proof for deterministic pushdown automata as
given in Hopcroft and Ullman.

Paul Schupp (UIUC) Hoboken, September 2012 26 / 29



Closure under complementation

Observation. The class of multi-pass languages is closed under
complementation
The idea is of course, interchange to which of the special states Ha
and Hr the automaton goes at the end of the final pass.

The possible problem is that the automaton could go into a loop
making ε-transitions without advancing the tape and thus never read
the final end-marker.
Show that every automaton is equivalent to a normalized automaton
which always reads to the end-marker on the last pass. The proof is

exactly the same as the proof for deterministic pushdown automata as
given in Hopcroft and Ullman.

Paul Schupp (UIUC) Hoboken, September 2012 26 / 29



Closure under complementation

Observation. The class of multi-pass languages is closed under
complementation
The idea is of course, interchange to which of the special states Ha
and Hr the automaton goes at the end of the final pass.

The possible problem is that the automaton could go into a loop
making ε-transitions without advancing the tape and thus never read
the final end-marker.
Show that every automaton is equivalent to a normalized automaton
which always reads to the end-marker on the last pass. The proof is

exactly the same as the proof for deterministic pushdown automata as
given in Hopcroft and Ullman.

Paul Schupp (UIUC) Hoboken, September 2012 26 / 29



Observation. The membership problem for a multipass language is
solvable in cubic time. (Undoubtedly in linear time.) Proof. Run the
normalized automaton on the input.

Observation. However, the emptiness problem for multi-pass
languages is undecidable. In formal language theory it is well-known

that deciding whether or not the intersection of two deterministic
context-free languages is empty is undecidable. All such languages
are multi-pass. One can represent valid computations of Turing

machines as the intersection of deterministic context-free languages.

Paul Schupp (UIUC) Hoboken, September 2012 27 / 29



Observation. The membership problem for a multipass language is
solvable in cubic time. (Undoubtedly in linear time.) Proof. Run the
normalized automaton on the input.

Observation. However, the emptiness problem for multi-pass
languages is undecidable. In formal language theory it is well-known

that deciding whether or not the intersection of two deterministic
context-free languages is empty is undecidable. All such languages
are multi-pass. One can represent valid computations of Turing

machines as the intersection of deterministic context-free languages.

Paul Schupp (UIUC) Hoboken, September 2012 27 / 29



Observation. The membership problem for a multipass language is
solvable in cubic time. (Undoubtedly in linear time.) Proof. Run the
normalized automaton on the input.

Observation. However, the emptiness problem for multi-pass
languages is undecidable. In formal language theory it is well-known

that deciding whether or not the intersection of two deterministic
context-free languages is empty is undecidable. All such languages
are multi-pass. One can represent valid computations of Turing

machines as the intersection of deterministic context-free languages.

Paul Schupp (UIUC) Hoboken, September 2012 27 / 29



Observation. The membership problem for a multipass language is
solvable in cubic time. (Undoubtedly in linear time.) Proof. Run the
normalized automaton on the input.

Observation. However, the emptiness problem for multi-pass
languages is undecidable. In formal language theory it is well-known

that deciding whether or not the intersection of two deterministic
context-free languages is empty is undecidable. All such languages
are multi-pass. One can represent valid computations of Turing

machines as the intersection of deterministic context-free languages.

Paul Schupp (UIUC) Hoboken, September 2012 27 / 29



Of course, we have no good method for showing that a language is not
multi-pass.

Conjecture. The free product Z2 ∗ 〈x ; x2〉 is not multi-pass.
This is probably on the borderline.

Paul Schupp (UIUC) Hoboken, September 2012 28 / 29



Of course, we have no good method for showing that a language is not
multi-pass.

Conjecture. The free product Z2 ∗ 〈x ; x2〉 is not multi-pass.
This is probably on the borderline.

Paul Schupp (UIUC) Hoboken, September 2012 28 / 29



Of course, we have no good method for showing that a language is not
multi-pass.

Conjecture. The free product Z2 ∗ 〈x ; x2〉 is not multi-pass.
This is probably on the borderline.

Paul Schupp (UIUC) Hoboken, September 2012 28 / 29



Thank You

Paul Schupp (UIUC) Hoboken, September 2012 29 / 29


	The Chomsky Hierarchy of Formal Languages
	Group Word Problems and Formal Languages
	Linear space is very difficult to deal with
	Too many group word problems
	Multi-pass Automata
	Example
	A Formal Definition of Multi-pass Automata
	Closure under Inverse Homomorphism
	Closure under Interleaved Products

	Direct Products
	Semi-direct Products
	Rewriting one-relator groups and mapping tori
	Basic groups
	Closure under complementation

