
X a geodesic hyp space ea X
$\partial X:=\{$ inf. geodesic rays $\}$
frame $/$ /
r~r'when $d\left(\gamma(t), \sigma^{\prime}(t)\right)<$ cons

$$
\begin{aligned}
& (a \cdot b)_{e}=\frac{1}{2}(d(a, e)+d(b, e) \\
& \simeq \text { how far }-d(a, b))
\end{aligned}
$$ geodesics [e, a] and $[e, s]$ fellow travel

$$
\simeq d(e,[a, b])
$$

$$
\begin{gathered}
\partial X=\left\{\left(a_{n}\right) \mid\left(a_{m} \cdot a_{n}\right)_{e} \rightarrow \infty\right. \\
\text { as } m, n \rightarrow \infty\} / \sim \\
\left(a_{n}\right) \sim\left(b_{n}\right) \text { when }\left(a_{n} \cdot b_{n}\right)_{e} \rightarrow \infty \\
\text { as } n, n \rightarrow \infty .
\end{gathered}
$$

$\left(X, d_{Y}\right),\left(Y, d_{y}\right)$ both hyp.

$$
\text { with } e^{e} y \leqslant x
$$

Canner- Thusten Map

$$
\begin{aligned}
& \left(a_{n}\right) \longmapsto\left(a_{n}\right) \\
& \partial y \longrightarrow \partial x
\end{aligned}
$$

C-T Well defined in their example $S \longrightarrow S^{2}$
space filling curve.
$H \leq G$ both hyp.
Mitra

$$
\begin{aligned}
& H=\pi_{1} S \\
& G=\pi_{i} M
\end{aligned}
$$

G_{k} Hynobdie Hydra, Disen-R

$$
\begin{aligned}
& \text { " } F\left(a_{0}, a_{1}, \ldots, a_{n}, b_{1}, \ldots b_{0}\right) \times \mathbb{Z} \text { " }\langle t\rangle \\
& \Gamma_{k} \quad t^{-1} a_{k} t=a_{k} a_{k-1} t^{-1} a_{0} t=u a_{0} v \\
& \text { u,v words } \\
& t^{-1} a_{2} t=a_{2} a_{1} \text { on the b's } \\
& t^{-1} a_{1} t=a_{0} \quad t^{n} b_{j} t=b_{0} \| \\
& H_{h}=\left\langle a_{0} t, \ldots, a_{k} t\right\rangle \cong F_{k+1+l} b_{j p} \\
& \text { Dist }_{H_{k}}^{G_{n}} \sum_{4}^{\sum_{k}} A_{h} \\
& A_{1}(n)=2 n \\
& A_{2}(n)=2^{n} \\
& \left.A_{3}(n)=2^{2^{2^{2}}}\right\} n \\
& \vdots
\end{aligned}
$$

Hydra battle

$$
\begin{gathered}
a_{3} a_{3} a_{3} \\
a_{3} a_{2} a_{3} a_{2} \\
a_{2} a_{1} a_{3} a_{2} a_{2} a_{1} \\
\vdots \\
\vdots
\end{gathered}
$$

Duration against $a_{k}^{n} \simeq A_{k}(n)$

$$
a_{k}^{x} a_{2} t a_{1} a_{2}^{-1} a_{k}^{-x} \in H_{k}
$$

Th: The $C-T$ map for $\Lambda_{k} \leqslant \prod_{k}$ is wellodefined.
Modulus of Continuity

$$
\begin{array}{r}
f: U \rightarrow V, \delta>0 \\
\varepsilon(\delta):=\sup \{d(f(a), f(b)) \mid \\
a, b \in U \\
\quad \omega: G d(a, b) \leq \delta\}
\end{array}
$$

"Visual metric":

$$
d(p, q) \sim e^{-(p \cdot q)_{e}}
$$

Th $m: G$ both hyp If $\partial H \rightarrow \partial G$ is well -def. and H is not elementary, then $\exists \alpha, \beta>0, \forall n$,

$$
\varepsilon\left(\frac{\beta}{e^{D_{i s t}^{c t i}(n)}}\right) \geqslant \frac{\alpha}{e^{n}}
$$

$h_{n} \in H$ with $d_{G}\left(e, h_{n}\right) \leq n$ and $d_{M}\left(e, l_{n}\right)=$ Dist $_{H}^{C}(n)$.

Th m Let
\exists tee winds $C_{1} C_{i}$ on c_{1}, c_{2} and $D_{j}, D_{i j}$ on d_{1}, d_{2} with
(i) G hyp
(ii) $H:=\left\langle b_{1}, d_{1}, d_{2}\right\rangle \simeq F_{3}$
(iii) $\partial H \rightarrow \partial G$ not welldefined
(i) small cancellation
(ii) HNN - structure
(iii) Mitra's Lemma
$C=T$ map is well defined
$\Leftrightarrow(p \cdot q)_{e}^{G} \rightarrow \infty$ as $(p \cdot q)_{e}^{H} \rightarrow \infty$ for $p \cdot q \in H$.

$$
\begin{aligned}
& \left(p_{n} \cdot q_{n}\right)_{e}^{H}=n \\
& \left(p_{n} \cdot q_{n}\right)_{e}^{G}=0
\end{aligned}
$$

