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0. Introduction

I’ll talk about recent work with Derek Holt, some also with Laura Ciobanu;
it’s moved on a bit since I spoke on it at the webinar 11 months ago, and
had some excellent questions from Bob and others.

For a family of Artin groups that I shall call the ‘sufficiently large’ groups,
which includes all large type groups, triangle-free groups, and RAAGs we

• characterise the geodesic and shortlex minimal reps. of elements,

• have effective procedures to rewrite words to these forms, hence solve
the word problem in these groups, which we prove shortlex automatic.

• We can apply our knowledge of geodesics to derive the rapid decay
property for many of these groups, including all of extra-large type.

• For most of those groups we now deduce that Baum-Connes holds.



1. Notation

Let G = 〈X | R〉 be a finitely generated group.

A word over X is a string over X± := X ∪ X−1, an element of X±∗.
w has string length |w|; w is geodesic if u =G w ⇒ |w| ≤ |u|.
Given an order on X±, in the shortlex word order u <slex v
if either |u| < |v| or |u| = |v| but u precedes v lexicographically.
So, where a < b < c < d < · · · < y < z,

man <slex woman <slex women.

w is shortlex geodesic if w <slex u for all u 6= w with u =G w.

The set of all geodesics forms a language for G, i.e. a subset of X±∗

mapping onto G. The set of shortlex geodesics is a normal form for
G, i.e. a bijective language.



A group G is automatic if it has a language L that is regular (can be
recognised by a finite state automaton) and satisfies the following fellow
traveller property:
∃k, v, w ∈ L k-fellow travel (v ∼k w) when v =G w or v =G wx.
G is biautomatic if also v ∼k xw when v =G xw.
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G is shortlex automatic if automatic wrt its shortlex geodesic repre-
sentatives.

In an automatic group, any input word can be rewritten to its represen-
tative in L in quadratic time; in particular this solves the word problem.



Defining ‘Rapid decay’

A finitely generated group G satisfies rapid decay if the operator norm
||.||∗ for the group algebra CG is bounded by a constant multiple of the
Sobolev norm ||.||2,r,`, for some length function ` on G.

We define, for φ ∈ CG,

||φ||∗ = sup
ψ∈CG

||φ ∗ ψ||2
||ψ||2

, φ ∗ ψ(g) =
∑
h∈G

φ(h)ψ(h−1g),

||ψ||2 =

√∑
g∈G
|ψ(g)|2, ||φ||2,r,` =

√∑
g∈G
|φ(g)|2(1 + `(g))2r.

A function ` : G→ R is a length function if

`(1G) = 0, `(g−1) = `(g), `(gh) ≤ `(g) + `(h), ∀g, h ∈ G.



Why rapid decay?

It relates to the Novikov & Baum-Connes conjectures, was used in Connes-
Moscovic’s proof of the Novikov conjecture for word hyperbolic groups.

Haagerup identified it as a property of free groups. Jolissaint proved it for
word hyperbolic groups, and to be inherited by subgroups, free and direct
products etc. It also holds for

• groups with appropriate actions on CAT(0) cube complexes (Chatterji,
Ruane), so for Coxeter groups, RAAGs,

• mapping class groups (Behrstock, Minsky), so for braid groups (Artin
groups of type An),

• groups that are hyperbolic relative to subgroups with RD (Drutu, Sapir)
(in fact something weaker than relative hyperbolicity is enough).



Why Baum-Connes?

The Baum-Connes conjecture (1982) relates the K-theory of the reduced
C∗-algebra C∗r (G) to the KG-homology of the classifying space EG for
proper G-actions, claiming that the assembly maps

µGi : RKG
i (EG)→ Ki(C

∗
r (G)), i = 0, 1,

are isomorphisms.

It’s linked to many other conjectures. In particular when it holds, so does
the Kadison-Kaplansky conjecture, i.e. the group ring QG contains no
non-trivial idempotents.

Baum-Connes is proved for a range of groups using a variety of techniques.
In particular it’s proved for Coxeter groups (Bozejko et al.,1988), RAAGs
by results of Chatterji&Ruane and for braid groups (Schick, 2007), . . .



Rapid decay and Baum-Connes

Theorem (Lafforgue, 1998) If G satisfies RD, and acts continuously,
isometrically, properly and co-compactly on a CAT(0) metric space, then
G satisfies Baum-Connes.

• Using Lafforgue’s result Baum-Connes was deduced from RD for co-
compact lattices in SL3(R) ,SL3(C); SL3(Qp); SL3(H) and E6,−26
(Lafforgue; Ramagge, Robertson, Steger; Chatterji).

• We’ll use Lafforgue’s result to deduce Baum-Connes from rapid decay
for many Artin groups.



2. Introducing Artin groups

An Artin group G is defined by a presentation

〈x1, x2, · · · , xn |
mij︷ ︸︸ ︷

xixjxi · · · =
mij︷ ︸︸ ︷

xjxixj · · ·, i 6= j ∈ {1, 2, . . . , n}〉
mij ∈ N ∪∞,mij ≥ 2,

and naturally has a Coxeter group W as a quotient, whose presentation
is derived by adding involutionary relations x2

i = 1 to the braid
relations that define the Artin group.

The group is associated with a Coxeter matrix (mij), and Coxeter graph Γ,
with vertex set X = {xi : i = 1, 2, . . . , n} (complete graph with {xi, xj}
labelled mij).

We write G = G(Γ), W = W (Γ).



G has

dihedral type if |X| = 2,

spherical (finite) type if W is finite,

large type if mij ≥ 3, ∀i, j,

extra-large type if mij ≥ 4, ∀i, j,

right angled type (RAAG) if mij ∈ {2,∞}, ∀i, j.

is triangle-free if 6 ∃i, j, k s.t. mij,mik,mjk <∞.

Emil Artin gave his name to the groups, after introducing braid groups

〈x1, x2, · · · , xn | xixi+1xi = xi+1xixi+1, xixj = xjxi, ∀i + 1 < j〉

in 1926; these have typeAn. u
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u
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u
n



G(An) is faithfully represented as the group of braids on n + 1 strings,

s s s s

s s s s

Generator x1

1 2 3 4

�

��

s s s s

s s s s1 2 3 4

Half twist, ∆,
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and this braid representation provides a natural solution to the word prob-
lem. Artin solved the word problem (1926), Chow (1948) computed the
centre.



Artin groups of spherical type

Garside (1969) introduced a normal form for the braid group G(An),
describing it as the quotient of the braid monoid. Each braid is represented
by a product ∆kw, k ∈ Z. The word and conjugacy problem are easily
soluble.

Garside saw similar behaviour in some other groups, includingG(C3), G(H3).

Brieskorn-Saito and Deligne (1972) extended Garside’s results and more
to Artin groups of spherical type. The normal forms make Artin groups
of spherical type automatic (Thurston(1992) ; Charney (1992)).

For groups of FC type (any full subgraph of Coxeter graph without an∞
edge has spherical type), Altobelli & Charney (1996,2000) defined normal
forms to solve the word problem and prove asynchronous automaticity.



Artin groups: general results

Let G = G(Γ) be an Artin group, W = W (Γ).

• Each parabolic subgroup GJ is an Artin group over the full subgraph
of Γ with vertex set J , i.e. parabolic subgroups embed (v.d.Lek
(1983), Paris (1997)). Hence, since non-free dihedral Artin groups
contain Z2, only free Artin groups are word hyperbolic.

• For YW ⊆ Cn and XW = YW/W , π1(XW ) = G and XW is homo-
topically equivalent to the Deligne complex of cosets of parabolic
subgroups of finite type (Lek).

• The Artin monoid embeds (in natural embedding) in the group (Paris,2001).

• 〈x2
i 〉 is free, modulo obvious commutation relations, Crisp&Paris (2000);

this was Tits’ conjecture, arising from Appel and Schupp’s work.



Some questions for Artin groups

Let G = G(Γ) be an Artin group.

• Does G have soluble word problem, soluble conjugacy problem, a good
normal form? Is G automatic?

• What is the centre of G?

• Is G torsion-free?

• Is XW a K(π; 1) for G, that is, a complex with fundamental group G,
all higher homotopy groups trivial? - the K(π; 1) conjecture for G.

• Does G have rapid decay? Does it satisfy Baum-Connes?

The answers are known for various types of Artin groups G, for which
either a good normal form or a good action of G is known.



Large and extra-large type

In 1983, 1984, Appel and Schupp defined and studied Artin groups G first
of extra-large, and then of large type. They used small cancellation
arguments (exploiting a weak form of relative hyperbolicity) to prove

• the word, generalised word and conjugacy problems are soluble in G,

• parabolic subgroups embed,

• G is torsion-free,

• subgroups 〈x2
i , 1 ≤ i ≤ n〉 are free (this led to Tits’ conjecture).

Automaticity of extra-large type groups (Peifer, 1996) and many large
type groups (Brady&McCammond, 2000) were proved later using small
cancellation arguments.



Beyond large type

An Artin group is

triangle-free if 6 ∃ distinct i, j, k, mij,mik,mjk <∞. Pride (Invent. 1986)
used small cancellation to solve word and conjugacy problems and verify
Tits’ conjecture, and that parabolic subgroups embed.

locally non-spherical if no 3-gen. parabolic subgroup has spherical
type (includes triangle-free and large type). Chermak (J. Alg 1998)
solved word problem in exp. time, proved parabolic subgroups embed.

right angled if ∀i, j, mij ∈ {2,∞}. There are clear algorithms to solve
the word problem, and the groups are biautomatic (Hermiller&Meier
1995).



3. Artin groups of sufficiently large type

We say that G has sufficiently large type if each rank 3 subdiagram
containing an edge with label 2 is one of the two following diagrams:
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Large, extra-large, triangle-free and right angled groups all have suffi-
ciently large type. But the left hand example is sufficiently large but
not locally non-spherical, while this third diagram defines a group that is
locally non-spherical but not sufficiently large:
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Rewriting using basic moves

We prove that in sufficiently large Artin groups we can rewrite any input
word w to a geodesic or shortlex representative as required using certain
sequences of basic (τ -) moves in combination with free cancellation.

Each τ -move is applied to a subword which is maximal

either as a 2-generator subword on a braid pair

or as a subword in which all pairs of generators are free (mij = ∞) or
commuting (mij = 2) and the first or last generator commutes with
all others.

In the first case, the basic move is a braid (β-) move, in the second case
a commuting (κ-) move.

We can reduce in at worst quadratic time (maybe in linear time?).



The two kinds of basic moves

The β-moves (together with free reduction) are precisely the moves we
need to rewrite in the dihedral Artin groups we find as subgroups, the
κ-moves in right-angled subgroups.

The sufficiently large condition ensures that combining them in appropriate
sequences gives us an effective rewrite system in the full Artin group.

This strategy doesn’t work without the sufficiently large condition; e.g. in
braid groups.

We need a little more details to describe the two kinds of moves.



Recognising geodesics in dihedral Artin groups

To understand braid moves we look at dihedral Artin groups.

Write m(a, b) for the alternating product aba · · · of length m,
and (a, b)m for · · · bab. In this notation the dihedral Artin group DAm
has presentation

DAm = 〈a, b | m(a, b) = m(b, a)〉.
For a word w over a, b,

• we define p(w) to be the minimum of m and the maximal length of a
positive alternating subword in w,

• we define n(w) to be the minimum of m and the maximal length of a
negative alternating subword in w.

e.g. for w = ababa−1b−1, in DA3, we have p(w) = 3, n(w) = 2.



Our rewrite strategy is motivated by the following result.

Theorem (Mairesse,Mathéus, 2006)

In a dihedral Artin group DAm (any m ∈ Z), a word w is geodesic
iff p(w) + n(w) ≤ m, and is the unique geodesic representative of the
element it represents if p(w) + n(w) < m.



Rewriting in a dihedral Artin group

The Garside element ∆ is represented by m(a, b); it’s central if m is
even, otherwise a∆ = b. We define the permutation δ of {a, b, a−1, b−1}∗
to be that induced by the permutation a 7→ a∆, b 7→ b∆ of the generators.

We call a geodesic word v critical if it has the form

w = p(x, y)ξ(z−1, t−1)n or τ (w) = n(y−1, x−1)δ(ξ)(t, z)p,

where {x, y} = {z, t} = {a, b}, p = p(v), n = n(v), p + n = m.
(We add an extra condition when p or n is zero.)

Such words fall into pairs of words related by the involution τ , representing
the same element, beginning and ending with different generators.

We call application of τ to a critical subword of w a β-move on w.



Two critical words related by a β-move.

w

w
p(x, y)

ξ (z−1, t−1)n

n(y−1, x−1)

δ(ξ)

(t, z)p



Example:

In G = DA3, aba−1 is critical, and τ (aba−1) = b−1ab.

Applying that β-move to the critical subword aba−1 in the non-geodesic
word w = ababa−1b−1, we see that

w = ab(aba−1)b−1→ ab(b−1ab)b−1,

and the final word freely reduces to aa, which is geodesic.

It is straightforward to derive the following from Mathéus and Mairesse’
criterion for geodesics.

Theorem (Holt, Rees, PLMS 2012)

If w is freely reduced over {a, b} then w is shortlex minimal in DAm unless
it can be written as w1w2w3 where w2 is critical, and w′ = w1τ (w2)w3
is either less than w lexicographically or not freely reduced.



Definining κ-moves to deal with commuting pairs.

In our 2012 paper, we proved that we could rewrite in large type Artin
groups using sequences of β-moves applied to 2-generator subwords. But
β-moves alone aren’t enough to achieve all the reduction we need when
some pairs of generators commute; we need κ-moves to deal with those
pairs.

Suppose that

• u is a word over generators that pairwise commute,

• a is a generator commuting with all letters in u,

• neither a nor a−1 is in u,

then we call ua and au right and left κ-critical.

A κ-move exchanges κ-critical subwords ua and au within a word.



Applying sequences of moves in sufficiently large Artin
groups.

When we have more than 2 generators, we reduce to shortlex minimal form
using sequences of β-moves and κ-moves, each applied to a subword either
on a braid pair of generators or on a set of generators any two forming
either a commuting or a free pair.

We use sequences that move either to the right or to the left.



Example:

G = 〈a, b, c, d, e | aba = bab, aca = cac, bcbc = cbcb, bd = db, be = eb〉

First consider w = a−1badec−1bcaba. The 2 generator subwords are all
geodesic in the dihedral Artin subgroups (in fact also in G). The two
maximal a, b subwords are β-critical in DA3. Applying a β-move to the
leftmost critical subword creates a κ-critical subword bde. When bde is
transformed to deb, we see a new β-subword.

In fact, a sequence of 3 more β-moves transforms w to a word that is not
freely reduced. The free reduction is then badedcbc−1ab,



a−1

t

b a

t
b

a
b−1tt d e

t

d
e

b−1t c−1b c
b−1t

c
b c−1

t a b
t

a b

a−1t
a

Reducing a−1badec−1bcaba.

We call a sequence of basic moves like this a rightward length re-
ducing sequence.



Now consider w = cbcab−1ab−1cac−1, in which cac−1 is critical. Ap-
plying a β-move to this critical subword creates a new critical subword,
ab−1ab−1a−1, to which we can then apply a further β-move. After one
more β-move, w is transformed to the word w′ = b−1cbca−1a−1bbca, of
the same length as w but preceding w lexicographically.

c a c−1

u
c

a

ua b−1 a b−1

a−1u
a−1

a−1
b

b

uc b c

b−1uu
b−1

c
b c

We call a sequence like this a leftward lex reducing sequence.



Proposition (Holt, Rees)

Let G = 〈X〉 be a sufficiently large Artin group, a ∈ X±1.

(i) If w is geodesic but wa is not, then w admits a rightward length
reducing sequence to a geodesic.

(i) If w is shortlex geodesic but wa is not, then w admits either a rightward
length reducing sequence or a leftward lex reducing sequence, for which
the resultant word is shortlex geodesic.

(iii) If v, w are distinct geodesics representing the same element, ending
with distinct letters a, b, then a, 6= b−1, all other geodesics representing
the same element end in either a or b, and a single rightward sequence
of basic moves transforms v to a word ending in b.

These results form the basis of the proof of the following theorem.



Theorem A (Holt, Rees) PLMS 2012 + preprint 2012

Sufficiently large Artin groups are shortlex automatic, with regular geodesics.

We identify the set of shortlex geodesics as the set of words admitting
neither a rightward length reducing nor a leftward lex reducing reduction.

The regularity of geodesics is proved by verifying Neumann&Shapiro’s
‘Falsification by fellow traveller’ condition; this follows immediately from
part (iii) of the proposition.



Theorem B (Ciobanu, Holt, Rees, preprint 2012)

Let G(Γ) be an Artin group of large type for which the unlabelled graph
FΓ formed by omitting ∞ edges from Γ contains no subgraph
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with m ∈ N. Then G satisfies rapid decay.

In particular all Artin groups of extra-large type satisfy rapid decay.



Verifying rapid decay

We verify rapid decay by verifying the property

∀φ, ψ ∈ CG, k, l,m ∈ N,
|k − l| ≤ m ≤ k + l, ⇒ ||(φk ∗ ψl)m||2 ≤ P (k)||φk||2||ψl||2.

where φk means the restriction of φ to elements of word length k, etc.

We do this by analysing the factorisations of elements of length m as
products of elements g1, g2 of length k, l; both geodesic (m = k+ l) and
non-geodesic (m < k + l) factorisations.

It would be enough to have

• a polynomial bound (in k) on the number of geodesic factorisations,

• a further condition connecting non-geodesic and geodesic factorisations.



But we don’t have that!

Even in a dihedral Artin group DAm, the powers ∆n of ∆ = m(a, b) have
too many divisors. Every positive word of length n is a left divisor of ∆n;
for m ≥ 3 these words represent exponentially many elements.

So we have to try a bit harder.

We achieve what we need by relating each geodesic or non-geodesic fac-
torisation g1g2 of g to another factorisation, using a merging process.

We can control that process and certain associated sets of factorisations
using polynomial bounds.



The merging process

Given a geodesic or non-geodesic factorisation g1g2 of g, the merging
process derives a particular factorisation f1ĝf2, for which the factorisations
of g1 as f1h1 and g2 as h2f2 are permissible. Then ĝ = h1h2.

Essentially (with some modification) our set P of permissible factorisa-
tions to the set of geodesic factorisations that don’t split the Garside ∆ij
element of any dihedral subgroup; and ĝ = ∆r

ij, for some i, j, r.

}

}

}
g

g1 g2

} }f1 f2ĝ
h1 h2



The conditions D1, D2 on P that we need for rapid decay

ForPk,l(g) := {(g1, g2) : |g1| = k, |g2| = l, (g1, g2) ∈ P , g1g2 =G g},

D1: ∃ poly. P1(x) : sup|g|=k+l |Pk,l(g)| ≤ P1(k̄ := min(k, l)).

D2: ∃ sets S(g, k, l) ⊂ G3 (∀g, k, l), and polys. P2(x), P3(x), K > 0:

If g = g1g2 with |g1| = k, |g2| = l,
then ∃(f1, ĝ, f2) ∈ S(g, k, l), s.t. g = f1ĝf2 and ĝ = h1h2,
where (f1, h1) ∈ Pk−p1,p1

(g1), (h2, f2) ∈ Pp2,l−p2
(g2), p1, p2 ≤ Kk̄.

(a) for all g, k, l, |S(g, k, l)| ≤ P2(k̄),

(b) |{ĝ : ∃g, (f1, ĝ, f2) ∈ S(g, k, l)}| ≤ P3(k̄).



Theorem C (Ciobanu, Holt, Rees, preprint 2012)

An Artin group G = G(Γ) satisfying the hypotheses of Theorem B must
satisfy the Baum-Connes conjecture if one of the following holds.

1.G is 3-generated.

2. FΓ is triangle-free.

3. FΓ can be oriented to exclude both the following as induced subgraphs.
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In particular, any large type Artin group G(Γ) for which FΓ is triangle-free
satisfies the Baum-Connes conjecture.



Finding an appropriate CAT(0) action

We find an appropriate action of G on a CAT(0) metric using work of
Brady&McCammond (2000).

• G as above has a presentation with relators all of length 3.

• We define a metric on the presentation complex K to make each tri-
angular 2-cell either equilateral Euclidean of side length 1, or isosceles
right-angled Euclidean, with two sides of length 1; K is locally CAT(0).

• G acts naturally by isometries on both K and its universal cover K̃
(the Cayley complex); the action on K̃ is proper, continuous and co-
compact.

• K̃ is locally CAT(0), and simply connected, so CAT(0).

Application of Lafforgue’s result now gives us Baum-Connes.



Further questions

• Can we solve the word problem in linear time in Artin groups of large
or at least extra-large type?

• Is there a good solution to the conjugacy problem in these groups?

• Do these groups have a good biautomatic structure?

• Can we extend the proof of rapid decay to cover more Artin groups?
(only previously known for braid groups and RAAGs.) or indeed other
classes of groups?

• How much does our proof of rapid decay share with Drutu and Sapir’s
proof for relatively hyperbolic groups.

• Can we find appropriate actions to deduce Baum-Connes for further
Artin groups?
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