Conjugacy growth series

and

languages in groups

Susan Hermiller
Joint work with
Laura Ciobanu

Growth functions, growth series, and languages

$X=$ finite set $\quad X^{*}=\{$ words over $X\} \quad$ Language: $L \subseteq X^{*}$
Growth functions: $\mathbb{N} \rightarrow \mathbb{N}$
Strict: $\operatorname{str}_{L}(i):=\#\{w \in L \mid l(w)=n\}$
Cumulative: $\operatorname{cum}_{L}(i):=\#\{w \in L \mid l(w) \leq n\}$
Growth series ($=$ generating functions) $\in \mathbb{C}[[z]]$:
Strict: $s_{L}(z):=\sum_{i=0}^{\infty} \operatorname{str}_{L}(i) z^{i}$
Cumulative: $c_{L}(z):=\sum_{i=0}^{\infty} \operatorname{cum}_{L}(i) z^{i}$
Rmk. $s_{L}(z)=(1-z) c_{L}(z)$; i.e.,
$s_{L}(z)$ is rational iff $c_{L}(z)$ is rational.
(We'll use strict growth throughout.)
Fact. If L is a regular language (can be built from finite subsets of X^{*} using finitely many $\cup, \cap,{ }^{c}, \cdot,{ }^{*}$ operations), then $s_{L}(z)$ is rational.

Spherical growth series and language for groups

$G=$ group $\quad X=$ finite inverse-closed generating set
$d=$ path metric in Cayley graph
$|g|=d(\epsilon, g)$ for $g \in G$
$S(i):=\{g \in G| | g \mid=i\}$ $B(i):=\{g \in G| | g \mid \leq i\}$

Spherical growth series $\sigma=\sigma_{G, X}(z):=\sum_{i=0}^{\infty} \# S(i) z^{i}$
(Ball) Growth series $\beta_{G, X}(z):=\sum_{i=0}^{\infty} \# B(i) z^{i}$
$<=$ total order on $X \quad<_{s l}=$ shortlex order on X^{*}
$\forall g \in G$, let $y_{g}:=$ shortlex least representative of g
Spherical language $\Sigma=\Sigma(G, X)=\left\{y_{g} \mid g \in G\right\}$
Fact. $\sigma_{G, X}(z)=(1-z) \beta_{G, X}(z)=s_{\Sigma}(z)$.
Ex. $G=F_{2}=\langle a, b \mid\rangle, X=\{a, b\}^{ \pm 1}$.
$\Sigma=X^{*} \backslash\left(X^{*} \cdot\left\{a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b\right\} \cdot X^{*}\right), \quad \sigma(z)=\frac{1+z}{1-3 z}$
Ex. (ECHLPT) Σ is regular, hence σ is rational, for word hyperbolic, shortlex automatic groups

Spherical conjugacy growth series and language for groups

$G=$ group $\quad X=$ finite inverse-closed generating set
$G / \sim_{c}=$ conjugacy classes; $\quad|\alpha|_{c}=\min \{|g| \mid g \in \alpha\}$ for $\alpha \in G / \sim_{c}$
$\widetilde{S}(i):=\left\{\left.\alpha \in G \sim_{c}| | \alpha\right|_{c}=i\right\} \quad \widetilde{B}(i):=\left\{\left.\alpha \in G \sim_{c}| | \alpha\right|_{c} \leq i\right\}$
Spherical conjugacy growth series $\tilde{\sigma}=\tilde{\sigma}_{G, X}(z):=\sum_{i=0}^{\infty} \# \widetilde{S}(i) z^{i}$
(Ball) Conjugacy growth series $\widetilde{\beta}_{G, X}(z):=\sum_{i=0}^{\infty} \# \widetilde{B}(i) z^{i}$
Consistent with Guba-Sapir, Rivin; differs from Margulis, others.
$<=$ total order on $X \quad<_{s l}=$ shortlex order on X^{*} $\forall \alpha \in G / \sim_{c}$, let $z_{\alpha}:=$ shortlex least word rep. an elt. of G in α Spherical conjugacy language $\widetilde{\Sigma}=\widetilde{\Sigma}(G, X)=\left\{z_{\alpha} \mid \alpha \in G / \sim_{c}\right\}$
Fact. $\tilde{\sigma}_{G, X}(z)=(1-z) \widetilde{\beta}_{G, X}(z)=s_{\tilde{\Sigma}}(z)$.
Rmk. Coornaert, Knieper: Asymptotic bounds on conjugacy growth functions using exponential cumulative rate of spherical growth, for torsion-free non-elementary word hyperbolic groups.
Ex. $G=S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle, X=\{a, b\}$.
$\Sigma=\{1, a, b, a b, b a, a b a\}$,

$$
\sigma(z)=1+2 z+2 z^{2}+z^{3}
$$

$\Sigma=\{1, a, a b\}$,
$\tilde{\sigma}(z)=1+z+z^{2}$

Closure and graph products

Def. The graph product associated to a finite graph \wedge with vertex groups G_{i} is the group $G=\left\langle G_{i}\right|[g, h]=\lambda$ whenever $g \in G_{i}, h \in G_{j}$, and G_{i}, G_{j} adjacent \rangle.

Rmk. Graph has no edges $\Rightarrow G=*_{i} G_{i}$ is the free product. All vertex pairs adjacent $\Rightarrow G=\times_{i} G_{i}$ is the direct product.

Thm. (Chiswell) Rationality of the spherical growth series σ is closed under graph product.

Thm. (H, Meier) Regularity of the spherical language Σ is closed under graph product.

Lem. (Rivin; CH) Rationality of the spherical conjugacy growth series $\tilde{\sigma}$ and regularity of the spherical conjugacy language $\widetilde{\Sigma}$ are closed under direct product.
(In fact, $\tilde{\sigma}_{G \times H, X \cup Y}=\tilde{\sigma}_{G, X} \tilde{\sigma}_{H, Y}$ and $\widetilde{\Sigma}(G \times H, X \cup Y)=\widetilde{\Sigma}(G, X) \widetilde{\Sigma}(H, Y)$.)
But what about free products and spherical conjugacy?...

Spherical conjugacy and free products

Ex. $\mathbb{Z}=\langle a \mid\rangle, X=\{a\}^{ \pm 1}: \quad \tilde{\sigma}(z)=\sigma(z)=\frac{1+z}{1-z}$.
Thm. (Rivin) The spherical conjugacy growth series $\tilde{\sigma}\left(F_{2}, X\right)$ for the free group $F_{2}=\langle a, b \mid\rangle$ with respect to $X=\{a, b\}^{ \pm 1}$ is not rational.

Thm. (Ciobanu, H) The spherical conjugacy language $\widetilde{\Sigma}\left(F_{2}, X\right)$ is not context-free.

Reason: WLOG $a<b$.
(Regular language) \cap (context-free (CF) language) is CF.
$\widetilde{\Sigma}$ is CF $\Leftrightarrow \widetilde{\Sigma} \cap\left(a^{+} b^{+} a^{+} b^{+}\right)$is CF.
$a^{i} b^{j} a^{k} b^{l} \in \widetilde{\Sigma}\left(F_{2}, X\right) \Leftrightarrow$ either $i>k$ or $i=k$ and $j \leq l$.
Latter is not CF - violates CF Pumping Lemma.

Dependence on generating set

Thm. (Stoll) Rationality of the spherical growth series depends upon the generating set.

Thm. (Hull, Osin) There is a finitely generated group G with finite index subgroup H such that the cumulative growth function $\operatorname{cum}(i)$ associated to the spherical conjugacy language for G grows exponentially, but H has only two conjugacy classes.

Conj. Rationality of the spherical conjugacy growth series depends upon the generating set.
Q. Is the spherical conjugacy growth series $\tilde{\sigma}_{F_{2}, Y}$ rational for another finite inverse-closed generating set Y of F_{2} ?

Free products of finite groups

Thm. (Ciobanu, H) Let G_{i} be a finite group and $X_{i}:=G_{i} \backslash \epsilon_{G_{i}}$. (1) The spherical conjugacy growth series $\tilde{\sigma}_{G_{1} * G_{2}, X_{1} \cup X_{2}}$ is rational iff $G_{1}=G_{2}=\mathbb{Z} / 2 \mathbb{Z}$.
(2) Let $<$ be an ordering on $X:=X_{1} \cup X_{2}$ satisfying $a<b$ for all $a \in G_{1}, b \in G_{2}$. The spherical conjugacy language $\widetilde{\Sigma}_{G_{1} * G_{2}, X}$ is regular iff $G_{1}=G_{2}=\mathbb{Z} / 2 \mathbb{Z}$.

Reason: $z \frac{d}{d z} \tilde{\sigma}_{G_{1} * G_{2}, X}=$
$\left|\widetilde{\Sigma}\left(G_{1}, X_{1}\right) \cup \widetilde{\Sigma}\left(G_{2}, X_{2}\right) \backslash\{\lambda\}\right| z+2 \sum_{r=1}^{\infty} \sum_{e \mid r} \phi(e)\left(\left|X_{1}\right|\left|X_{2}\right|\right)^{r / e} z^{2 r}=$ $\left|\widetilde{\Sigma}\left(G_{1}, X_{1}\right) \cup \widetilde{\Sigma}\left(G_{2}, X_{2}\right) \backslash\{\lambda\}\right| z+2 \sum_{d=1}^{\infty} \phi(d) \frac{\left|X_{1}\right|\left|X_{2}\right| z^{2 d}}{1-\left|X_{1}\right|\left|X_{2}\right| z^{2 d}}$.
When $\left|X_{1}\right|\left|X_{2}\right|>1$, have analytic function on unit disk except at infinitely many poles.

Rmk. Thm above gives evidence for:
Conj. (Rivin) A word hyperbolic group G has rational spherical conjugacy growth series if and only if G is virtually cyclic.

Idea: The spherical conjugacy growth series is rarely rational.

Geodesic growth series and language for groups

$G=$ group $\quad X=$ finite inverse-closed generating set $d=$ path metric in Cayley graph $\quad|w|=d(\epsilon, w)$ for $w \in X^{*}$

Geodesic language $\Gamma=\Gamma(G, X)=\left\{w \in X^{*}|l(w)=|w|\}\right.$
Geodesic growth series $\gamma=\gamma_{G, X}(z):=s_{\Gamma}(z)$
$G / \sim_{c}=\{$ conj. $\}$ classes $\quad|w|_{c}=\min \left\{|g| \mid g \in[w]_{c}\right\}$ for $w \in X^{*}$
Geodesic conjugacy language

$$
\tilde{\Gamma}=\tilde{\Gamma}(G, X)=\left\{w \in X^{*}\left|l(w)=|w|_{c}\right\}\right.
$$

Geodesic conjugacy growth series $\tilde{\gamma}=\tilde{\gamma}_{G, X}(z):=s_{\tilde{\Gamma}}(z)$
Ex. $G=S_{3}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{3}=1\right\rangle, X=\{a, b\}$.
$\sum=\{1, a, b, a b, b a, a b a\}, \quad \sigma(z)=1+2 z+2 z^{2}+z^{3}$
$\bar{\Sigma}=\{1, a, a b\}$,
$\Gamma=\{1, a, b, a b, b a, a b a, b a b\}$,
$\gamma(z)=1+2 z+2 z^{2}+2 z^{3}$
$\tilde{\Gamma}=\{1, a, b, a b, b a\}$,

$$
\tilde{\gamma}(z)=1+2 z+2 z^{2}
$$

Ex. 「 is regular, hence γ is rational, for: Word hyperbolic (Cannon), virtually abelian, geometrically finite hyperbolic (NeumannShapiro), Coxeter (Howlett), Garside (Charney-Meier) groups. Regularity of Γ can depend upon the generating set (Cannon).

Geodesics, conjugacy geodesics, and graph products

$G=$ graph product of finite graph \wedge with vertex groups $G_{i}=\left\langle X_{i}\right\rangle$ with each X_{i} finite, inverse-closed.
$X:=\cup_{i} X_{i}$.
For each i, define a homomorphism $\pi_{i}: X^{*} \rightarrow\left(X_{i} \cup\{\$\}\right)^{*}$ by

$$
\pi_{i}(a):= \begin{cases}a & \text { if } a \in X_{i} \\ \$ & \text { if } a \in X_{j} \text { and } X_{i}, X_{j} \text { not adjacent } \\ 1 & \text { if } a \in X_{j} \text { and } X_{i}, X_{j} \text { adjacent }\end{cases}
$$

Thm. (Ciobanu, H)
(1) Geodesic words for G over X satisfy

$$
\Gamma(G, X)=\cap_{i} \pi_{i}^{-1}\left(\Gamma\left(G_{i}, X_{i}\right)\left(\$ \Gamma\left(G_{i}, X_{i}\right)\right)^{*}\right) .
$$

(2) Conjugacy geodesic words for G over X satisfy $\tilde{\Gamma}(G, X)=\cap_{i} \pi_{i}^{-1}\left(\tilde{\Gamma}\left(G_{i}, X_{i}\right) \cup \tilde{U}_{i}\right) \quad$ where
$\widetilde{U}_{i}:=\left\{u_{0} \$ u_{1} \cdots \$ u_{m} \mid m \geq 1\right.$ and $\left.u_{1}, \ldots, u_{m-1}, u_{m} u_{0} \in \tilde{\Gamma}\left(G_{i}, X_{i}\right)\right\}$.

The free group on 2 generators

Ex. $G=F_{2}=\langle a, b \mid\rangle, X=\{a, b\}^{ \pm 1}$.
$\wedge:\langle a \mid\rangle \bullet \bullet\langle b \mid\rangle$
$\Gamma=\Sigma=X^{*} \backslash\left(X^{*} \cdot\left\{a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b\right\} \cdot X^{*}\right)$ are regular
$\Gamma\left(\langle a \mid\rangle,\left\{a^{ \pm 1}\right\}\right)=a^{*} \cup a^{-1 *} \quad \Gamma\left(\langle b \mid\rangle,\left\{b^{ \pm 1}\right\}\right)=b^{*} \cup b^{-1 *}$
$\pi_{1}(a)=a, \quad \pi_{1}\left(a^{-1}\right)=a^{-1}, \quad \pi_{1}(b)=\$, \quad \pi_{1}\left(b^{-1}\right)=\$$
$\pi_{2}(a)=\$, \quad \pi_{2}\left(a^{-1}\right)=\$, \quad \pi_{2}(b)=b, \quad \pi_{2}\left(b^{-1}\right)=b^{-1}$
$\tilde{\Gamma}=\left\{w \in X^{*} \mid \pi_{1}(w) \in\left(\left(a^{*} \cup a^{-1 *}\right)\left(\$\left(a^{*} \cup a^{-1 *}\right)\right)^{*}\right)\right.$ and $\left.\pi_{2}(w) \in\left(\left(b^{*} \cup b^{-1 *}\right)\left(\$\left(b^{*} \cup b^{-1 *}\right)\right)^{*}\right)\right\}$ is regular
$\gamma(z)=\sigma(z)=\frac{1+z}{1-3 z}$

$$
\tilde{\gamma}(z)=\frac{1+z-z^{2}-9 z^{3}}{(1-3 z)(1-z)(1+z)}
$$

$\widetilde{\Sigma}$ is not $C F$.
$\widetilde{\sigma}(z)$ not rational.

Geodesics, conjugacy geodesics, and graph products, II

Cor. (Ciobanu, H) Regularity for the pair $\Gamma, \tilde{\Gamma}$ of geodesic and geodesic conjugacy languages is closed under graph product.

Cor. (Ciobanu, H) Every right-angled Artin group, right-angled Coxeter group, and graph product of finite groups has a regular geodesic conjugacy language $\tilde{\Gamma}$ and a rational geodesic conjugacy growth series $\tilde{\gamma}$.

Rmk. This gives new proof of:
Cor. (Loeffler, Meier, Worthington) Regularity of the geodesic language Γ is closed under graph product.

Geodesics, conjugacy geodesics, and graph products, III

Thm. (Ciobanu, H)
(1) Geodesic words: $\quad \Gamma(G, X)=\cap_{i} \pi_{i}^{-1}\left(\Gamma\left(G_{i}, X_{i}\right)\left(\$ \Gamma\left(G_{i}, X_{i}\right)\right)^{*}\right)$.
(2) Conjugacy geodesic words: $\tilde{\Gamma}(G, X)=\cap_{i} \pi_{i}^{-1}\left(\tilde{\Gamma}\left(G_{i}, X_{i}\right) \cup \tilde{U}_{i}\right)$
$\tilde{U}_{i}:=\left\{u_{0} \$ u_{1} \cdots \$ u_{m} \mid m \geq 1\right.$ and $\left.u_{1}, \ldots, u_{m-1}, u_{m} u_{0} \in \tilde{\Gamma}\left(G_{i}, X_{i}\right)\right\}$.

Notes on proof

- Using an extended generating set $T \supseteq X$, find a weightlex complete rewriting system for G.
$T:=\left\{a_{1} \cdots a_{m} \mid a_{i} \in X_{k_{i}}\right.$ and $i \neq j \Rightarrow X_{k_{i}}, X_{k_{j}}$ adjacent $\}$.
- Have canonical homomorphism $T^{*} \rightarrow X^{*}$. Images of irreducible words $=$ geodesic set \mathcal{N} of normal forms over X.
- $w \in X^{*}$ is geodesic iff normal form for w can be obtained from w by operations of the form
Local exchange: yuz $\rightarrow y w z$ with $y, z \in X^{*}, u, w \in X_{i}^{*}, u={ }_{G_{i}} w$, and $l(u)=l(w)$.
Shuffle: yuwz $\rightarrow y w u z$ with $y, z \in X^{*}, u \in X_{i}^{*}, w \in X_{j}^{*}$, and i, j adjacent in \wedge.

Geodesic series for direct and free products

Let G and H be groups with finite inverse-closed generating sets A and B, respectively. Let $X:=A \cup B$.

Free products

Thm. (1) (Loeffler, Meier, Worthington)

$$
\gamma_{G * H, X}=\frac{\gamma_{G, A} \gamma_{H, B}}{1-\left(\gamma_{G, A}-1\right)\left(\gamma_{H, B}-1\right)} .
$$

(2) (Ciobanu, H)

$$
\tilde{\gamma}_{G * H, X}-1=\left(\tilde{\gamma}_{G, A}-1\right)+\left(\tilde{\gamma}_{H, B}-1\right)-z \frac{d}{d z} \ln \left[1-\left(\gamma_{G, A}-1\right)\left(\gamma_{H, B}-1\right)\right] .
$$

Direct products
Thm. (1) (Loeffler, Meier, Worthington) $\gamma_{G \times H, X}=\sum_{i=0}^{\infty} c_{i} z^{i}$
where $\quad \gamma_{G, A}(z)=\sum_{i=0}^{\infty} a_{i} z^{i}, \quad \tilde{\gamma}_{H, B}(z)=\sum_{i=0}^{\infty} b_{i} z^{i}$, and $c_{i}:=\sum_{j=0}^{i}\binom{i}{j} a_{j} b_{i-j}$.
(2) (Ciobanu, H) $\quad \tilde{\gamma}_{G \times H, X}=\sum_{i=0}^{\infty} t_{i} z^{i}$
where $\quad \tilde{\gamma}_{G, A}(z)=\sum_{i=0}^{\infty} r_{i} z^{i}, \quad \tilde{\gamma}_{H, B}(z)=\sum_{i=0}^{\infty} s_{i} z^{i}, \quad$ and $t_{i}:=\sum_{j=0}^{i}\binom{i}{j} r_{j} s_{i-j}$.

Geodesic series for direct and free products, cont'd

Ex. Right-angled Coxeter group:
$G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{2}=(b c)^{2}=1\right\rangle \quad X=\{a, b, c\}$
The spherical language $\Sigma(G, X)$ and spherical conjugacy language $\tilde{\Sigma}(G, X)$ are regular, and the spherical and spherical conjugacy series $\sigma_{G, X}$ and $\tilde{\sigma}_{G, X}$ are rational.

The geodesic language
$\Gamma(G, X)=\{\lambda, c\}(b c)^{*}\{\lambda, a\}(b c)^{*}\{\lambda, b\} \cup\{\lambda, b\}(c b)^{*}\{\lambda, a\}(c b)^{*}\{\lambda, c\}$
and the geodesic conjugacy language
$\tilde{\Gamma}(G, x)=\{b, c, a b, a c, b a, c a\} \cup(b c)^{*}\{\lambda, a, b a c\}(b c)^{*} \cup(c b)^{*}\{\lambda, a, c a b\}(c b)^{*}$
are regular, and the corresponding rational growth series are
$\gamma_{G, X}(z)=\frac{1+z+z^{2}-z^{3}}{(1-z)^{2}}$

$$
\tilde{\gamma}_{G, X}=\frac{1+3 z+4 z^{2}-9 z^{4}+z^{5}+4 z^{6}}{(1-z)^{2}(1+z)^{2}}
$$

Amalgamated products of finite groups

Ex. Free product of finite groups:
G, H finite groups $\quad A:=G \backslash\left\{1_{G}\right\}, B:=H \backslash\left\{1_{H}\right\}$ Let $m:=|A|=|G|-1$ and $n:=|B|=|H|-1$.
$\tilde{\Gamma}(G, A)=\Gamma(G, A)=A \cup\{\lambda\} \quad \tilde{\Gamma}(H, B)=\Gamma(H, B)=B \cup\{\lambda\}$
$\tilde{\gamma}_{G, A}=\gamma_{G, A}=m z+1$
$\tilde{\gamma}_{H, B}=\gamma_{H, B}=n z+1$.
$\tilde{\gamma}(G * H, A \cup B)(z)=\frac{1+(m+n) z+m n z^{2}-m n(m+n) z^{3}}{1-m n z^{2}}$.
Ex. For $P:=P S L_{2}(\mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=\left\langle a, b, c \mid a^{2}=1, b^{2}=c, b c=1\right\rangle$ with $X=\{a, b, c\}$, the geodesic conjugacy growth series is $\tilde{\gamma}_{P, X}(z)=\frac{1+3 z+2 z^{2}-6 z^{3}}{1-2 z^{2}}$.

Thm. (Ciobanu, H) If G and H are finite groups with a common subgroup K, then the free product $G *_{K} H$ of G and H amalgamated over K, with respect to the generating set $X:=G \cup H \cup$ $K-\{1\}$, has regular geodesic conjugacy language $\tilde{\Gamma}\left(G *_{K} H, X\right)$ and rational geodesic conjugacy series $\tilde{\gamma}_{G *_{K} H, X}$.

An in-between growth function

Recall $y_{g}:=$ shortlex least rep. of $g \in G$.
Equality conjugacy language $\widetilde{\mathcal{E}}=\widetilde{\mathcal{E}}(G, X):=\left\{y_{g}| | g|=|g| c\}\right.$
Equality conjugacy growth series $\tilde{\epsilon}=\tilde{\epsilon}_{G, X}:=s_{\tilde{\mathcal{E}}}(z)$

$$
\begin{array}{lll}
\widetilde{\Sigma} \subseteq & \widetilde{\mathcal{E}} \subseteq & \tilde{\Gamma} \\
\cup \mid & & \cup \mid \\
\Sigma & \subseteq & \Gamma
\end{array}
$$

Lem. (Rivin) If $G=F_{2}$ and $X=\left(\right.$ free basis) ${ }^{ \pm 1}$ then $\tilde{\epsilon}$ is rational. (In fact $\tilde{\mathcal{E}}=\tilde{\Gamma}$ is regular and $\tilde{\epsilon}=\tilde{\gamma}$.)
Q. Is regularity of the equality conjugacy language preserved under graph product?
Q. Is rationality of the equality conjugacy growth series preserved by direct and free products?

More open questions

(1) Let $F=F(a, b)$ be the free group on generators a and b. Note that the spherical conjugacy language $\widetilde{\Sigma}\left(F,\left\{a^{ \pm 1}, b^{ \pm 1}\right\}\right)$ is computable. Is this set an indexed or context sensitive language?
(2) Let G be a word hyperbolic group and let X be a finite inverse-closed generating set for G. Is the geodesic conjugacy language $\tilde{\Gamma}(G, X)$ necessarily regular?
(3) Many groups G (e.g. closed surface groups (Cannon)) have a generating set for which the rational spherical growth series σ satisfies $\sigma(1)=1 / \chi(G)$, where χ is the Euler characteristic of G. What connections, if any, are there between spherical/geodesic conjugacy growth series and homological properties of G ?
(4) The complete growth series for G over X is given by $\beta(z):=\sum_{i=0}^{\infty}\left(\sum_{|g|=i} g\right) z^{i}$ in $\mathbb{Z}[G][[z]]$. Thm. (Grigorchuk, Nagnibeda) For word hyperbolic groups β is "rational".
Is the series $\widetilde{\beta}(z):=\sum_{i=0}^{\infty}\left(\sum_{|g|=|g| c=i} g\right) z^{i} \in \mathbb{Z}[G][[z]]$ rational for word hyperbolic groups?

