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Outline

What is non-commutative discrete optimization?

Knapsack problems in groups.

More open problems.
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Non-commutative discrete optimization

Non-commutative discrete (combinatorial) optimization concerns
with complexity of the classical discrete optimization (DO)
problems stated in a very general form - for non-commutative
groups.
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Non-commutative discrete optimization

DO problems concerning integers (subset sum, knapsack problem,
etc.) make perfect sense when the group of additive integers is
replaced by an arbitrary (non-commutative) group G .

The classical subset sum problem (SSP): Given a1, . . . , ak , a ∈ Z

decide if ε1a1 + . . . + εkak = a for some ε1, . . . , εk ∈ {0, 1}.

SSP for a group G :

Given g1, . . . , gk , g ∈ G decide if gε1
1 . . . g

εk

k = g

for some ε1, . . . , εk ∈ {0, 1}.

Elements in G are given as words in a fixed set of generators of G .
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Non-commutative discrete optimization

The classical lattice problems are about subgroups (integer lattices)
of the additive groups Zn or Qn, their non-commutative versions
deal with arbitrary finitely generated subgroups of a group G .

The shortest vector problem (SVP): Find a shortest vector in a
given lattice L of Zn (or Qn).

SVP for a group G :

Find a shortest element (in the word metric) in a subgroup of G
generated by elements g1, . . . , gk ∈ G .
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Non-commutative discrete optimization

The travelling salesman problem, the Steiner tree problem, the
Hamiltonian circuit problem, - all make sense for arbitrary finite
subsets of vertices in a given Cayley graph of a non-commutative
infinite group (with the word metric).

Let G be a group generated by a finite set X and Cay(G ,X ) the
Cayley graph of G .

Traveling Salesman Problem in G :

Given a finite set of vertices v1, . . . , vn ∈ Cay(G ,X ) find a closed
tour of minimal total length (in the word metric) that visits all the
vertices once.
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Non-commutative discrete optimization

This list of examples can be easily extended, but the point here is
that many classical DO problems have natural and interesting
non-commutative versions.

All these classical problems are NP-complete.

Complexity of their non-commutative analogs depends on the
group.
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Knapsack problems in groups

There are three principle Knapsack type problems in groups:
subset sum, knapsack, and submonoid membership.

We have mentioned already the subset sum problem SSP in
groups. The classical SSP is the most basic NP-complete
problem, it became famous after Merkle-Hellman’s cryptosystem.

Alexei Miasnikov (Stevens Institute) ”Non-commutative discrete optimization”



Knapsack problems in groups

There are three principle Knapsack type problems in groups:
subset sum, knapsack, and submonoid membership.

We have mentioned already the subset sum problem SSP in
groups. The classical SSP is the most basic NP-complete
problem, it became famous after Merkle-Hellman’s cryptosystem.

Alexei Miasnikov (Stevens Institute) ”Non-commutative discrete optimization”



The knapsack problem in groups

The knapsack problem (KP) for G :

Given g1, . . . , gk , g ∈ G decide if g =G gε1
1 . . . g

εk

k for some
non-negative integers ε1, . . . , εk .

There are minor variations of this problem, for instance, integer
KP, when εi are arbitrary integers. They are all similar, we omit
them here.

The subset sum problem sometimes is called 0− 1 knapsack.
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The knapsack problem in groups

The knapsack problems in groups is closely related to the big
powers method, which appeared long before any complexity
considerations (Baumslag, 1962).

The method shaped up as a basic tool in the study of

equations in free or hyperbolic groups,

in algebraic geometry over groups groups,

completions and group actions,

became a routine in the theory of hyperbolic groups (in the
form of properties of quasideodesics).
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Submonoid membership problem in groups

The third problem is equivalent to KP in the classical (abelian)
case, but not in general, it is of prime interest in algebra:

Submonoid membership problem (SMP):

Given a finite set A = {g1, . . . , gk , g} of elements of G decide if g
belongs to the submonoid generated by A, i.e., if g = gi1 , . . . , gis
for some gij ∈ A.

If the set A is closed under inversion then we have the subgroup
membership problem in G .
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Algorithmic set-up

G is a group generated by a set X ⊆ G .

Elements in G are given as group words over X .
If X is finite then the size of a word g in X± is its length |g |.

The size of a tuple of words g1, . . . , gk is the total sum of the
lengths |g1|+ . . .+ |gk |.
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Algorithmic set-up

If the generating set X is infinite, then the size of a letter x ∈ X is
not necessarily equal to 1, it depends on how we represent
elements of X .

We always assume that there is an efficient injective function
ν : X → {0, 1}∗ which encodes elements in X by binary strings.

In this case for x ∈ X we define:

size(x) = |ν(x)|,

for a word g = x1 . . . xn with xi ∈ X

size(g) = size(x1) + . . .+ size(xn),

for a tuple of words (g1, . . . , gk)

size(g1, . . . , gk) = size(g1) + . . . + size(gk).
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Bounded variations

It makes sense to consider the bounded versions of KP and SMP,
they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G :

decide, when given g1, . . . , gk , g ∈ G and 1m ∈ N, if
g =G g

ε1
1 . . . g

εk

k for some εi ∈ {0, 1, . . . ,m}.

This problem is P-time equivalent to SSP in G .
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Bounded variations

The bounded SMP in G is very interesting in its own right.

Bounded submonoid membership problem (BSMP) for G :

Given g1, . . . gk , g ∈ G and 1m ∈ N (in unary) decide if g is equal
in G to a product of the form g = gi1 · · · gis , where
gi1 , . . . , gis ∈ {g1, . . . , gk} and s ≤ m.
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Search variations

In search variations we are asked to find a particular solution.

We will discuss later the optimization version of search problems,
when one has to find a solution under some optimal restrictions.
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Classical SSP

As we mentioned the classical SSP is NP-complete when the
numbers are given in binary.

But if the numbers in SSP are given in unary, then the problem is
in P (the problem is pseudo-polynomial).

How one explain this from the group-theoretic view-point?
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Classical SSP: group theory view-point

Z is generated by {1}. Then SSP(Z, {1}) is linear-time
equivalent to the classical SSP in which numbers are given in
unary. In particular, SSP(Z, {1}) is in P.

Z is generated by X = {xn = 2n | n ∈ N}. Fix an encoding
ν : X±1 → {0, 1}∗ such that size(xn) is about n. Then
SSP(Z,X ) is P-time equivalent to its classical version where
the numbers are given in the binary form. In particular,
SSP(Z,X ) is NP-complete.
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Infinite direct sum of Z

Let G = Zω, E = {ei}i∈N is the standard basis for Zω.

We fix an encoding ν : E±1 → {0, 1}∗ for the generating set E
defined by:

{

ei
ν

7→ 0101(00)i 11,

−ei
ν

7→ 0100(00)i 11.

Theorem

SSP(Zω,E ) is NP-complete.

Proof. The following NP-complete problem is Ptime reducible to
SSP(Zω,E ).

Zero-one equation problem: Given a zero-one matrix
A ∈ Mat(n,Z) decide if there exists a zero-one vector x ∈ Zn

satisfying A · x = 1n, or not.
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Crucial lemma

To formulate the following results put

P = {SSP,KP,SMP,BKP,BSMP}.

Ptime embeddings

Let Gi be a group generated by a set Xi with an encoding νi ,
i = 1, 2. If

φ : G1 → G2

is a P-time computable embedding relative to (X1, ν1), (X2, ν2)
then Π(G1,X1) is P-time reducible to Π(G2,X2) for any problem
Π ∈ P.

If X1,X2 are finite then any embedding φ : G1 → G2 is a P-time
computable.

In particular, any problem from P is Ptime equivalent upon
changing finite generating sets.
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Groups with hard SSP

Examples

The following groups have NP-complete SSP:

(a) Free metabelian non-abelian groups of finite rank.

(b) Wreath product Z ≀ Z.

Let Mn be a free metabelian group with basis X = {x1, . . . , xn},
where n ≥ 2. A map

ei → x−i
1 [x2, x1]x

i
1 (for i ∈ N)

gives a P-time embedding of Zω into Mn.

Let G = 〈a〉 wr 〈t〉. A map ei → t−iat i , i ∈ N gives a P-time
embedding of Zω into G .
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More examples

Thompson group

The subset sum problem for the Thompson’s group

F = 〈a, b | [ab−1, a−1ba] = 1, [ab−1, a−2ba2] = 1〉

is NP-complete.

Proof. The wreath product Z ≀ Z can be embedded into F .

Baumslag’s group GB

The subset sum problem for Baumslag’s group

GB = 〈a, s, t | [a, at ] = 1, [s, t] = 1, as = aat〉

is NP-complete.
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Baumslag-Solitar groups

BS(1, p)

The subset sum problem for Baumslag-Solitar metabelian group

BS(1, p) = 〈a, t | t−1at = ap〉

is NP-complete.

Proof. We showed earlier that SSP(Z,X ) is NP-complete for a
generating set X = {xn = 2n | n ∈ N}. The map

xn → t−natn

P-time computable embedding φ : Z → BS(1, 2) because
t−natn = a2

n
.
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Nilpotent groups

Theorem

Let G be a finitely generated virtually nilpotent group. Then
SSP(G ) and BSMP(G ), as well as their search and optimization
variations, are in P.

The proof is based on the fact that finitely generated virtually
nilpotent groups have polynomial growth.
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Hyperbolic groups

Theorem

Let G be a hyperbolic group then all the problems
SSP(G ),KP(G ),BSMP(G ), as well as their search and
optimization versions are in P.
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