Vladimir Shpilrain
The City College of New York

Public key exchange using semidirect product of (semi)groups

November 15, 2012

The Diffie-Hellman public key exchange (1976)

1. Alice and Bob agree on a public (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.
2. Alice picks a random natural number a and sends g^{a} to Bob.
3. Bob picks a random natural number b and sends g^{b} to Alice.
4. Alice computes $K_{A}=\left(g^{b}\right)^{a}=g^{b a}$.
5. Bob computes $K_{B}=\left(g^{a}\right)^{b}=g^{a b}$.

Since $a b=b a$ (because \mathbb{Z} is commutative), both Alice and Bob are now in possession of the same group element $K=K_{A}=K_{B}$ which can serve as the shared secret key.

Efficiency for legitimate parties

Exponentiation by "square-and-multiply":

Complexity of computing g^{n} is therefore $O(\log n)$, times complexity of reducing $\bmod p$ (more generally, reducing to a "normal form")

Efficiency for legitimate parties

Exponentiation by "square-and-multiply":

$$
g^{22}=\left(\left(\left(g^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(g^{2}\right)^{2} \cdot g^{2}
$$

Efficiency for legitimate parties

Exponentiation by "square-and-multiply":

$$
g^{22}=\left(\left(\left(g^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(g^{2}\right)^{2} \cdot g^{2}
$$

Complexity of computing g^{n} is therefore $O(\log n)$, times complexity of reducing $\bmod p$ (more generally, reducing to a "normal form").

Security assumptions

To recover $g^{a b}$ from $\left(g, g^{a}, g^{b}\right)$ is hard.

To recover a from $\left(g, g^{a}\right)$ (discrete log problem) is hard.

Security assumptions

To recover $g^{a b}$ from $\left(g, g^{a}, g^{b}\right)$ is hard.

To recover a from $\left(g, g^{a}\right)$ (discrete log problem) is hard.

Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.
2. Alice picks a random natural number a and sends g^{a} to Bob.
3. Bob picks a random natural number b and sends g^{b} to Alice.
4. Alice computes $K_{A}=\left(g^{b}\right) \cdot\left(g^{a}\right)=g^{b+a}$.
5. Bob computes $K_{B}=\left(g^{a}\right) \cdot\left(g^{b}\right)=g^{a+b}$.

Obviously, $K_{A}=K_{B}=K$, which can serve as the shared secret key.

Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.
2. Alice picks a random natural number a and sends g^{a} to Bob.
3. Bob picks a random natural number b and sends g^{b} to Alice.
4. Alice computes $K_{A}=\left(g^{b}\right) \cdot\left(g^{a}\right)=g^{b+a}$.
5. Bob computes $K_{B}=\left(g^{a}\right) \cdot\left(g^{b}\right)=g^{a+b}$.

Obviously, $K_{A}=K_{B}=K$, which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!

Using matrices

Stickel 2005, Maze-Monico-Rosenthal 2007
There is a public ring (or a semiring) R and public $n \times n$ matrices S, M_{1}, and M_{2} over R. The ring R should have a non-trivial commutative subring C. One way to guarantee that would be for R to be an algebra over a field K; then, of course, $C=K$ will be a commutative subring of R.

1. Alice chooses polynomials $p_{A}(x), q_{A}(x) \in C[x]$ and sends the matrix $U=p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right)$ to Bob.
2. Bob chooses polynomials $p_{B}(x), q_{B}(x) \in C[x]$ and sends the matrix $V=p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right)$ to Alice.
3. Alice computes
$K_{A}=p_{A}\left(M_{1}\right) \cdot V \cdot q_{A}\left(M_{2}\right)=p_{A}\left(M_{1}\right) \cdot p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right) \cdot q_{A}\left(M_{2}\right)$
4. Bob computes
$K_{B}=p_{B}\left(M_{1}\right) \cdot U \cdot q_{B}\left(M_{2}\right)=p_{B}\left(M_{1}\right) \cdot p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right) \cdot q_{B}\left(M_{2}\right)$
Since any two polynomials in the same matrix commute, one has $K=K_{A}=K_{B}$ the shared secret key.

Using matrices

Stickel 2005, Maze-Monico-Rosenthal 2007

There is a public ring (or a semiring) R and public $n \times n$ matrices S, M_{1}, and M_{2} over R. The ring R should have a non-trivial commutative subring C. One way to guarantee that would be for R to be an algebra over a field K; then, of course, $C=K$ will be a commutative subring of R.

1. Alice chooses polynomials $p_{A}(x), q_{A}(x) \in C[x]$ and sends the matrix $U=p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right)$ to Bob.
2. Bob chooses polynomials $p_{B}(x), q_{B}(x) \in C[x]$ and sends the matrix $V=p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right)$ to Alice.
3. Alice computes

$$
K_{A}=p_{A}\left(M_{1}\right) \cdot V \cdot q_{A}\left(M_{2}\right)=p_{A}\left(M_{1}\right) \cdot p_{B}\left(M_{1}\right) \cdot S \cdot q_{B}\left(M_{2}\right) \cdot q_{A}\left(M_{2}\right) .
$$

4. Bob computes

$$
K_{B}=p_{B}\left(M_{1}\right) \cdot U \cdot q_{B}\left(M_{2}\right)=p_{B}\left(M_{1}\right) \cdot p_{A}\left(M_{1}\right) \cdot S \cdot q_{A}\left(M_{2}\right) \cdot q_{B}\left(M_{2}\right) .
$$

Since any two polynomials in the same matrix commute, one has $K=K_{A}=K_{B}$, the shared secret key.

Cayley-Hamilton

Note: The whole ring R should not be commutative because otherwise, the Cayley-Hamilton theorem kills large powers of a matrix.

Semidirect product

Let G, H be two groups, let $\operatorname{Aut}(G)$ be the group of automorphisms of G, and let $\rho: H \rightarrow \operatorname{Aut}(G)$ be a homomorphism. Then the semidirect product of G and H is the set

$$
\Gamma=G \rtimes_{\rho} H=\{(g, h): g \in G, h \in H\}
$$

with the group operation given by

$$
(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g^{\rho(h)} \cdot g^{\prime}, h \cdot h^{\prime}\right)
$$

Here $g^{\rho(h)}$ denotes the image of g under the automorphism $\rho(h)$.

Extensions by automorphisms

If $H=\operatorname{Aut}(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $\operatorname{Hol}(G)$, is the set of all pairs (g, ϕ), where $g \in G, \phi \in \operatorname{Aut}(G)$, with the group operation given by

$$
(g, \phi) \cdot\left(g^{\prime}, \phi^{\prime}\right)=\left(\phi^{\prime}(g) \cdot g^{\prime}, \phi \cdot \phi^{\prime}\right)
$$

It is often more practical to use a subgroup of $\operatorname{Aut}(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup $\operatorname{End}(G)$ instead of the group $\operatorname{Aut}(G)$ in this construction.

Extensions by automorphisms

If $H=\operatorname{Aut}(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $\operatorname{Hol}(G)$, is the set of all pairs (g, ϕ), where $g \in G, \phi \in \operatorname{Aut}(G)$, with the group operation given by

$$
(g, \phi) \cdot\left(g^{\prime}, \phi^{\prime}\right)=\left(\phi^{\prime}(g) \cdot g^{\prime}, \phi \cdot \phi^{\prime}\right)
$$

It is often more practical to use a subgroup of $\operatorname{Aut}(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup End (G) instead of the group $\operatorname{Aut}(G)$ in this construction

Extensions by automorphisms

If $H=\operatorname{Aut}(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $\operatorname{Hol}(G)$, is the set of all pairs (g, ϕ), where $g \in G, \phi \in \operatorname{Aut}(G)$, with the group operation given by

$$
(g, \phi) \cdot\left(g^{\prime}, \phi^{\prime}\right)=\left(\phi^{\prime}(g) \cdot g^{\prime}, \phi \cdot \phi^{\prime}\right)
$$

It is often more practical to use a subgroup of $\operatorname{Aut}(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup $\operatorname{End}(G)$ instead of the group $\operatorname{Aut}(G)$ in this construction.

Key exchange using extensions by automorphisms (Habeeb-Kahrobaei-Koupparis-Shpilrain)

Let G be a group (or a semigroup). An element $g \in G$ is chosen and made public as well as an arbitrary automorphism (or an endomorphism) ϕ of G. Bob chooses a private $n \in \mathbb{N}$, while Alice chooses a private $m \in \mathbb{N}$. Both Alice and Bob are going to work with elements of the form $\left(g, \phi^{k}\right)$, where $g \in G, k \in \mathbb{N}$.

Bob computes $(g, \phi)^{n}=\left(\phi^{n-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g, \phi^{n}\right)$ and sends only the first component of this pair to Alice: $b=\phi^{n-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g$. Alice computes $(b, x) \cdot\left(a, \phi^{m}\right)=\left(\phi^{m}(b) \cdot a, x \cdot \phi^{m}\right)$. Her key is now $K_{A}=\phi^{m}(b) \cdot a$. Note that she does not actually "compute" $x \cdot \phi^{m}$ because she does not know the automorphism x; recall that it was not transmitted to her. But she does not need it to compute K_{A}.

Key exchange using extensions by automorphisms (Habeeb-Kahrobaei-Koupparis-Shpilrain)

Let G be a group (or a semigroup). An element $g \in G$ is chosen and made public as well as an arbitrary automorphism (or an endomorphism) ϕ of G. Bob chooses a private $n \in \mathbb{N}$, while Alice chooses a private $m \in \mathbb{N}$. Both Alice and Bob are going to work with elements of the form $\left(g, \phi^{k}\right)$, where $g \in G, k \in \mathbb{N}$.

1. Alice computes $(g, \phi)^{m}=\left(\phi^{m-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g, \phi^{m}\right)$ and sends only the first component of this pair to Bob. Thus, she sends to Bob only the element $a=\phi^{m-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g$ of the group G.
2. Bob computes $(g, \phi)^{n}=\left(\phi^{n-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g, \phi^{n}\right)$ and sends only the first component of this pair to Alice: $b=\phi^{n-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g$.

Alice computes $(b, x) \cdot\left(a, \phi^{m}\right)=\left(\phi^{m}(b) \cdot a, x \cdot \phi^{m}\right)$. Her key is now $K_{A}=\phi^{m}(b) \cdot a$. Note that she does not actually "compute" $x \cdot \phi^{m}$ because she does not know the automorphism x; recall that it was not transmitted to her. But she does not need it to compute K_{A}.

Key exchange using extensions by automorphisms (Habeeb-Kahrobaei-Koupparis-Shpilrain)

Let G be a group (or a semigroup). An element $g \in G$ is chosen and made public as well as an arbitrary automorphism (or an endomorphism) ϕ of G. Bob chooses a private $n \in \mathbb{N}$, while Alice chooses a private $m \in \mathbb{N}$. Both Alice and Bob are going to work with elements of the form (g, ϕ^{k}), where $g \in G, k \in \mathbb{N}$.

1. Alice computes $(g, \phi)^{m}=\left(\phi^{m-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g, \phi^{m}\right)$ and sends only the first component of this pair to Bob. Thus, she sends to Bob only the element $a=\phi^{m-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g$ of the group G.
2. Bob computes $(g, \phi)^{n}=\left(\phi^{n-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g, \phi^{n}\right)$ and sends only the first component of this pair to Alice: $b=\phi^{n-1}(g) \cdots \phi^{2}(g) \cdot \phi(g) \cdot g$.
3. Alice computes $(b, x) \cdot\left(a, \phi^{m}\right)=\left(\phi^{m}(b) \cdot a, x \cdot \phi^{m}\right)$. Her key is now $K_{A}=\phi^{m}(b) \cdot a$. Note that she does not actually "compute" $x \cdot \phi^{m}$ because she does not know the automorphism x; recall that it was not transmitted to her. But she does not need it to compute K_{A}.

Using semidirect product (cont.)

4. Bob computes $(a, y) \cdot\left(b, \phi^{n}\right)=\left(\phi^{n}(a) \cdot b, y \cdot \phi^{n}\right)$. His key is now $K_{B}=\phi^{n}(a) \cdot b$. Again, Bob does not actually "compute" $y \cdot \phi^{n}$ because he does not know the automorphism y.
5. Since $(b, x) \cdot\left(a, \phi^{m}\right)=(a, y) \cdot\left(b, \phi^{n}\right)=(g, \phi)^{m+n}$, we should have $K_{A}=K_{B}=K$, the shared secret key.

Special case: Diffie-Hellman

$$
\begin{aligned}
& G=\mathbb{Z}_{p}^{*} \\
& \phi(g)=g^{k} \text { for all } g \in G \text { and a fixed } k, 1<k<p-1 .
\end{aligned}
$$

The shared key $K=g^{\frac{k^{m}-1}{k-1}}$
"The Diffie-Hellman type problem" would be to recover the shared key equivalent to recovering $g^{k^{m+n}}$ from the triple $\left(g, g^{k^{m}}, g^{k^{n}}\right)$, i.e., this is exactly the standard Diffie-Hellman problem.

Special case: Diffie-Hellman

$G=\mathbb{Z}_{p}^{*}$
$\phi(g)=g^{k}$ for all $g \in G$ and a fixed $k, 1<k<p-1$.

Then $(g, \phi)^{m}=\left(\phi^{m-1}(g) \cdots \phi(g) \cdot \phi^{2}(g) \cdot g, \phi^{m}\right)$.
The first component is equal to $g^{k^{m-1}+\ldots+k+1}=g^{\frac{k^{m}-1}{k-1}}$.
The shared key $K=g^{\frac{k^{m+n}-1}{k-1}}$.
"The Diffie-Hellman type problem" would be to recover the shared key
equivalent to recovering $g^{k^{m+1}}$ from the triple $\left(g, g^{k^{k \prime \prime}}, g^{k^{n}}\right)$, i.e., this is exactly the standard Diffie-Hellman problem

Special case: Diffie-Hellman

$G=\mathbb{Z}_{p}^{*}$
$\phi(g)=g^{k}$ for all $g \in G$ and a fixed $k, 1<k<p-1$.

Then $(g, \phi)^{m}=\left(\phi^{m-1}(g) \cdots \phi(g) \cdot \phi^{2}(g) \cdot g, \phi^{m}\right)$.
The first component is equal to $g^{k^{m-1}+\ldots+k+1}=g^{\frac{k^{m}-1}{k-1}}$.
The shared key $K=g^{\frac{k^{m+n}-1}{k-1}}$.
"The Diffie-Hellman type problem" would be to recover the shared key $K=g^{\frac{k^{m+n}-1}{k-1}}$ from the triple $\left(g, g^{\frac{k^{m}-1}{k-1}}, g^{\frac{k^{n}-1}{k-1}}\right.$). Since g and k are public, this is equivalent to recovering $g^{k^{m+n}}$ from the triple ($g, g^{k^{m}}, g^{k^{n}}$), i.e., this is exactly the standard Diffie-Hellman problem.

Platform: matrices over group rings

Our general protocol can be used with any non-commutative group G if ϕ is selected to be an inner automorphism. Furthermore, it can be used with any non-commutative semigroup G as well, as long as G has some invertible elements; these can be used to produce inner automorphisms. A typical example of such a semigroup would be a semigroup of matrices over some ring.

We use the semigroup of 3×3 matrices over the group ring $\mathbb{Z}_{7}\left[A_{5}\right]$, where A_{5} is the alternating group on 5 elements. Then the public key consists of two matrices: the (invertible) conjugating matrix H and a (non-invertible) matrix M. The shared secret key then is: $K=H^{-(m+n)}(H M)^{m+n}$.

Platform: matrices over group rings

Our general protocol can be used with any non-commutative group G if ϕ is selected to be an inner automorphism. Furthermore, it can be used with any non-commutative semigroup G as well, as long as G has some invertible elements; these can be used to produce inner automorphisms. A typical example of such a semigroup would be a semigroup of matrices over some ring.

We use the semigroup of 3×3 matrices over the group ring $\mathbb{Z}_{7}\left[A_{5}\right]$, where A_{5} is the alternating group on 5 elements.
Then the public key consists of two matrices: the (invertible) conjugating matrix H and a (non-invertible) matrix M. The shared secret key then is:
$K=H^{-(m+n)}(H M)^{m+n}$.

Security assumptions

To recover $H^{-(m+n)}(H M)^{m+n}$ from $\left(M, H, H^{-m}(H M)^{m}, H^{-n}(H M)^{n}\right)$ is hard.

To recover m from $H^{-m}(H M)^{m}$ is hard.

Security assumptions

To recover $H^{-(m+n)}(H M)^{m+n}$ from $\left(M, H, H^{-m}(H M)^{m}, H^{-n}(H M)^{n}\right)$ is hard.

To recover m from $H^{-m}(H M)^{m}$ is hard.

Conclusions

- Even though the parties do compute a large power of a public element (as in the classical Diffie-Hellman protocol), they do not transmit the whole result, but rather just part of it.

- Since the classical Diffie-Hellman protocol is a special case of our protocol, breaking our protocol even for any cyclic group would imply breaking the Diffie-Hellman protocol.

Conclusions

- Even though the parties do compute a large power of a public element (as in the classical Diffie-Hellman protocol), they do not transmit the whole result, but rather just part of it.
- Since the classical Diffie-Hellman protocol is a special case of our protocol, breaking our protocol even for any cyclic group would imply breaking the Diffie-Hellman protocol.

Conclusions

- If the platform (semi)group is not commutative, then we get a new security assumption. In the simplest case, where the automorphism used for extension is inner, attacking a private exponent amounts to recovering an integer n from a product $g^{-n} h^{n}$, where g, h are public elements of the platform (semi)group. In the special case where $g=1$ this boils down to recovering n from h^{n}, with public h ("discrete log" problem).

On the other hand, in the particular instantiation of our protocol, which is based on a non-commutative semigroup extended by an inner automorphism, recovering the shared secret key from public information is based on a different security assumption than the classical Diffie-Hellman protocol is.

Conclusions

- If the platform (semi)group is not commutative, then we get a new security assumption. In the simplest case, where the automorphism used for extension is inner, attacking a private exponent amounts to recovering an integer n from a product $g^{-n} h^{n}$, where g, h are public elements of the platform (semi)group. In the special case where $g=1$ this boils down to recovering n from h^{n}, with public h ("discrete log" problem).

On the other hand, in the particular instantiation of our protocol, which is based on a non-commutative semigroup extended by an inner automorphism, recovering the shared secret key from public information is based on a different security assumption than the classical Diffie-Hellman protocol is.

Thank you

