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The Diffie-Hellman public key exchange (1976)

1. Alice and Bob agree on a public (finite) cyclic group G and a generating
element g in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb)a = gba.

5. Bob computes KB = (g a)b = g ab.

Since ab = ba (because Z is commutative), both Alice and Bob are now in
possession of the same group element K = KA = KB which can serve as the
shared secret key.
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Efficiency for legitimate parties

Exponentiation by “square-and-multiply”:

g22 = (((g2)2)2)2 · (g2)2 · g2

Complexity of computing gn is therefore O(log n), times complexity of reducing
mod p (more generally, reducing to a “normal form”).
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Security assumptions

To recover g ab from (g , g a, gb) is hard.

To recover a from (g , g a) (discrete log problem) is hard.
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Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g
in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb) · (g a) = gb+a.

5. Bob computes KB = (g a) · (gb) = g a+b.

Obviously, KA = KB = K , which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!
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Using matrices

Stickel 2005, Maze-Monico-Rosenthal 2007

There is a public ring (or a semiring) R and public n × n matrices S , M1, and M2

over R. The ring R should have a non-trivial commutative subring C . One way to
guarantee that would be for R to be an algebra over a field K ; then, of course,
C = K will be a commutative subring of R.

1. Alice chooses polynomials p
A
(x), q

A
(x) ∈ C [x ] and sends the matrix

U = p
A
(M1) · S · qA

(M2) to Bob.

2. Bob chooses polynomials p
B
(x), q

B
(x) ∈ C [x ] and sends the matrix

V = p
B
(M1) · S · qB

(M2) to Alice.

3. Alice computes
KA = p

A
(M1) · V · q

A
(M2) = p

A
(M1) · pB

(M1) · S · qB
(M2) · qA

(M2).

4. Bob computes
KB = p

B
(M1) · U · q

B
(M2) = p

B
(M1) · pA

(M1) · S · qA
(M2) · qB

(M2).

Since any two polynomials in the same matrix commute, one has K = KA = KB ,
the shared secret key.
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Cayley-Hamilton

Note: The whole ring R should not be commutative because otherwise, the
Cayley-Hamilton theorem kills large powers of a matrix.
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Semidirect product

Let G , H be two groups, let Aut(G ) be the group of automorphisms of G , and let
ρ : H → Aut(G ) be a homomorphism. Then the semidirect product of G and H
is the set

Γ = G oρ H = {(g , h) : g ∈ G , h ∈ H}
with the group operation given by

(g , h)(g ′, h′) = (gρ(h) · g ′, h · h′).
Here gρ(h) denotes the image of g under the automorphism ρ(h).
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Extensions by automorphisms

If H = Aut(G ), then the corresponding semidirect product is called the holomorph
of the group G . Thus, the holomorph of G , usually denoted by Hol(G ), is the set
of all pairs (g , φ), where g ∈ G , φ ∈ Aut(G ), with the group operation given by

(g , φ) · (g ′, φ′) = (φ′(g) · g ′, φ · φ′).

It is often more practical to use a subgroup of Aut(G ) in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can
consider the semigroup End(G ) instead of the group Aut(G ) in this construction.
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Key exchange using extensions by automorphisms
(Habeeb-Kahrobaei-Koupparis-Shpilrain)

Let G be a group (or a semigroup). An element g ∈ G is chosen and made public
as well as an arbitrary automorphism (or an endomorphism) φ of G . Bob chooses
a private n ∈ N, while Alice chooses a private m ∈ N. Both Alice and Bob are
going to work with elements of the form (g , φk), where g ∈ G , k ∈ N.

1. Alice computes (g , φ)m = (φm−1(g) · · ·φ2(g) · φ(g) · g , φm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = φm−1(g) · · ·φ2(g) · φ(g) · g of the group G .

2. Bob computes (g , φ)n = (φn−1(g) · · ·φ2(g) · φ(g) · g , φn) and sends only
the first component of this pair to Alice: b = φn−1(g) · · ·φ2(g) · φ(g) · g .

3. Alice computes (b, x) · (a, φm) = (φm(b) · a, x · φm). Her key is now
KA = φm(b) · a. Note that she does not actually “compute” x · φm because
she does not know the automorphism x ; recall that it was not transmitted to
her. But she does not need it to compute KA.
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Using semidirect product (cont.)

4. Bob computes (a, y) · (b, φn) = (φn(a) · b, y · φn). His key is now
KB = φn(a) · b. Again, Bob does not actually “compute” y · φn because he
does not know the automorphism y .

5. Since (b, x) · (a, φm) = (a, y) · (b, φn) = (g , φ)m+n, we should have
KA = KB = K , the shared secret key.
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Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k , 1 < k < p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .

“The Diffie-Hellman type problem” would be to recover the shared key

K = g
km+n−1

k−1 from the triple (g , g
km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is

equivalent to recovering gkm+n

from the triple (g , gkm

, gkn

), i.e., this is exactly
the standard Diffie-Hellman problem.

Vladimir Shpilrain () Post-Quantum Cryptography online seminar November 15, 2012 12 / 17



Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k , 1 < k < p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .

“The Diffie-Hellman type problem” would be to recover the shared key

K = g
km+n−1

k−1 from the triple (g , g
km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is

equivalent to recovering gkm+n

from the triple (g , gkm

, gkn

), i.e., this is exactly
the standard Diffie-Hellman problem.

Vladimir Shpilrain () Post-Quantum Cryptography online seminar November 15, 2012 12 / 17



Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k , 1 < k < p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .

“The Diffie-Hellman type problem” would be to recover the shared key

K = g
km+n−1

k−1 from the triple (g , g
km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is

equivalent to recovering gkm+n

from the triple (g , gkm

, gkn

), i.e., this is exactly
the standard Diffie-Hellman problem.

Vladimir Shpilrain () Post-Quantum Cryptography online seminar November 15, 2012 12 / 17



Platform: matrices over group rings

Our general protocol can be used with any non-commutative group G if φ is
selected to be an inner automorphism. Furthermore, it can be used with any
non-commutative semigroup G as well, as long as G has some invertible
elements; these can be used to produce inner automorphisms. A typical example
of such a semigroup would be a semigroup of matrices over some ring.

We use the semigroup of 3× 3 matrices over the group ring Z7[A5], where A5 is
the alternating group on 5 elements.
Then the public key consists of two matrices: the (invertible) conjugating matrix
H and a (non-invertible) matrix M. The shared secret key then is:
K = H−(m+n)(HM)m+n.
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Security assumptions

To recover H−(m+n)(HM)m+n from (M, H, H−m(HM)m, H−n(HM)n) is hard.

To recover m from H−m(HM)m is hard.
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Conclusions

• Even though the parties do compute a large power of a public element (as in
the classical Diffie-Hellman protocol), they do not transmit the whole result, but
rather just part of it.

• Since the classical Diffie-Hellman protocol is a special case of our protocol,
breaking our protocol even for any cyclic group would imply breaking the
Diffie-Hellman protocol.
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Conclusions

• If the platform (semi)group is not commutative, then we get a new security
assumption. In the simplest case, where the automorphism used for extension is
inner, attacking a private exponent amounts to recovering an integer n from a
product g−nhn, where g , h are public elements of the platform (semi)group. In
the special case where g = 1 this boils down to recovering n from hn, with public
h (“discrete log” problem).

On the other hand, in the particular instantiation of our protocol, which is based
on a non-commutative semigroup extended by an inner automorphism, recovering
the shared secret key from public information is based on a different security
assumption than the classical Diffie-Hellman protocol is.
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Thank you
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