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» Problem: for s <— Ry, distinguish {(a; , b;)} from uniform {(a; , b;)}.

ap Ry , bhi=a1-s+e €Ry
(I2<—Rq , b2:a2'8+62€Rq

» Errors e(X) € R are "short.” What could this mean? Identify

n—1
e(X) = Zerj & (60,61, .. .en_l) ezZ™.
=0

» Applications need (+, -)-combinations of errors to remain short. Yes!

le+ Il <llell+ 11 Ne- fIE<vrn-llel - 1 £l

“Expansion factor” \/n is worst-case. (“On average,” =~ /logn.)
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Correctness: d = e, as long as e has Z-coeffs € (—¢/2,q/2).

» EvalAdd(c,c) = (¢ + ¢)(S), EvalMul(c,d) = (¢- )(S).

]

Decryption works if e + ¢/, e - €/ “short enough.”

Many mults = large power of expansion factor = tiny error rate o =
big parameters!
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‘R = Z[X]/Pm(X) ‘ for mth cyclotomic polynomial ®,,,(X).

O (X) = [ (X —w) € Z[X], w=exp(2ryv—=1/m)€C
€L,
> Roots w run over all n = ¢(m) primitive mth roots of unity.
“Power” Z-basis of Ris {1, X, X2 ... X""1}.
Non-prime power m?
X Oy(X)=1-X+X3—-X*+ X6 x84 X% X114 X12
XX ®105(X) = [degree 48; 33 monomials with {—2, —1, 1}-coefficients]

Annoyances

X lrregular ®@,,(X) = slower, more complex operations
X Large expansion factor > \/n — even super-poly(n)!

X Provable hardness also degrades with expansion factor: pay twice!
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Talk Agenda

® Cyclotomic rings and their canonical geometry
v/ No expansion factor anywhere

v/ Provable, tight hardness — same for all cyclotomics

v/ Fast, modular ring operations

® The dual ideal RV and ring-LWE
©® The decoding basis of RV and its properties

O Benefits in applications: tight parameters, algorithmic efficiency

Based on:
LPR'10 V. Lyubashevsky, C. Peikert, O. Regev.

“On Ideal Lattices and Learning with Errors Over Rings.”
LPR'12 V. Lyubashevsky, C. Peikert, O. Regev.
“A Toolkit for Ring-LWE Cryptography.”
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Key Facts
® For prime p: ®,(X) =1+ X + X2+ ... + XP1
@ For m = p°: @,,(X) = Op(X™/P) =14 X™/P 4 ... 4 X—m/p

X Otherwise, ®,,,(X) is less “regular’” and more dense.

| \

Reducing to the Prime-Power Case

» Let m have prime-power factorization m = m;q - - - my. Then

R =Z[X]/®m(X) = Z[X1,. .., Xe/ (P, (X1), .- Py (X2))

= ), ZIXi]/Pm. (Xi),

via X; — X™/™i_(Indeed, X™/™: has order m;.)

» R has tensor Z-basis {th ---XZZ}, where each 0 < j; < p(m;).
Notice!: tensor basis # power basis {X7}, 0 < j < p(m).
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Key Facts
® For prime p: ®,(X) =1+ X + X2+ ... + XP1
@ For m = p°: @,,(X) = Op(X™/P) =14 X™/P 4 ... 4 X—m/p

X Otherwise, ®,,,(X) is less “regular’” and more dense.

| \

Reducing to the Prime-Power Case

» Let m have prime-power factorization m = m;q - - - my. Then

R =Z[X]/®m(X) = Z[X1,. .., Xe/ (P, (X1), .- Py (X2))

= ), ZIXi]/Pm. (Xi),

via X; — X™/™i_(Indeed, X™/™: has order m;.)

> Bottom line: can reduce operations in R to independent operations in
prime-power cyclotomic rings Z[X;]/®m, (Xi).
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Canonical Geometry of R

» R=Z[X]/Pn(X) has n = p(m) ring embeddings (homomorphisms)
into C, each given by evaluation at a root of ®,,:

X +— ' for each i € Z7,.
> The canonical embedding o of R into C" is o(a) = (a(w') ), ;. -

» Define all geometric quantities using o (not coefficient vectors!!).

E.g.. llally = llo(a)ll,-

Nice Properties

v Under o, both 4+ and - are coordinate-wise: o(a-b) = o(a) ® o(b).

This yields the “expansion” bound
o bl < Nalloo - [0y, where Jla]., = max|a(w?)].

v/ Expansion is element-specific. No more ring “expansion factor.”
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Example 1
» 4th cyclotomic R = Z[X]/(1 + X?): embeddings X + ++/—1

In Any 2*-th Cyclotomic. ..
v For any j, | X7, = v/n and || X7|| = 1.
v Power basis {1, X,..., X" !} is orthogonal under embedding o.

So coefficient/canonical embeddings equivalent (up to /n scaling).
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Example 2

» 3rd cyclotomic R = Z[X]/(1 + X + X?): embed X - —1 +

2

1
2

In Any Cyclotomic. ..
v For any j, | X7||, = v/ and || X7 = 1.

» Power basis {1, X,..., X" '} is not orthogonal (unless m = 2¥).

» So in power basis, short elements can have long coeff vectors.
Eg. llel =11 =[IX]=vn but e=1+X.
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Duality and the Dual Ideal RY
» Dual RV :={d:Tr(a-d) € Z, V a € R}. Basis: Tr(X? -dj) =6 ;.
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Duality and the Dual Ideal RY

» Dual RV :={d: Tr(a-d) € Z, V a € R}. Basis: Tr(X7 -d;/) =6; .
Useful Facts

® RYisanideal: —a,a+b,a-r€ RY foralla,be RV, r € R.
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® RYisanideal: —a,a+b,a-r€ RY foralla,be RV, r € R.
@® For m = 2% (dim n = m/2): {X7} orthogonal and || X7|| = v/n.
Sod; = X7 and RV = 1R. l.e., R and RY equivalent up to scale.
® In general, mRY C R C RY, with mRY ~ R.
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Duality and the Dual Ideal RY
» Dual RV :={d: Tr(a-d) € Z, V a € R}. Basis: Tr(X7 -d;/) =6; .
Super-Useful Fact

v If e € RY is short, its Z-coeffs in decoding basis {d;} are small:

ezzjejdj (e, €Z) = ej=Tr(X’ -¢e)<|le| vn

(Better: Gaussian e w/std. dev. s = Gaussian e; w/std. dev. s\/n.) )

[
R ; . g
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[ ] . ® . ° [
I 0 ° ¢
° ds (' “ © ,,
1 o “‘ ¢ .7 PY
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> Problem: for s <— R/, distinguish {(a; , b;)} from uniform {(a; , b;)}.

a1<—Rq , b1:a1~s+61€R(\1/
a2<—Rq , b2:a2-8+62€R(\I/

» Errors e € RV Gaussian (w/std. dev. ag) in canonical embedding.

So |e(w?)| & ag are independent* — but coeffs |e;| ~ agy/n are not!

For any m, ring-LWE with error std. dev. ag > 6*

is (quantumly) as hard as
O(n/a)-SVP on any ideal lattice in R.
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> Symmetric key s < Rj.
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BV Homomorphic Encryption, Revisited
» Symmetric key s < R,.

» Encs(m € RY): choose Gaussian ¢ € RY s.t. e = m mod 2R". Let
c1 <—R21/ and ¢y = —cl-s—i—eER(\I/
and output ¢(S) = co + 15 € R/[S].  (Note: ¢(s) = e mod gR".)
» Dec,(c(S)): get short d € RY s.t. d = ¢(s) mod qR".
Correctness: d = e, if e's decoding basis Z-coeffs € (—q/2,q/2).
> EvalMul(c,¢) = (¢ )(S) € (RY)F[S] where k = deg(c) + deg(c/).
* Noise e = €1 - ex € (RV)*, so mF~le € RV.
* Since |le;||,, ~ ag =6, mF~le has Gaussian std. dev. ~ 6FmF~1,
* So need q ~ 6*m*~1\/n ~ (6m)* to decrypt deg-k ciphertexts.
k—1,k

Versus q = via expansion factor v > /n.

= ~ v*~1 factor improvement in error rate.
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@ Using canonical geometry yields tight noise expansion, clean analysis
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© Using the tensor basis of
R= Z[Xl, e ,Xg]/(q)ml (Xl), e ,(I)me(Xg))

yields fast, modular algorithms for all cyclotomics.

Thanks!
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