The Geometry of Rings

Chris Peikert
Georgia Institute of Technology

SCPQ

29 November 2012

LWE Over Rings (Over-Simplified) [LPR'10]

Ring $R:=\mathbb{Z}[X] /\left(1+X^{n}\right)$ for some $n=2^{k}, \quad R_{q}:=R / q R$.

LWE Over Rings (Over-Simplified) [LPR'10]

$$
\text { Ring } R:=\mathbb{Z}[X] /\left(1+X^{n}\right) \text { for some } n=2^{k}, \quad R_{q}:=R / q R .
$$

- Problem: for $s \leftarrow R_{q}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, & b_{2}=a_{2} \cdot s+e_{2} \in R_{q}
\end{array}
$$

LWE Over Rings (Over-Simplified) [LPR'10]

$$
\text { Ring } R:=\mathbb{Z}[X] /\left(1+X^{n}\right) \text { for some } n=2^{k}, \quad R_{q}:=R / q R .
$$

- Problem: for $s \leftarrow R_{q}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, & b_{2}=a_{2} \cdot s+e_{2} \in R_{q}
\end{array}
$$

- Errors $e(X) \in R$ are "short." What could this mean?

LWE Over Rings (Over-Simplified) [LPR'10]

$$
\text { Ring } R:=\mathbb{Z}[X] /\left(1+X^{n}\right) \text { for some } n=2^{k}, \quad R_{q}:=R / q R .
$$

- Problem: for $s \leftarrow R_{q}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, & b_{2}=a_{2} \cdot s+e_{2} \in R_{q}
\end{array}
$$

- Errors $e(X) \in R$ are "short." What could this mean? Identify

$$
e(X)=\sum_{j=0}^{n-1} e_{j} X^{j} \quad \stackrel{(?)}{\longleftrightarrow} \quad\left(e_{0}, e_{1}, \ldots e_{n-1}\right) \in \mathbb{Z}^{n} .
$$

LWE Over Rings (Over-Simplified) [LPR'10]

$$
\text { Ring } R:=\mathbb{Z}[X] /\left(1+X^{n}\right) \text { for some } n=2^{k}, \quad R_{q}:=R / q R .
$$

- Problem: for $s \leftarrow R_{q}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, & b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} \quad, & b_{2}=a_{2} \cdot s+e_{2} \in R_{q}
\end{array}
$$

- Errors $e(X) \in R$ are "short." What could this mean? Identify

$$
e(X)=\sum_{j=0}^{n-1} e_{j} X^{j} \quad \stackrel{(?)}{\longleftrightarrow} \quad\left(e_{0}, e_{1}, \ldots e_{n-1}\right) \in \mathbb{Z}^{n} .
$$

- Applications need $(+, \cdot)$-combinations of errors to remain short.

LWE Over Rings (Over-Simplified) [LPR'10]

$$
\text { Ring } R:=\mathbb{Z}[X] /\left(1+X^{n}\right) \text { for some } n=2^{k}, \quad R_{q}:=R / q R .
$$

- Problem: for $s \leftarrow R_{q}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} & , \quad b_{1}=a_{1} \cdot s+e_{1} \in R_{q} \\
a_{2} \leftarrow R_{q} & , \quad
\end{array} b_{2}=a_{2} \cdot s+e_{2} \in R_{q}
$$

- Errors $e(X) \in R$ are "short." What could this mean? Identify

$$
e(X)=\sum_{j=0}^{n-1} e_{j} X^{j} \quad \stackrel{(?)}{\longleftrightarrow} \quad\left(e_{0}, e_{1}, \ldots e_{n-1}\right) \in \mathbb{Z}^{n} .
$$

- Applications need $(+, \cdot)$-combinations of errors to remain short. Yes!

$$
\|e+f\| \leq\|e\|+\|f\| \quad\|e \cdot f\| \leq \sqrt{n} \cdot\|e\| \cdot\|f\| .
$$

"Expansion factor" \sqrt{n} is worst-case. ("On average," $\approx \sqrt{\log n}$.)

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}\right)$: choose a "short" $e \in R$ s.t. $e=m$ mod 2. Let

$$
c_{1} \leftarrow R_{q} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}[S] . \quad$ (Notice: $c(s)=e \bmod q$.)

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}\right)$: choose a "short" $e \in R$ s.t. $e=m$ mod 2. Let

$$
c_{1} \leftarrow R_{q} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}[S] . \quad$ (Notice: $c(s)=e \bmod q$.)
Security: $\left(c_{1}, c_{0}\right)$ is an RLWE sample (essentially).

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}\right)$: choose a "short" $e \in R$ s.t. $e=m \bmod 2$. Let

$$
c_{1} \leftarrow R_{q} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}[S] . \quad$ (Notice: $c(s)=e \bmod q$.) Security: $\left(c_{1}, c_{0}\right)$ is an RLWE sample (essentially).

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R$ s.t. $d=c(s) \bmod q$. Output $d \bmod 2$.

Correctness: $d=e$, as long as e has \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}\right)$: choose a "short" $e \in R$ s.t. $e=m$ mod 2. Let

$$
c_{1} \leftarrow R_{q} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}[S] . \quad$ (Notice: $c(s)=e \bmod q$.)
Security: $\left(c_{1}, c_{0}\right)$ is an RLWE sample (essentially).

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R$ s.t. $d=c(s) \bmod q$. Output $d \bmod 2$.

Correctness: $d=e$, as long as e has \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalAdd $\left(c, c^{\prime}\right)=\left(c+c^{\prime}\right)(S)$, EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S)$.

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}\right)$: choose a "short" $e \in R$ s.t. $e=m \bmod 2$. Let

$$
c_{1} \leftarrow R_{q} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}[S] . \quad$ (Notice: $c(s)=e \bmod q$.)
Security: $\left(c_{1}, c_{0}\right)$ is an RLWE sample (essentially).

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R$ s.t. $d=c(s) \bmod q$. Output $d \bmod 2$.

Correctness: $d=e$, as long as e has \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalAdd $\left(c, c^{\prime}\right)=\left(c+c^{\prime}\right)(S)$, EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S)$.

Decryption works if $e+e^{\prime}, e \cdot e^{\prime}$ "short enough."

Example Application: Homomorphic Encryption [BV'11a]

- $R=\mathbb{Z}[X] /\left(1+X^{2^{k}}\right), R_{q}=R / q R$. Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}\right)$: choose a "short" $e \in R$ s.t. $e=m \bmod$ 2. Let

$$
c_{1} \leftarrow R_{q} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}[S]$. (Notice: $c(s)=e \bmod q$.)
Security: $\left(c_{1}, c_{0}\right)$ is an RLWE sample (essentially).

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R$ s.t. $d=c(s) \bmod q$. Output $d \bmod 2$.

Correctness: $d=e$, as long as e has \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalAdd $\left(c, c^{\prime}\right)=\left(c+c^{\prime}\right)(S)$, EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S)$.

Decryption works if $e+e^{\prime}, e \cdot e^{\prime}$ "short enough."
Many mults \Rightarrow large power of expansion factor \Rightarrow tiny error rate $\alpha \Rightarrow$ big parameters!

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$
\begin{aligned}
& R=\mathbb{Z}[X] / \Phi_{m}(X) \text { for } m \text { th cyclotomic polynomial } \Phi_{m}(X) \\
& \Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
\end{aligned}
$$

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].
$R=\mathbb{Z}[X] / \Phi_{m}(X)$ for m th cyclotomic polynomial $\Phi_{m}(X)$.

$$
\Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b]. $R=\mathbb{Z}[X] / \Phi_{m}(X)$ for m th cyclotomic polynomial $\Phi_{m}(X)$.

$$
\Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.

$$
\Phi_{8}(X)=1+X^{4}
$$

$$
\Phi_{9}(X)=1+X^{3}+X^{6}
$$

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$
\begin{aligned}
& R=\mathbb{Z}[X] / \Phi_{m}(X) \text { for } m \text { th cyclotomic polynomial } \Phi_{m}(X) \\
& \Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
\end{aligned}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.
Non-prime power m ?

$$
X \Phi_{21}(X)=1-X+X^{3}-X^{4}+X^{6}-X^{8}+X^{9}-X^{11}+X^{12}
$$

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$
\begin{aligned}
& R=\mathbb{Z}[X] / \Phi_{m}(X) \text { for } m \text { th cyclotomic polynomial } \Phi_{m}(X) \\
& \Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
\end{aligned}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.
Non-prime power m ?

$$
\chi \Phi_{21}(X)=1-X+X^{3}-X^{4}+X^{6}-X^{8}+X^{9}-X^{11}+X^{12}
$$

$X X \Phi_{105}(X)=$ [degree 48; 33 monomials with $\{-2,-1,1\}$-coefficients]

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$
\begin{aligned}
& R=\mathbb{Z}[X] / \Phi_{m}(X) \text { for } m \text { th cyclotomic polynomial } \Phi_{m}(X) \\
& \quad \Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
\end{aligned}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.
Non-prime power m ?

$$
x \Phi_{21}(X)=1-X+X^{3}-X^{4}+X^{6}-X^{8}+X^{9}-X^{11}+X^{12}
$$

$X X \Phi_{105}(X)=$ [degree 48; 33 monomials with $\{-2,-1,1\}$-coefficients]

Annoyances

X Irregular $\Phi_{m}(X) \Rightarrow$ slower, more complex operations

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].
$R=\mathbb{Z}[X] / \Phi_{m}(X)$ for m th cyclotomic polynomial $\Phi_{m}(X)$.

$$
\Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.
Non-prime power m ?

$$
x \Phi_{21}(X)=1-X+X^{3}-X^{4}+X^{6}-X^{8}+X^{9}-X^{11}+X^{12}
$$

$X X \Phi_{105}(X)=$ [degree 48; 33 monomials with $\{-2,-1,1\}$-coefficients]

Annoyances

X Irregular $\Phi_{m}(X) \Rightarrow$ slower, more complex operations
x Large expansion factor $\gg \sqrt{n}$ - even super-poly (n) !

Other Rings: Cyclotomics

- Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].
$R=\mathbb{Z}[X] / \Phi_{m}(X)$ for m th cyclotomic polynomial $\Phi_{m}(X)$.

$$
\Phi_{m}(X)=\prod_{i \in \mathbb{Z}_{m}^{*}}\left(X-\omega^{i}\right) \in \mathbb{Z}[X], \quad \omega=\exp (2 \pi \sqrt{-1} / m) \in \mathbb{C}
$$

- Roots ω^{i} run over all $n=\varphi(m)$ primitive m th roots of unity. "Power" \mathbb{Z}-basis of R is $\left\{1, X, X^{2}, \ldots, X^{n-1}\right\}$.
Non-prime power m ?

$$
x \Phi_{21}(X)=1-X+X^{3}-X^{4}+X^{6}-X^{8}+X^{9}-X^{11}+X^{12}
$$

$X X \Phi_{105}(X)=$ [degree 48; 33 monomials with $\{-2,-1,1\}$-coefficients]

Annoyances

X Irregular $\Phi_{m}(X) \Rightarrow$ slower, more complex operations
x Large expansion factor $\gg \sqrt{n}$ - even super-poly (n) !
x Provable hardness also degrades with expansion factor: pay twice!

Talk Agenda

(1) Cyclotomic rings and their canonical geometry
\checkmark No expansion factor anywhere
\checkmark Provable, tight hardness - same for all cyclotomics
\checkmark Fast, modular ring operations

Talk Agenda

(1) Cyclotomic rings and their canonical geometry
\checkmark No expansion factor anywhere
\checkmark Provable, tight hardness - same for all cyclotomics
\checkmark Fast, modular ring operations
(2) The dual ideal R^{\vee} and ring-LWE

Talk Agenda

(1) Cyclotomic rings and their canonical geometry
\checkmark No expansion factor anywhere
\checkmark Provable, tight hardness - same for all cyclotomics
\checkmark Fast, modular ring operations
(2) The dual ideal R^{\vee} and ring-LWE
(3) The decoding basis of R^{\vee} and its properties

Talk Agenda

(1) Cyclotomic rings and their canonical geometry
\checkmark No expansion factor anywhere
\checkmark Provable, tight hardness - same for all cyclotomics
\checkmark Fast, modular ring operations
(2) The dual ideal R^{\vee} and ring-LWE
(3) The decoding basis of R^{\vee} and its properties
(4) Benefits in applications: tight parameters, algorithmic efficiency

Talk Agenda

(1) Cyclotomic rings and their canonical geometry
\checkmark No expansion factor anywhere
\checkmark Provable, tight hardness - same for all cyclotomics
\checkmark Fast, modular ring operations
(2) The dual ideal R^{\vee} and ring-LWE
(3) The decoding basis of R^{\vee} and its properties
(4) Benefits in applications: tight parameters, algorithmic efficiency

Based on:
LPR'10 V. Lyubashevsky, C. Peikert, O. Regev.
"On Ideal Lattices and Learning with Errors Over Rings."
LPR'12 V. Lyubashevsky, C. Peikert, O. Regev.
"A Toolkit for Ring-LWE Cryptography."

Cyclotomic Rings

Key Facts

(1) For prime $p: \Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$

Cyclotomic Rings

Key Facts

(1) For prime p : $\Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$

Cyclotomic Rings

Key Facts

(1) For prime $p: \Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Cyclotomic Rings

Key Facts

(1) For prime p : $\Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

- Let m have prime-power factorization $m=m_{1} \cdots m_{\ell}$.

Cyclotomic Rings

Key Facts

(1) For prime $p: \Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

- Let m have prime-power factorization $m=m_{1} \cdots m_{\ell}$. Then

$$
R=\mathbb{Z}[X] / \Phi_{m}(X) \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right)
$$

via $X_{i} \mapsto X^{m / m_{i}}$. (Indeed, $X^{m / m_{i}}$ has order m_{i}.)

Cyclotomic Rings

Key Facts

(1) For prime $p: \Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

- Let m have prime-power factorization $m=m_{1} \cdots m_{\ell}$. Then

$$
\begin{aligned}
R=\mathbb{Z}[X] / \Phi_{m}(X) & \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right) \\
& =\bigotimes_{i} \mathbb{Z}\left[X_{i}\right] / \Phi_{m_{i}}\left(X_{i}\right),
\end{aligned}
$$

via $X_{i} \mapsto X^{m / m_{i}}$. (Indeed, $X^{m / m_{i}}$ has order m_{i}.)

Cyclotomic Rings

Key Facts

(1) For prime p : $\Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

- Let m have prime-power factorization $m=m_{1} \cdots m_{\ell}$. Then

$$
\begin{aligned}
R=\mathbb{Z}[X] / \Phi_{m}(X) & \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right) \\
& =\bigotimes_{i} \mathbb{Z}\left[X_{i}\right] / \Phi_{m_{i}}\left(X_{i}\right),
\end{aligned}
$$

via $X_{i} \mapsto X^{m / m_{i}}$. (Indeed, $X^{m / m_{i}}$ has order m_{i}.)

- R has tensor \mathbb{Z}-basis $\left\{X_{1}^{j_{1}} \cdots X_{\ell}^{j_{\ell}}\right\}$, where each $0 \leq j_{i}<\varphi\left(m_{i}\right)$.

Cyclotomic Rings

Key Facts

(1) For prime p : $\Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

- Let m have prime-power factorization $m=m_{1} \cdots m_{\ell}$. Then

$$
\begin{aligned}
R=\mathbb{Z}[X] / \Phi_{m}(X) & \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right) \\
& =\bigotimes_{i} \mathbb{Z}\left[X_{i}\right] / \Phi_{m_{i}}\left(X_{i}\right)
\end{aligned}
$$

via $X_{i} \mapsto X^{m / m_{i}}$. (Indeed, $X^{m / m_{i}}$ has order m_{i}.)

- R has tensor \mathbb{Z}-basis $\left\{X_{1}^{j_{1}} \cdots X_{\ell}^{j_{\ell}}\right\}$, where each $0 \leq j_{i}<\varphi\left(m_{i}\right)$. Notice!: tensor basis \neq power basis $\left\{X^{j}\right\}, 0 \leq j<\varphi(m)$.

Cyclotomic Rings

Key Facts

(1) For prime $p: \Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$
(2) For $m=p^{e}: \Phi_{m}(X)=\Phi_{p}\left(X^{m / p}\right)=1+X^{m / p}+\cdots+X^{m-m / p}$
X Otherwise, $\Phi_{m}(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

- Let m have prime-power factorization $m=m_{1} \cdots m_{\ell}$. Then

$$
\begin{aligned}
R=\mathbb{Z}[X] / \Phi_{m}(X) & \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right) \\
& =\bigotimes_{i} \mathbb{Z}\left[X_{i}\right] / \Phi_{m_{i}}\left(X_{i}\right),
\end{aligned}
$$

via $X_{i} \mapsto X^{m / m_{i}}$. (Indeed, $X^{m / m_{i}}$ has order m_{i}.)

- Bottom line: can reduce operations in R to independent operations in prime-power cyclotomic rings $\mathbb{Z}\left[X_{i}\right] / \Phi_{m_{i}}\left(X_{i}\right)$.

Canonical Geometry of R

- $R=\mathbb{Z}[X] / \Phi_{m}(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C}, each given by evaluation at a root of Φ_{m} :

$$
X \mapsto \omega^{i} \text { for each } i \in \mathbb{Z}_{m}^{*}
$$

Canonical Geometry of R

- $R=\mathbb{Z}[X] / \Phi_{m}(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C}, each given by evaluation at a root of Φ_{m} :

$$
X \mapsto \omega^{i} \text { for each } i \in \mathbb{Z}_{m}^{*}
$$

- The canonical embedding σ of R into \mathbb{C}^{n} is $\sigma(a)=\left(a\left(\omega^{i}\right)\right)_{i \in \mathbb{Z}_{m}^{*}}$.

Canonical Geometry of R

- $R=\mathbb{Z}[X] / \Phi_{m}(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C}, each given by evaluation at a root of Φ_{m} :

$$
X \mapsto \omega^{i} \text { for each } i \in \mathbb{Z}_{m}^{*}
$$

- The canonical embedding σ of R into \mathbb{C}^{n} is $\sigma(a)=\left(a\left(\omega^{i}\right)\right)_{i \in \mathbb{Z}_{m}^{*}}$.
- Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_{2}:=\|\sigma(a)\|_{2}$.

Canonical Geometry of R

- $R=\mathbb{Z}[X] / \Phi_{m}(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C}, each given by evaluation at a root of Φ_{m} :

$$
X \mapsto \omega^{i} \text { for each } i \in \mathbb{Z}_{m}^{*} .
$$

- The canonical embedding σ of R into \mathbb{C}^{n} is $\sigma(a)=\left(a\left(\omega^{i}\right)\right)_{i \in \mathbb{Z}_{m}^{*}}$.
- Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_{2}:=\|\sigma(a)\|_{2}$.

Nice Properties

\checkmark Under σ, both + and • are coordinate-wise: $\sigma(a \cdot b)=\sigma(a) \odot \sigma(b)$.

Canonical Geometry of R

- $R=\mathbb{Z}[X] / \Phi_{m}(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C}, each given by evaluation at a root of Φ_{m} :

$$
X \mapsto \omega^{i} \text { for each } i \in \mathbb{Z}_{m}^{*} .
$$

- The canonical embedding σ of R into \mathbb{C}^{n} is $\sigma(a)=\left(a\left(\omega^{i}\right)\right)_{i \in \mathbb{Z}_{m}^{*}}$.
- Define all geometric quantities using σ (not coefficient vectors!!). E.g., $\|a\|_{2}:=\|\sigma(a)\|_{2}$.

Nice Properties

\checkmark Under σ, both + and • are coordinate-wise: $\sigma(a \cdot b)=\sigma(a) \odot \sigma(b)$.
This yields the "expansion" bound

$$
\|a \cdot b\|_{2} \leq\|a\|_{\infty} \cdot\|b\|_{2}, \quad \text { where }\|a\|_{\infty}=\max _{i}\left|a\left(\omega^{i}\right)\right|
$$

Canonical Geometry of R

- $R=\mathbb{Z}[X] / \Phi_{m}(X)$ has $n=\varphi(m)$ ring embeddings (homomorphisms) into \mathbb{C}, each given by evaluation at a root of Φ_{m} :

$$
X \mapsto \omega^{i} \text { for each } i \in \mathbb{Z}_{m}^{*} .
$$

- The canonical embedding σ of R into \mathbb{C}^{n} is $\sigma(a)=\left(a\left(\omega^{i}\right)\right)_{i \in \mathbb{Z}_{m}^{*}}$.
- Define all geometric quantities using σ (not coefficient vectors!!).
E.g., $\|a\|_{2}:=\|\sigma(a)\|_{2}$.

Nice Properties

\checkmark Under σ, both + and • are coordinate-wise: $\sigma(a \cdot b)=\sigma(a) \odot \sigma(b)$.
This yields the "expansion" bound

$$
\|a \cdot b\|_{2} \leq\|a\|_{\infty} \cdot\|b\|_{2}, \quad \text { where }\|a\|_{\infty}=\max _{i}\left|a\left(\omega^{i}\right)\right|
$$

\checkmark Expansion is element-specific. No more ring "expansion factor."

Example 1

- 4th cyclotomic $R=\mathbb{Z}[X] /\left(1+X^{2}\right)$: embeddings $X \mapsto \pm \sqrt{-1}$

Example 1

- 4th cyclotomic $R=\mathbb{Z}[X] /\left(1+X^{2}\right)$: embeddings $X \mapsto \pm \sqrt{-1}$

$$
\sigma(X)=(\pm \sqrt{-1})
$$

Example 1

- 4th cyclotomic $R=\mathbb{Z}[X] /\left(1+X^{2}\right)$: embeddings $X \mapsto \pm \sqrt{-1}$

$$
\sigma(X)=(\pm \sqrt{-1})
$$

In Any 2^{k}-th Cyclotomic. .
\checkmark For any $j,\left\|X^{j}\right\|_{2}=\sqrt{n}$ and $\left\|X^{j}\right\|_{\infty}=1$.

Example 1

- 4th cyclotomic $R=\mathbb{Z}[X] /\left(1+X^{2}\right)$: embeddings $X \mapsto \pm \sqrt{-1}$

$$
\sigma(X)=(\pm \sqrt{-1})
$$

In Any 2^{k}-th Cyclotomic. .

\checkmark For any $j,\left\|X^{j}\right\|_{2}=\sqrt{n}$ and $\left\|X^{j}\right\|_{\infty}=1$.
\checkmark Power basis $\left\{1, X, \ldots, X^{n-1}\right\}$ is orthogonal under embedding σ. So coefficient/canonical embeddings equivalent (up to \sqrt{n} scaling).

Example 2

- 3rd cyclotomic $R=\mathbb{Z}[X] /\left(1+X+X^{2}\right):$ embed $X \mapsto-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

Example 2

- 3rd cyclotomic $R=\mathbb{Z}[X] /\left(1+X+X^{2}\right):$ embed $X \mapsto-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic. . .

\checkmark For any $j,\left\|X^{j}\right\|_{2}=\sqrt{n}$ and $\left\|X^{j}\right\|_{\infty}=1$.

Example 2

- 3rd cyclotomic $R=\mathbb{Z}[X] /\left(1+X+X^{2}\right)$: embed $X \mapsto-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic. ..

\checkmark For any $j,\left\|X^{j}\right\|_{2}=\sqrt{n}$ and $\left\|X^{j}\right\|_{\infty}=1$.

- Power basis $\left\{1, X, \ldots, X^{n-1}\right\}$ is not orthogonal (unless $m=2^{k}$).

Example 2

- 3rd cyclotomic $R=\mathbb{Z}[X] /\left(1+X+X^{2}\right)$: embed $X \mapsto-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic. . .

\checkmark For any $j,\left\|X^{j}\right\|_{2}=\sqrt{n}$ and $\left\|X^{j}\right\|_{\infty}=1$.

- Power basis $\left\{1, X, \ldots, X^{n-1}\right\}$ is not orthogonal (unless $m=2^{k}$).
- So in power basis, short elements can have long coeff vectors.

Example 2

- 3rd cyclotomic $R=\mathbb{Z}[X] /\left(1+X+X^{2}\right)$: embed $X \mapsto-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic. . .

\checkmark For any $j,\left\|X^{j}\right\|_{2}=\sqrt{n}$ and $\left\|X^{j}\right\|_{\infty}=1$.

- Power basis $\left\{1, X, \ldots, X^{n-1}\right\}$ is not orthogonal (unless $m=2^{k}$).
- So in power basis, short elements can have long coeff vectors.
E.g., $\|e\|=\|1\|=\|X\|=\sqrt{n} \quad$ but $\quad e=1+X$.

Duality and the Dual Ideal R^{\vee}

- Define trace function $\operatorname{Tr}: R \rightarrow \mathbb{Z}$ as $\operatorname{Tr}(a)=\sum_{i \in \mathbb{Z}_{m}^{*}} a\left(\omega^{i}\right)$.

Duality and the Dual Ideal R^{\vee}

- Define trace function $\operatorname{Tr}: R \rightarrow \mathbb{Z}$ as $\operatorname{Tr}(a)=\sum_{i \in \mathbb{Z}_{m}^{*}} a\left(\omega^{i}\right)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b :

$$
\operatorname{Tr}(a \cdot b)=\sum_{i} a\left(\omega^{i}\right) \cdot b\left(\omega^{i}\right)=\langle\sigma(a), \overline{\sigma(b)}\rangle .
$$

Duality and the Dual Ideal R^{\vee}

- Define trace function $\operatorname{Tr}: R \rightarrow \mathbb{Z}$ as $\operatorname{Tr}(a)=\sum_{i \in \mathbb{Z}_{m}^{*}} a\left(\omega^{i}\right)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b :

$$
\operatorname{Tr}(a \cdot b)=\sum_{i} a\left(\omega^{i}\right) \cdot b\left(\omega^{i}\right)=\langle\sigma(a), \overline{\sigma(b)}\rangle .
$$

- Define R 's "dual" $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. R

Duality and the Dual Ideal R^{\vee}

- Define trace function $\operatorname{Tr}: R \rightarrow \mathbb{Z}$ as $\operatorname{Tr}(a)=\sum_{i \in \mathbb{Z}_{m}^{*}} a\left(\omega^{i}\right)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b :

$$
\operatorname{Tr}(a \cdot b)=\sum_{i} a\left(\omega^{i}\right) \cdot b\left(\omega^{i}\right)=\langle\sigma(a), \overline{\sigma(b)}\rangle .
$$

- Define R 's "dual" $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Has "decoding" \mathbb{Z}-basis $\left\{d_{j^{\prime}}\right\}$, where $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$. R

Duality and the Dual Ideal R^{\vee}

- Define trace function $\operatorname{Tr}: R \rightarrow \mathbb{Z}$ as $\operatorname{Tr}(a)=\sum_{i \in \mathbb{Z}_{m}^{*}} a\left(\omega^{i}\right)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b :

$$
\operatorname{Tr}(a \cdot b)=\sum_{i} a\left(\omega^{i}\right) \cdot b\left(\omega^{i}\right)=\langle\sigma(a), \overline{\sigma(b)}\rangle .
$$

- Define R 's "dual" $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Has "decoding" \mathbb{Z}-basis $\left\{d_{j^{\prime}}\right\}$, where $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

R

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Useful Facts

(1) R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}, r \in R$.

R

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Useful Facts

(1) R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}, r \in R$.
(2) For $m=2^{k}(\operatorname{dim} n=m / 2):\left\{X^{j}\right\}$ orthogonal and $\left\|X^{j}\right\|=\sqrt{n}$.

So $d_{j}=\frac{1}{n} X^{j}$ and $R^{\vee}=\frac{1}{n} R$. I.e., R and R^{\vee} equivalent up to scale.

R

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Useful Facts

(1) R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}, r \in R$.
(2) For $m=2^{k}(\operatorname{dim} n=m / 2):\left\{X^{j}\right\}$ orthogonal and $\left\|X^{j}\right\|=\sqrt{n}$.

So $d_{j}=\frac{1}{n} X^{j}$ and $R^{\vee}=\frac{1}{n} R$. I.e., R and R^{\vee} equivalent up to scale.
(3) In general, $m R^{\vee} \subseteq R \subseteq R^{\vee}$, with $m R^{\vee} \approx R$.

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Super-Useful Fact

\checkmark If $e \in R^{\vee}$ is short, its \mathbb{Z}-coeffs in decoding basis $\left\{d_{j}\right\}$ are small:

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Super-Useful Fact

\checkmark If $e \in R^{\vee}$ is short, its \mathbb{Z}-coeffs in decoding basis $\left\{d_{j}\right\}$ are small:

$$
e=\sum_{j} e_{j} d_{j} \quad\left(e_{j} \in \mathbb{Z}\right) \quad \Longrightarrow \quad e_{j}=\operatorname{Tr}\left(X^{j} \cdot e\right) \leq\|e\| \cdot \sqrt{n}
$$

Duality and the Dual Ideal R^{\vee}

- Dual $R^{\vee}:=\{d: \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}\left(X^{j} \cdot d_{j^{\prime}}\right)=\delta_{j, j^{\prime}}$.

Super-Useful Fact

\checkmark If $e \in R^{\vee}$ is short, its \mathbb{Z}-coeffs in decoding basis $\left\{d_{j}\right\}$ are small:

$$
e=\sum_{j} e_{j} d_{j} \quad\left(e_{j} \in \mathbb{Z}\right) \quad \Longrightarrow \quad e_{j}=\operatorname{Tr}\left(X^{j} \cdot e\right) \leq\|e\| \cdot \sqrt{n}
$$

(Better: Gaussian $e \mathrm{w} / \mathrm{std}$. dev. $s \Rightarrow$ Gaussian $e_{j} \mathrm{w} / \mathrm{std} . \operatorname{dev} . s \sqrt{n}$.)

Ring-LWE: The Complete Definition [LPR'10]

Ring $R:=\mathbb{Z}[X] / \Phi_{m}(X)$ for any $m, \quad R_{q}=R / q R, R_{q}^{\vee}=R^{\vee} / q R^{\vee}$.

Ring-LWE: The Complete Definition [LPR'10]

Ring $R:=\mathbb{Z}[X] / \Phi_{m}(X)$ for any $m, \quad R_{q}=R / q R, R_{q}^{\vee}=R^{\vee} / q R^{\vee}$.

- Problem: for $s \leftarrow R_{q}^{\vee}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, & b_{1}=a_{1} \cdot s+e_{1} \in R_{q}^{\vee} \\
a_{2} \leftarrow R_{q} & , \quad b_{2}=a_{2} \cdot s+e_{2} \in R_{q}^{\vee}
\end{array}
$$

Ring-LWE: The Complete Definition [LPR'10]

Ring $R:=\mathbb{Z}[X] / \Phi_{m}(X)$ for any $m, \quad R_{q}=R / q R, R_{q}^{\vee}=R^{\vee} / q R^{\vee}$.

- Problem: for $s \leftarrow R_{q}^{\vee}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} & , \quad b_{1}=a_{1} \cdot s+e_{1} \in R_{q}^{\vee} \\
a_{2} \leftarrow R_{q} & , \quad b_{2}=a_{2} \cdot s+e_{2} \in R_{q}^{\vee}
\end{array}
$$

- Errors $e \in R^{\vee}$ Gaussian (w/std. dev. αq) in canonical embedding. So $\left|e\left(\omega^{i}\right)\right| \approx \alpha q$ are independent* - but coeffs $\left|e_{j}\right| \approx \alpha q \sqrt{n}$ are not!

Ring-LWE: The Complete Definition [LPR'10]

Ring $R:=\mathbb{Z}[X] / \Phi_{m}(X)$ for any $m, \quad R_{q}=R / q R, R_{q}^{\vee}=R^{\vee} / q R^{\vee}$.

- Problem: for $s \leftarrow R_{q}^{\vee}$, distinguish $\left\{\left(a_{i}, b_{i}\right)\right\}$ from uniform $\left\{\left(a_{i}, b_{i}\right)\right\}$.

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, \quad b_{1}=a_{1} \cdot s+e_{1} \in R_{q}^{\vee} \\
a_{2} \leftarrow R_{q} \quad, & b_{2}=a_{2} \cdot s+e_{2} \in R_{q}^{\vee}
\end{array}
$$

- Errors $e \in R^{\vee}$ Gaussian (w/std. dev. αq) in canonical embedding. So $\left|e\left(\omega^{i}\right)\right| \approx \alpha q$ are independent ${ }^{*}$ - but coeffs $\left|e_{j}\right| \approx \alpha q \sqrt{n}$ are not!

Theorem

For any m, ring-LWE with error std. dev. $\alpha q \geq 6^{*}$ is (quantumly) as hard as $\tilde{O}(n / \alpha)$-SVP on any ideal lattice in R.

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}^{\vee}\right)$: choose Gaussian $e \in R^{\vee}$ s.t. $e=m \bmod 2 R^{\vee}$. Let

$$
c_{1} \leftarrow R_{q}^{\vee} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}^{\vee}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}^{\vee}[S] . \quad\left(\right.$ Note: $c(s)=e \bmod q R^{\vee}$. .)

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}^{\vee}\right)$: choose Gaussian $e \in R^{\vee}$ s.t. $e=m \bmod 2 R^{\vee}$. Let

$$
c_{1} \leftarrow R_{q}^{\vee} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}^{\vee}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}^{\vee}[S] . \quad\left(\right.$ Note: $c(s)=e \bmod q R^{\vee}$.)

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R^{\vee}$ s.t. $d=c(s) \bmod q R^{\vee}$.

Correctness: $d=e$, if e 's decoding basis \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}^{\vee}\right)$: choose Gaussian $e \in R^{\vee}$ s.t. $e=m \bmod 2 R^{\vee}$. Let

$$
c_{1} \leftarrow R_{q}^{\vee} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}^{\vee}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}^{\vee}[S] . \quad\left(\right.$ Note: $c(s)=e \bmod q R^{\vee}$.)

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R^{\vee}$ s.t. $d=c(s) \bmod q R^{\vee}$.

Correctness: $d=e$, if e 's decoding basis \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S) \in\left(R^{\vee}\right)_{q}^{k}[S]$ where $k=\operatorname{deg}(c)+\operatorname{deg}\left(c^{\prime}\right)$.

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.
- $\mathrm{Enc}_{s}\left(m \in R_{2}^{\vee}\right)$: choose Gaussian $e \in R^{\vee}$ s.t. $e=m \bmod 2 R^{\vee}$. Let

$$
c_{1} \leftarrow R_{q}^{\vee} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}^{\vee}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}^{\vee}[S] . \quad\left(\right.$ Note: $c(s)=e \bmod q R^{\vee}$.)

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R^{\vee}$ s.t. $d=c(s) \bmod q R^{\vee}$.

Correctness: $d=e$, if e 's decoding basis \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S) \in\left(R^{\vee}\right)_{q}^{k}[S]$ where $k=\operatorname{deg}(c)+\operatorname{deg}\left(c^{\prime}\right)$.
\star Noise $e=e_{1} \cdots e_{k} \in\left(R^{\vee}\right)^{k}$, so $m^{k-1} e \in R^{\vee}$.

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}^{\vee}\right)$: choose Gaussian $e \in R^{\vee}$ s.t. $e=m \bmod 2 R^{\vee}$. Let

$$
c_{1} \leftarrow R_{q}^{\vee} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}^{\vee}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}^{\vee}[S] . \quad\left(\right.$ Note: $c(s)=e \bmod q R^{\vee}$.)

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R^{\vee}$ s.t. $d=c(s) \bmod q R^{\vee}$.

Correctness: $d=e$, if e 's decoding basis \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S) \in\left(R^{\vee}\right)_{q}^{k}[S]$ where $k=\operatorname{deg}(c)+\operatorname{deg}\left(c^{\prime}\right)$.
\star Noise $e=e_{1} \cdots e_{k} \in\left(R^{\vee}\right)^{k}$, so $m^{k-1} e \in R^{\vee}$.
\star Since $\left\|e_{i}\right\|_{\infty} \approx \alpha q=6, m^{k-1} e$ has Gaussian std. dev. $\approx 6^{k} m^{k-1}$.

BV Homomorphic Encryption, Revisited

- Symmetric key $s \leftarrow R_{q}$.
- $\operatorname{Enc}_{s}\left(m \in R_{2}^{\vee}\right)$: choose Gaussian $e \in R^{\vee}$ s.t. $e=m \bmod 2 R^{\vee}$. Let

$$
c_{1} \leftarrow R_{q}^{\vee} \quad \text { and } \quad c_{0}=-c_{1} \cdot s+e \in R_{q}^{\vee}
$$

and output $c(S)=c_{0}+c_{1} S \in R_{q}^{\vee}[S] . \quad\left(\right.$ Note: $c(s)=e \bmod q R^{\vee}$.)

- $\operatorname{Dec}_{s}(c(S)):$ get short $d \in R^{\vee}$ s.t. $d=c(s) \bmod q R^{\vee}$.

Correctness: $d=e$, if e 's decoding basis \mathbb{Z}-coeffs $\in(-q / 2, q / 2)$.

- EvalMul $\left(c, c^{\prime}\right)=\left(c \cdot c^{\prime}\right)(S) \in\left(R^{\vee}\right)_{q}^{k}[S]$ where $k=\operatorname{deg}(c)+\operatorname{deg}\left(c^{\prime}\right)$.
\star Noise $e=e_{1} \cdots e_{k} \in\left(R^{\vee}\right)^{k}$, so $m^{k-1} e \in R^{\vee}$.
\star Since $\left\|e_{i}\right\|_{\infty} \approx \alpha q=6, m^{k-1} e$ has Gaussian std. dev. $\approx 6^{k} m^{k-1}$.
\star So need $q \approx 6^{k} m^{k-1} \sqrt{n} \approx(6 m)^{k}$ to decrypt deg- k ciphertexts.
Versus $q \approx \gamma^{k-1} n^{k}$ via expansion factor $\gamma \gg \sqrt{n}$.
$\Rightarrow \approx \gamma^{k-1}$ factor improvement in error rate.

Conclusions

(1) Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.

Conclusions

(1) Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
(2) Using R^{\vee} with the decoding basis yields smaller coefficients \Rightarrow larger noise rates \Rightarrow smaller params/higher security.

Conclusions

(1) Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
(2) Using R^{\vee} with the decoding basis yields smaller coefficients \Rightarrow larger noise rates \Rightarrow smaller params/higher security.
(3) Using the tensor basis of

$$
R \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right)
$$

yields fast, modular algorithms for all cyclotomics.

Conclusions

(1) Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
(2) Using R^{\vee} with the decoding basis yields smaller coefficients \Rightarrow larger noise rates \Rightarrow smaller params/higher security.
(3) Using the tensor basis of

$$
R \cong \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right] /\left(\Phi_{m_{1}}\left(X_{1}\right), \ldots, \Phi_{m_{\ell}}\left(X_{\ell}\right)\right)
$$

yields fast, modular algorithms for all cyclotomics.

Thanks!

