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LWE Over Rings (Over-Simplified) [LPR’10]

Ring R := Z[X]/(1 +Xn) for some n = 2k, Rq := R/qR.

I Problem: for s← Rq, distinguish {(ai , bi)} from uniform {(ai , bi)}.

a1 ← Rq , b1 = a1 · s+ e1 ∈ Rq

a2 ← Rq , b2 = a2 · s+ e2 ∈ Rq

...

I Errors e(X) ∈ R are “short.” What could this mean?

Identify

e(X) =

n−1∑
j=0

ejX
j (?)←→ (e0, e1, . . . en−1) ∈ Zn.

I Applications need (+, ·)-combinations of errors to remain short. Yes!

‖e+ f‖ ≤ ‖e‖+ ‖f‖ ‖e · f‖ ≤
√
n · ‖e‖ · ‖f‖.

“Expansion factor”
√
n is worst-case. (“On average,” ≈

√
log n.)
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Example Application: Homomorphic Encryption [BV’11a]

I R = Z[X]/(1 +X2k), Rq = R/qR. Symmetric key s← Rq.

I Encs(m ∈ R2): choose a “short” e ∈ R s.t. e = m mod 2. Let

c1 ← Rq and c0 = −c1 · s+ e ∈ Rq

and output c(S) = c0 + c1S ∈ Rq[S]. (Notice: c(s) = e mod q.)

Security: (c1, c0) is an RLWE sample (essentially).

I Decs(c(S)): get short d ∈ R s.t. d = c(s) mod q. Output d mod 2.

Correctness: d = e, as long as e has Z-coeffs ∈ (−q/2, q/2).

I EvalAdd(c, c′) = (c+ c′)(S), EvalMul(c, c′) = (c · c′)(S).

Decryption works if e+ e′, e · e′ “short enough.”

Many mults ⇒ large power of expansion factor ⇒ tiny error rate α ⇒
big parameters!
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Other Rings: Cyclotomics
I Used in faster bootstrapping [GHS’12a], homomorphic AES [GHS’12b].

R = Z[X]/Φm(X) for mth cyclotomic polynomial Φm(X).

Φm(X) =
∏
i∈Z∗m

(X − ωi) ∈ Z[X], ω = exp(2π
√
−1/m) ∈ C

I Roots ωi run over all n = ϕ(m) primitive mth roots of unity.

“Power” Z-basis of R is {1, X,X2, . . . , Xn−1}.
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7 Φ21(X) = 1−X +X3 −X4 +X6 −X8 +X9 −X11 +X12

77 Φ105(X) = [degree 48; 33 monomials with {−2,−1, 1}-coefficients]

Annoyances

7 Irregular Φm(X) ⇒ slower, more complex operations

7 Large expansion factor �
√
n – even super-poly(n)!

7 Provable hardness also degrades with expansion factor: pay twice!
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Talk Agenda

1 Cyclotomic rings and their canonical geometry

4 No expansion factor anywhere

4 Provable, tight hardness – same for all cyclotomics

4 Fast, modular ring operations

2 The dual ideal R∨ and ring-LWE

3 The decoding basis of R∨ and its properties

4 Benefits in applications: tight parameters, algorithmic efficiency

Based on:

LPR’10 V. Lyubashevsky, C. Peikert, O. Regev.

“On Ideal Lattices and Learning with Errors Over Rings.”

LPR’12 V. Lyubashevsky, C. Peikert, O. Regev.

“A Toolkit for Ring-LWE Cryptography.”
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Cyclotomic Rings

Key Facts

1 For prime p: Φp(X) = 1 +X +X2 + · · ·+Xp−1

2 For m = pe: Φm(X) = Φp(X
m/p) = 1 +Xm/p + · · ·+Xm−m/p

7 Otherwise, Φm(X) is less “regular” and more dense.

Reducing to the Prime-Power Case
I Let m have prime-power factorization m = m1 · · ·m`.

Then

R = Z[X]/Φm(X) ∼= Z[X1, . . . , X`]/(Φm1(X1), . . . ,Φm`
(X`))

=
⊗

i
Z[Xi]/Φmi(Xi),

via Xi 7→ Xm/mi . (Indeed, Xm/mi has order mi.)
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(X`))

=
⊗

i
Z[Xi]/Φmi(Xi),

via Xi 7→ Xm/mi . (Indeed, Xm/mi has order mi.)

I Bottom line: can reduce operations in R to independent operations in
prime-power cyclotomic rings Z[Xi]/Φmi(Xi).
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Canonical Geometry of R

I R = Z[X]/Φm(X) has n = ϕ(m) ring embeddings (homomorphisms)
into C, each given by evaluation at a root of Φm:

X 7→ ωi for each i ∈ Z∗m.

I The canonical embedding σ of R into Cn is σ(a) =
(
a(ωi)

)
i∈Z∗m

.

I Define all geometric quantities using σ (not coefficient vectors!!).

E.g., ‖a‖2 := ‖σ(a)‖2.

Nice Properties

4 Under σ, both + and · are coordinate-wise: σ(a · b) = σ(a)� σ(b).

This yields the “expansion” bound

‖a · b‖2 ≤ ‖a‖∞ · ‖b‖2 , where ‖a‖∞ = max
i

∣∣a(ωi)
∣∣.

4 Expansion is element-specific. No more ring “expansion factor.”
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Example 1

I 4th cyclotomic R = Z[X]/(1 +X2): embeddings X 7→ ±
√
−1

σ(1) = (1, 1)σ(X) = (±
√
−1)

In Any 2k-th Cyclotomic. . .

4 For any j, ‖Xj‖2 =
√
n and ‖Xj‖∞ = 1.

4 Power basis {1, X, . . . ,Xn−1} is orthogonal under embedding σ.

So coefficient/canonical embeddings equivalent (up to
√
n scaling).
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Example 2

I 3rd cyclotomic R = Z[X]/(1 +X +X2): embed X 7→ −1
2 ±

√
−3
2

σ(1) = (1, 1)

σ(X) = (− 1
2
±
√
−3
2

)

In Any Cyclotomic. . .

4 For any j, ‖Xj‖2 =
√
n and ‖Xj‖∞ = 1.

I Power basis {1, X, . . . ,Xn−1} is not orthogonal (unless m = 2k).

I So in power basis, short elements can have long coeff vectors.

E.g., ‖e‖ = ‖1‖ = ‖X‖ =
√
n but e = 1 +X.
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Duality and the Dual Ideal R∨

I Define trace function Tr: R→ Z as Tr(a) =
∑

i∈Z∗m a(ωi).

Tr(a · b) is (essentially) the “inner product” of embedded a, b:

Tr(a · b) =
∑

i
a(ωi) · b(ωi) = 〈σ(a) , σ(b)〉.

I Define R’s “dual” R∨ := {d : Tr(a · d) ∈ Z, ∀ a ∈ R}.

Has “decoding” Z-basis {dj′}, where Tr(Xj · dj′) = δj,j′ .

X0X1

d0d1

X0

X1

d0
d1
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Duality and the Dual Ideal R∨

I Dual R∨ := {d : Tr(a · d) ∈ Z, ∀ a ∈ R}. Basis: Tr(Xj · dj′) = δj,j′ .

Useful Facts

1 R∨ is an ideal: −a, a+ b, a · r ∈ R∨ for all a, b ∈ R∨, r ∈ R.

2 For m = 2k (dim n = m/2): {Xj} orthogonal and ‖Xj‖ =
√
n.

So dj = 1
nX

j and R∨ = 1
nR. I.e., R and R∨ equivalent up to scale.

3 In general, mR∨ ⊆ R ⊆ R∨, with mR∨ ≈ R.
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Super-Useful Fact

4 If e ∈ R∨ is short, its Z-coeffs in decoding basis {dj} are small:

e =
∑

j
ejdj (ej ∈ Z) =⇒ ej = Tr(Xj · e) ≤ ‖e‖ ·

√
n.

(Better: Gaussian e w/std. dev. s ⇒ Gaussian ej w/std. dev. s
√
n.)
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Ring-LWE: The Complete Definition [LPR’10]

Ring R := Z[X]/Φm(X) for any m, Rq = R/qR, R∨q = R∨/qR∨.

I Problem: for s← R∨q , distinguish {(ai , bi)} from uniform {(ai , bi)}.

a1 ← Rq , b1 = a1 · s+ e1 ∈ R∨q
a2 ← Rq , b2 = a2 · s+ e2 ∈ R∨q

...

I Errors e ∈ R∨ Gaussian (w/std. dev. αq) in canonical embedding.

So |e(ωi)| ≈ αq are independent∗ – but coeffs |ej | ≈ αq
√
n are not!

Theorem

For any m, ring-LWE with error std. dev. αq ≥ 6∗

is (quantumly) as hard as

Õ(n/α)-SVP on any ideal lattice in R.

11 / 13



Ring-LWE: The Complete Definition [LPR’10]

Ring R := Z[X]/Φm(X) for any m, Rq = R/qR, R∨q = R∨/qR∨.

I Problem: for s← R∨q , distinguish {(ai , bi)} from uniform {(ai , bi)}.

a1 ← Rq , b1 = a1 · s+ e1 ∈ R∨q
a2 ← Rq , b2 = a2 · s+ e2 ∈ R∨q

...

I Errors e ∈ R∨ Gaussian (w/std. dev. αq) in canonical embedding.

So |e(ωi)| ≈ αq are independent∗ – but coeffs |ej | ≈ αq
√
n are not!

Theorem

For any m, ring-LWE with error std. dev. αq ≥ 6∗

is (quantumly) as hard as
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BV Homomorphic Encryption, Revisited

I Symmetric key s← Rq.

I Encs(m ∈ R∨2 ): choose Gaussian e ∈ R∨ s.t. e = m mod 2R∨. Let

c1 ← R∨q and c0 = −c1 · s+ e ∈ R∨q

and output c(S) = c0 + c1S ∈ R∨q [S]. (Note: c(s) = e mod qR∨.)

I Decs(c(S)): get short d ∈ R∨ s.t. d = c(s) mod qR∨.

Correctness: d = e, if e’s decoding basis Z-coeffs ∈ (−q/2, q/2).

I EvalMul(c, c′) = (c · c′)(S) ∈ (R∨)kq [S] where k = deg(c) + deg(c′).

F Noise e = e1 · · · ek ∈ (R∨)k, so mk−1e ∈ R∨.

F Since ‖ei‖∞ ≈ αq = 6, mk−1e has Gaussian std. dev. ≈ 6kmk−1.

F So need q ≈ 6kmk−1√n ≈ (6m)k to decrypt deg-k ciphertexts.

Versus q ≈ γk−1nk via expansion factor γ �
√
n.

⇒ ≈ γk−1 factor improvement in error rate.
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Conclusions

1 Using canonical geometry yields tight noise expansion, clean analysis
in all cyclotomics.

2 Using R∨ with the decoding basis yields smaller coefficients ⇒ larger
noise rates ⇒ smaller params/higher security.

3 Using the tensor basis of

R ∼= Z[X1, . . . , X`]/(Φm1(X1), . . . ,Φm`
(X`))

yields fast, modular algorithms for all cyclotomics.

Thanks!
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