The Geometry of Rings

Chris Peikert Georgia Institute of Technology

SCPQ 29 November 2012

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q$$
$$\vdots$$

$$\mathsf{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q$$
$$\vdots$$

Errors $e(X) \in R$ are "short." What could this mean?

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q$$
$$\vdots$$

Errors $e(X) \in R$ are "short." What could this mean? Identify

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \stackrel{(?)}{\longleftrightarrow} \quad (e_0, e_1, \dots e_{n-1}) \in \mathbb{Z}^n.$$

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q$$
$$.$$

Errors $e(X) \in R$ are "short." What could this mean? Identify

:

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \stackrel{(?)}{\longleftrightarrow} \quad (e_0, e_1, \dots e_{n-1}) \in \mathbb{Z}^n.$$

▶ Applications need (+, ·)-combinations of errors to remain short.

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/(1+X^n)\right] \text{ for some } n=2^k, \quad R_q:=R/qR.$$

▶ Problem: for $s \leftarrow R_q$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q$$
$$.$$

Errors $e(X) \in R$ are "short." What could this mean? Identify

$$e(X) = \sum_{j=0}^{n-1} e_j X^j \quad \stackrel{(?)}{\longleftrightarrow} \quad (e_0, e_1, \dots e_{n-1}) \in \mathbb{Z}^n.$$

Applications need (+, ·)-combinations of errors to remain short. Yes!

$$||e+f|| \le ||e|| + ||f||$$
 $||e \cdot f|| \le \sqrt{n} \cdot ||e|| \cdot ||f||$

"Expansion factor" \sqrt{n} is worst-case. ("On average," $\approx \sqrt{\log n}$.)

▶ $R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

▶
$$R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$$
. Symmetric key $s \leftarrow R_q$.

▶ $\mathsf{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

 $c_1 \leftarrow R_q$ and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.)

▶ $R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

▶ $\mathsf{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) Security: (c_1, c_0) is an RLWE sample (essentially).

▶ $R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

▶ $Enc_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) Security: (c_1, c_0) is an RLWE sample (essentially).

Dec_s(c(S)): get short d ∈ R s.t. d = c(s) mod q. Output d mod 2.
 Correctness: d = e, as long as e has Z-coeffs ∈ (-q/2, q/2).

▶ $R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) <u>Security</u>: (c_1, c_0) is an RLWE sample (essentially).

- Dec_s(c(S)): get short d ∈ R s.t. d = c(s) mod q. Output d mod 2.
 <u>Correctness</u>: d = e, as long as e has Z-coeffs ∈ (-q/2, q/2).
- ► EvalAdd(c, c') = (c + c')(S), EvalMul $(c, c') = (c \cdot c')(S)$.

▶ $R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) <u>Security</u>: (c_1, c_0) is an RLWE sample (essentially).

- Dec_s(c(S)): get short d ∈ R s.t. d = c(s) mod q. Output d mod 2.
 <u>Correctness</u>: d = e, as long as e has Z-coeffs ∈ (-q/2, q/2).
- ► EvalAdd(c, c') = (c + c')(S), EvalMul(c, c') = (c ⋅ c')(S). Decryption works if e + e', e ⋅ e' "short enough."

▶ $R = \mathbb{Z}[X]/(1 + X^{2^k}), R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

▶ $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ s.t. $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) <u>Security</u>: (c_1, c_0) is an RLWE sample (essentially).

- ▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R$ s.t. $d = c(s) \mod q$. Output $d \mod 2$. <u>Correctness</u>: d = e, as long as e has \mathbb{Z} -coeffs $\in (-q/2, q/2)$.
- EvalAdd(c, c') = (c + c')(S), EvalMul(c, c') = (c ⋅ c')(S).
 Decryption works if e + e', e ⋅ e' "short enough."
 Many mults ⇒ large power of expansion factor ⇒ tiny error rate α ⇒ big parameters!

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

▶ Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\begin{array}{l} R = \mathbb{Z}[X]/\Phi_m(X) \\ \hline \Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C} \end{array}$$

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

► Roots ωⁱ run over all n = φ(m) primitive mth roots of unity. "Power" ℤ-basis of R is {1, X, X²,..., Xⁿ⁻¹}.

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X)} \text{ for } m \text{th cyclotomic polynomial } \Phi_m(X).$$
$$\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

► Roots ωⁱ run over all n = φ(m) primitive mth roots of unity. "Power" ℤ-basis of R is {1, X, X²,..., Xⁿ⁻¹}.

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

• Roots ω^i run over all $n = \varphi(m)$ primitive *m*th roots of unity. "Power" \mathbb{Z} -basis of *R* is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

★
$$\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$$

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

• Roots ω^i run over all $n = \varphi(m)$ primitive *m*th roots of unity. "Power" \mathbb{Z} -basis of *R* is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

$$\bigstar \ \Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$$

XX $\Phi_{105}(X) =$ [degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients]

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

• Roots ω^i run over all $n = \varphi(m)$ primitive *m*th roots of unity. "Power" \mathbb{Z} -basis of *R* is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

★
$$\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$$

XX $\Phi_{105}(X) =$ [degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients]

Annoyances

X Irregular $\Phi_m(X) \Rightarrow$ slower, more complex operations

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

▶ Roots ω^i run over all $n = \varphi(m)$ primitive *m*th roots of unity. "Power" \mathbb{Z} -basis of *R* is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

★
$$\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$$

XX $\Phi_{105}(X) =$ [degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients]

Annoyances

- **X** Irregular $\Phi_m(X) \Rightarrow$ slower, more complex operations
- **X** Large expansion factor $\gg \sqrt{n}$ even super-poly(n)!

Used in faster bootstrapping [GHS'12a], homomorphic AES [GHS'12b].

$$\frac{R = \mathbb{Z}[X]/\Phi_m(X)}{\Phi_m(X) = \prod_{i \in \mathbb{Z}_m^*} (X - \omega^i) \in \mathbb{Z}[X], \quad \omega = \exp(2\pi\sqrt{-1}/m) \in \mathbb{C}$$

▶ Roots ω^i run over all $n = \varphi(m)$ primitive *m*th roots of unity. "Power" \mathbb{Z} -basis of *R* is $\{1, X, X^2, \dots, X^{n-1}\}$.

Non-prime power m?

★
$$\Phi_{21}(X) = 1 - X + X^3 - X^4 + X^6 - X^8 + X^9 - X^{11} + X^{12}$$

XX $\Phi_{105}(X) =$ [degree 48; 33 monomials with $\{-2, -1, 1\}$ -coefficients]

Annoyances

- **X** Irregular $\Phi_m(X) \Rightarrow$ slower, more complex operations
- **X** Large expansion factor $\gg \sqrt{n}$ even super-poly(n)!
- X Provable hardness also degrades with expansion factor: pay twice!

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✓ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✓ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✓ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE
- **3** The decoding basis of R^{\vee} and its properties

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✓ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE
- **3** The decoding basis of R^{\vee} and its properties
- Ø Benefits in applications: tight parameters, algorithmic efficiency

- 1 Cyclotomic rings and their canonical geometry
 - ✓ No expansion factor anywhere
 - ✓ Provable, tight hardness same for all cyclotomics
 - ✔ Fast, modular ring operations
- **2** The dual ideal R^{\vee} and ring-LWE
- **3** The decoding basis of R^{\vee} and its properties
- Ø Benefits in applications: tight parameters, algorithmic efficiency

Based on:

- LPR'10 V. Lyubashevsky, C. Peikert, O. Regev. "On Ideal Lattices and Learning with Errors Over Rings."
- LPR'12 V. Lyubashevsky, C. Peikert, O. Regev. "A Toolkit for Ring-LWE Cryptography."

Key Facts

1 For prime
$$p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$$

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

Key Facts

- **1** For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$
- 2 For $m = p^e$: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$
- **X** Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

X Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

• Let m have prime-power factorization $m = m_1 \cdots m_{\ell}$.

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

X Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

• Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

 $R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

X Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

• Let *m* have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_{\ell}]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_{\ell}}(X_{\ell}))$$
$$= \bigotimes_{i} \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

X Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

• Let *m* have prime-power factorization $m = m_1 \cdots m_\ell$. Then $R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$ $= \bigotimes_i \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

▶ R has tensor \mathbb{Z} -basis $\{X_1^{j_1} \cdots X_{\ell}^{j_{\ell}}\}$, where each $0 \leq j_i < \varphi(m_i)$.

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

X Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

• Let *m* have prime-power factorization $m = m_1 \cdots m_\ell$. Then $R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$ $= \bigotimes_i \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

▶ *R* has tensor \mathbb{Z} -basis $\{X_1^{j_1} \cdots X_{\ell}^{j_{\ell}}\}$, where each $0 \le j_i < \varphi(m_i)$. Notice!: tensor basis \ne power basis $\{X^j\}$, $0 \le j < \varphi(m)$.
Cyclotomic Rings

Key Facts

1 For prime $p: \Phi_p(X) = 1 + X + X^2 + \dots + X^{p-1}$

2 For
$$m = p^e$$
: $\Phi_m(X) = \Phi_p(X^{m/p}) = 1 + X^{m/p} + \dots + X^{m-m/p}$

X Otherwise, $\Phi_m(X)$ is less "regular" and more dense.

Reducing to the Prime-Power Case

• Let m have prime-power factorization $m = m_1 \cdots m_\ell$. Then

$$R = \mathbb{Z}[X]/\Phi_m(X) \cong \mathbb{Z}[X_1, \dots, X_\ell]/(\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$
$$= \bigotimes \mathbb{Z}[X_i]/\Phi_{m_i}(X_i),$$

via $X_i \mapsto X^{m/m_i}$. (Indeed, X^{m/m_i} has order m_i .)

Bottom line: can reduce operations in R to independent operations in prime-power cyclotomic rings $\mathbb{Z}[X_i]/\Phi_{m_i}(X_i)$.

Canonical Geometry of ${\boldsymbol R}$

R = Z[X]/Φ_m(X) has n = φ(m) ring embeddings (homomorphisms) into C, each given by evaluation at a root of Φ_m:

 $X \mapsto \omega^i$ for each $i \in \mathbb{Z}_m^*$.

Canonical Geometry of ${\cal R}$

R = Z[X]/Φ_m(X) has n = φ(m) ring embeddings (homomorphisms) into C, each given by evaluation at a root of Φ_m:

 $X \mapsto \omega^i$ for each $i \in \mathbb{Z}_m^*$.

• The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a) = (a(\omega^i))_{i \in \mathbb{Z}_m^*}$.

Canonical Geometry of ${\cal R}$

R = Z[X]/Φ_m(X) has n = φ(m) ring embeddings (homomorphisms) into C, each given by evaluation at a root of Φ_m:

 $X \mapsto \omega^i$ for each $i \in \mathbb{Z}_m^*$.

- The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a) = (a(\omega^i))_{i \in \mathbb{Z}_+^*}$.
- Define all geometric quantities using σ (not coefficient vectors!!).
 E.g., ||a||₂ := ||σ(a)||₂.

Canonical Geometry of ${\boldsymbol R}$

R = Z[X]/Φ_m(X) has n = φ(m) ring embeddings (homomorphisms) into C, each given by evaluation at a root of Φ_m:

 $X \mapsto \omega^i$ for each $i \in \mathbb{Z}_m^*$.

- ► The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a) = (a(\omega^i))_{i \in \mathbb{Z}_+^*}$.
- Define all geometric quantities using σ (not coefficient vectors!!).
 E.g., ||a||₂ := ||σ(a)||₂.

Nice Properties

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$.

Canonical Geometry of ${\cal R}$

R = Z[X]/Φ_m(X) has n = φ(m) ring embeddings (homomorphisms) into C, each given by evaluation at a root of Φ_m:

 $X \mapsto \omega^i$ for each $i \in \mathbb{Z}_m^*$.

- ► The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a) = (a(\omega^i))_{i \in \mathbb{Z}_+^*}$.
- Define all geometric quantities using σ (not coefficient vectors!!).
 E.g., ||a||₂ := ||σ(a)||₂.

Nice Properties

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$. This yields the "expansion" bound

$$\|a \cdot b\|_2 \le \|a\|_{\infty} \cdot \|b\|_2$$
, where $\|a\|_{\infty} = \max_i |a(\omega^i)|$.

Canonical Geometry of ${\boldsymbol R}$

R = Z[X]/Φ_m(X) has n = φ(m) ring embeddings (homomorphisms) into C, each given by evaluation at a root of Φ_m:

 $X \mapsto \omega^i$ for each $i \in \mathbb{Z}_m^*$.

- The canonical embedding σ of R into \mathbb{C}^n is $\sigma(a) = (a(\omega^i))_{i \in \mathbb{Z}_+^*}$.
- Define all geometric quantities using σ (not coefficient vectors!!).
 E.g., ||a||₂ := ||σ(a)||₂.

Nice Properties

✓ Under σ , both + and \cdot are coordinate-wise: $\sigma(a \cdot b) = \sigma(a) \odot \sigma(b)$. This yields the "expansion" bound

$$\|a \cdot b\|_2 \le \|a\|_{\infty} \cdot \|b\|_2$$
, where $\|a\|_{\infty} = \max_i |a(\omega^i)|$.

✔ Expansion is element-specific. No more ring "expansion factor."

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

In Any 2^k -th Cyclotomic...

✓ For any
$$j$$
, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.

▶ 4th cyclotomic $R = \mathbb{Z}[X]/(1 + X^2)$: embeddings $X \mapsto \pm \sqrt{-1}$

In Any 2^k -th Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.
- ✓ Power basis {1, X,..., Xⁿ⁻¹} is orthogonal under embedding σ.
 So coefficient/canonical embeddings equivalent (up to √n scaling).

• 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

• 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

✓ For any *j*,
$$||X^j||_2 = \sqrt{n}$$
 and $||X^j||_\infty = 1$.

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).

▶ 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.
- ▶ Power basis $\{1, X, ..., X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).
- So in power basis, short elements can have long coeff vectors.

• 3rd cyclotomic $R = \mathbb{Z}[X]/(1 + X + X^2)$: embed $X \mapsto -\frac{1}{2} \pm \frac{\sqrt{-3}}{2}$

In Any Cyclotomic...

- ✓ For any j, $||X^j||_2 = \sqrt{n}$ and $||X^j||_\infty = 1$.
- Power basis $\{1, X, \dots, X^{n-1}\}$ is not orthogonal (unless $m = 2^k$).

So in power basis, short elements can have long coeff vectors.

E.g.,
$$||e|| = ||1|| = ||X|| = \sqrt{n}$$
 but $e = 1 + X$.

▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$.

▶ Define trace function $\operatorname{Tr}: R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum_{i} a(\omega^{i}) \cdot b(\omega^{i}) = \langle \sigma(a), \, \overline{\sigma(b)} \rangle.$$

▶ Define trace function $\operatorname{Tr} : R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum_{i} a(\omega^{i}) \cdot b(\omega^{i}) = \langle \sigma(a), \, \overline{\sigma(b)} \rangle.$$

▶ Define *R*'s "dual" $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}.$

▶ Define trace function $\operatorname{Tr} : R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum_{i} a(\omega^{i}) \cdot b(\omega^{i}) = \langle \sigma(a), \, \overline{\sigma(b)} \rangle.$$

► Define *R*'s "dual" $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}.$ Has "decoding" \mathbb{Z} -basis $\{d_{j'}\}$, where $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

▶ Define trace function $\operatorname{Tr} : R \to \mathbb{Z}$ as $\operatorname{Tr}(a) = \sum_{i \in \mathbb{Z}_m^*} a(\omega^i)$. $\operatorname{Tr}(a \cdot b)$ is (essentially) the "inner product" of embedded a, b:

$$\operatorname{Tr}(a \cdot b) = \sum_{i} a(\omega^{i}) \cdot b(\omega^{i}) = \langle \sigma(a), \, \overline{\sigma(b)} \rangle.$$

► Define *R*'s "dual" $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}.$ Has "decoding" \mathbb{Z} -basis $\{d_{j'}\}$, where $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

▶ Dual $R^{\vee} := \{ d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R \}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

▶ Dual $R^{\vee} := \{ d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R \}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Useful Facts

1 R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}$, $r \in R$.

▶ Dual $R^{\vee} := \{d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R\}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Useful Facts

1 R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}$, $r \in R$.

▶ Dual $R^{\vee} := \{ d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R \}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Useful Facts

1 R^{\vee} is an ideal: $-a, a+b, a \cdot r \in R^{\vee}$ for all $a, b \in R^{\vee}$, $r \in R$.

2 For m = 2^k (dim n = m/2): {X^j} orthogonal and ||X^j|| = √n. So d_j = ¹/_nX^j and R[∨] = ¹/_nR. I.e., R and R[∨] equivalent up to scale.
3 In general, mR[∨] ⊆ R ⊆ R[∨], with mR[∨] ≈ R.

▶ Dual $R^{\vee} := \{ d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R \}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Super-Useful Fact

✓ If $e \in R^{\vee}$ is short, its \mathbb{Z} -coeffs in decoding basis $\{d_j\}$ are small:

▶ Dual $R^{\vee} := \{ d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R \}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Super-Useful Fact

✓ If $e \in R^{\vee}$ is short, its \mathbb{Z} -coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_j d_j \quad (e_j \in \mathbb{Z}) \implies e_j = \operatorname{Tr}(X^j \cdot e) \le ||e|| \cdot \sqrt{n}.$$

▶ Dual $R^{\vee} := \{ d : \operatorname{Tr}(a \cdot d) \in \mathbb{Z}, \forall a \in R \}$. Basis: $\operatorname{Tr}(X^j \cdot d_{j'}) = \delta_{j,j'}$.

Super-Useful Fact

✓ If $e \in R^{\vee}$ is short, its \mathbb{Z} -coeffs in decoding basis $\{d_j\}$ are small:

$$e = \sum_{j} e_j d_j \quad (e_j \in \mathbb{Z}) \implies e_j = \operatorname{Tr}(X^j \cdot e) \le ||e|| \cdot \sqrt{n}.$$

(Better: Gaussian e w/std. dev. $s \Rightarrow$ Gaussian e_j w/std. dev. $s\sqrt{n}$.)

$$\operatorname{Ring}\left[R:=\mathbb{Z}[X]/\Phi_m(X)\right] \text{ for any } m, \quad R_q=R/qR, \ R_q^{\vee}=R^{\vee}/qR^{\vee}.$$

$$\mathsf{Ring}\left[R:=\mathbb{Z}[X]/\Phi_m(X)\right] \text{ for any } m, \quad R_q=R/qR, \; R_q^{\vee}=R^{\vee}/qR^{\vee}.$$

▶ Problem: for $s \leftarrow R_q^{\lor}$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

÷

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q^{\vee}$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q^{\vee}$$

$$\mathsf{Ring}\ \boxed{R:=\mathbb{Z}[X]/\Phi_m(X)} \text{ for any } m, \quad R_q=R/qR, \ R_q^{\vee}=R^{\vee}/qR^{\vee}.$$

▶ Problem: for $s \leftarrow R_q^{\lor}$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q^{\vee}$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q^{\vee}$$
$$\vdots$$

Errors e ∈ R[∨] Gaussian (w/std. dev. αq) in canonical embedding.
 So |e(ωⁱ)| ≈ αq are independent* – but coeffs |e_j| ≈ αq√n are not!

.

$$\mathsf{Ring}\ \boxed{R:=\mathbb{Z}[X]/\Phi_m(X)} \text{ for any } m, \quad R_q=R/qR, \ R_q^{\vee}=R^{\vee}/qR^{\vee}.$$

▶ Problem: for $s \leftarrow R_q^{\lor}$, distinguish $\{(a_i, b_i)\}$ from uniform $\{(a_i, b_i)\}$.

$$a_1 \leftarrow R_q \quad , \quad b_1 = a_1 \cdot s + e_1 \in R_q^{\vee}$$
$$a_2 \leftarrow R_q \quad , \quad b_2 = a_2 \cdot s + e_2 \in R_q^{\vee}$$

Errors e ∈ R[∨] Gaussian (w/std. dev. αq) in canonical embedding.
 So |e(ωⁱ)| ≈ αq are independent* – but coeffs |e_j| ≈ αq√n are not!

Theorem

For any m, ring-LWE with error std. dev. $\alpha q \ge 6^*$ is (quantumly) as hard as $\tilde{O}(n/\alpha)$ -SVP on any ideal lattice in R.

Symmetric key $s \leftarrow R_q$.

Symmetric key
$$s \leftarrow R_q$$
.

▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^ee$$
 and $c_0 = -c_1 \cdot s + e \in R_q^ee$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod q R^{\vee}$.)

Symmetric key
$$s \leftarrow R_q$$
.

▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^ee$$
 and $c_0 = -c_1 \cdot s + e \in R_q^ee$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod q R^{\vee}$.)

▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \mod qR^{\vee}$.

<u>Correctness</u>: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.

Symmetric key
$$s \leftarrow R_q$$
.

▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^ee$$
 and $c_0 = -c_1 \cdot s + e \in R_q^ee$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod q R^{\vee}$.)

▶ $\mathsf{Dec}_s(c(S))$: get short $d \in R^{\vee}$ s.t. $d = c(s) \mod qR^{\vee}$. <u>Correctness</u>: d = e, if e's decoding basis \mathbb{Z} -coeffs $\in (-q/2, q/2)$.

► EvalMul $(c, c') = (c \cdot c')(S) \in (R^{\vee})_q^k[S]$ where $k = \deg(c) + \deg(c')$.
BV Homomorphic Encryption, Revisited

Symmetric key
$$s \leftarrow R_q$$
.

▶ $\operatorname{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^ee$$
 and $c_0 = -c_1 \cdot s + e \in R_q^ee$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod q R^{\vee}$.)

- Dec_s(c(S)): get short d ∈ R[∨] s.t. d = c(s) mod qR[∨].
 <u>Correctness</u>: d = e, if e's decoding basis Z-coeffs ∈ (-q/2, q/2).
 E = MA(t(a, b)) = (a, b)(R) = (D)(b)(R) = (a, b) = (b, c)(b) = (a, b)(R) = (b, c)(b)(R) = (b, c)(R) = (b
- ► EvalMul(c, c') = (c · c')(S) ∈ (R[∨])^k_q[S] where k = deg(c) + deg(c').
 ★ Noise e = e₁ · · · e_k ∈ (R[∨])^k, so m^{k-1}e ∈ R[∨].

BV Homomorphic Encryption, Revisited

Symmetric key
$$s \leftarrow R_q$$
.

▶ $\mathsf{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^ee$$
 and $c_0 = -c_1 \cdot s + e \in R_q^ee$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod q R^{\vee}$.)

- ▶ Dec_s(c(S)): get short $d \in R^{\vee}$ s.t. $d = c(s) \mod qR^{\vee}$. <u>Correctness</u>: d = e, if e's decoding basis Z-coeffs $\in (-q/2, q/2)$.
- EvalMul $(c, c') = (c \cdot c')(S) \in (R^{\vee})_q^k[S]$ where $k = \deg(c) + \deg(c')$.
 - * Noise $e = e_1 \cdots e_k \in (R^{\vee})^k$, so $m^{k-1}e \in R^{\vee}$.
 - * Since $\|e_i\|_{\infty} \approx \alpha q = 6$, $m^{k-1}e$ has Gaussian std. dev. $\approx 6^k m^{k-1}$.

BV Homomorphic Encryption, Revisited

Symmetric key
$$s \leftarrow R_q$$
.

▶ $\mathsf{Enc}_s(m \in R_2^{\vee})$: choose Gaussian $e \in R^{\vee}$ s.t. $e = m \mod 2R^{\vee}$. Let

$$c_1 \leftarrow R_q^ee$$
 and $c_0 = -c_1 \cdot s + e \in R_q^ee$

and output $c(S) = c_0 + c_1 S \in R_q^{\vee}[S]$. (Note: $c(s) = e \mod q R^{\vee}$.)

- ▶ Dec_s(c(S)): get short $d \in R^{\vee}$ s.t. $d = c(s) \mod qR^{\vee}$. <u>Correctness</u>: d = e, if e's decoding basis Z-coeffs $\in (-q/2, q/2)$.
- EvalMul $(c, c') = (c \cdot c')(S) \in (R^{\vee})_q^k[S]$ where $k = \deg(c) + \deg(c')$.
 - * Noise $e = e_1 \cdots e_k \in (R^{\vee})^k$, so $m^{k-1}e \in R^{\vee}$.
 - * Since $\|e_i\|_{\infty} \approx \alpha q = 6$, $m^{k-1}e$ has Gaussian std. dev. $\approx 6^k m^{k-1}$.
 - * So need $q \approx 6^k m^{k-1} \sqrt{n} \approx (6m)^k$ to decrypt deg-k ciphertexts. Versus $q \approx \gamma^{k-1} n^k$ via expansion factor $\gamma \gg \sqrt{n}$. $\Rightarrow \approx \gamma^{k-1}$ factor improvement in error rate.

 Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.

- Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
- ② Using R[∨] with the decoding basis yields smaller coefficients ⇒ larger noise rates ⇒ smaller params/higher security.

- Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
- 2 Using R[∨] with the decoding basis yields smaller coefficients ⇒ larger noise rates ⇒ smaller params/higher security.
- Osing the tensor basis of

$$R \cong \mathbb{Z}[X_1, \dots, X_\ell] / (\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$

yields fast, modular algorithms for all cyclotomics.

- Using canonical geometry yields tight noise expansion, clean analysis in all cyclotomics.
- 2 Using R[∨] with the decoding basis yields smaller coefficients ⇒ larger noise rates ⇒ smaller params/higher security.
- Osing the tensor basis of

$$R \cong \mathbb{Z}[X_1, \dots, X_\ell] / (\Phi_{m_1}(X_1), \dots, \Phi_{m_\ell}(X_\ell))$$

yields fast, modular algorithms for all cyclotomics.

Thanks!