
Searching for a Secure Public Key Cryptosystem

Simon R. Blackburn

1

Standard logo

The logo should be reproduced in the primary colour, 
Pantone 660c, on all publications printed in two or 
more colours. Refer to the ‘Branded merchandise’ 
sheet for guidelines on use on promotional items etc. 

The text, ‘University of London’, is set as a 50% of the 
blue background.

Do not use a keyline – see ‘Non standard 
backgrounds’ for exceptions.

The College name has been specially drawn; please 
use the original digital artwork and do not try to 
re-set.

xx

x

Clear area

No graphic or text should be placed in an area 
around the logo equivalent to the width of the base 
of the clock tower silhouette, as shown.

≤ 30mm
Minimum size

The logo should be never be reproduced at less than 30mm in width. 
The text, ‘University of London’, should be reproduced as 100% white, 
no tints. 

Printing on absorbent and unusual surfaces

The text, ‘University of London’, should be reproduced as 
100% white, no tints, when it is printed on absorbent paper, 
i.e. newsprint, or any unusual surface, 
i.e. metal, fabric or plastic.

Non standard backgrounds

A white keyline should be placed around the logo 
if the logo is placed on a background other than 
white. 

The width of the keyline is the width of the letter ‘l’.  

x

x

Royal Holloway logo guidelines

Reversed logo

A reversed logo may be used when a one 
colour logo is required on a mid to dark 
colour background. 

Refer to the ‘Branded merchandise’ sheet 
for guidelines on use on promotional items 
etc.  

The background colour shows through the  
‘Royal Holloway’ text and the clock tower 
silhouette. The text ‘University of London’ 
is a 50% tint of the background colour.

20th September 2012

Simon R. Blackburn (RHUL) Searching for a Secure PKC 1 / 21



Outline of this talk

1 Attacks on Textbook RSA

2 Formalising security

3 Some lessons

4 A critique of a group-based PKC

Simon R. Blackburn (RHUL) Searching for a Secure PKC 2 / 21



Textbook RSA

Let k be a security parameter.
We generate the public key (integers n, e) and private key (integer d) as
follows:

Generate k/2-bit primes p, q. Set n = pq.

Choose a k-bit integer e coprime to (p − 1)(q − 1).

Set d = e−1 mod (p − 1)(q − 1).

Simon R. Blackburn (RHUL) Searching for a Secure PKC 3 / 21



Textbook RSA

Let k be a security parameter.
We generate the public key (integers n, e) and private key (integer d) as
follows:

Generate k/2-bit primes p, q. Set n = pq.

Choose a k-bit integer e coprime to (p − 1)(q − 1).

Set d = e−1 mod (p − 1)(q − 1).

Simon R. Blackburn (RHUL) Searching for a Secure PKC 3 / 21



Textbook RSA

Given a message m ∈ Zn and a public key, we encrypt to form a ciphertext
c by computing:

c = me mod n.

Given a ciphertext c ∈ Zn, the public key and the private key, we decrypt
to recover the message by computing:

m = cd mod n.

This works since
(me)d = m mod n.

If you can factor n, you can derive d from n and e. The scheme is then
broken.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 4 / 21



Textbook RSA

Given a message m ∈ Zn and a public key, we encrypt to form a ciphertext
c by computing:

c = me mod n.

Given a ciphertext c ∈ Zn, the public key and the private key, we decrypt
to recover the message by computing:

m = cd mod n.

This works since
(me)d = m mod n.

If you can factor n, you can derive d from n and e. The scheme is then
broken.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 4 / 21



Textbook RSA

Given a message m ∈ Zn and a public key, we encrypt to form a ciphertext
c by computing:

c = me mod n.

Given a ciphertext c ∈ Zn, the public key and the private key, we decrypt
to recover the message by computing:

m = cd mod n.

This works since
(me)d = m mod n.

If you can factor n, you can derive d from n and e. The scheme is then
broken.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 4 / 21



Textbook RSA

Given a message m ∈ Zn and a public key, we encrypt to form a ciphertext
c by computing:

c = me mod n.

Given a ciphertext c ∈ Zn, the public key and the private key, we decrypt
to recover the message by computing:

m = cd mod n.

This works since
(me)d = m mod n.

If you can factor n, you can derive d from n and e. The scheme is then
broken.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 4 / 21



In practice

Choose k = 1024, or k = 2048 to prevent n being factored.

For efficiency of encryption, choose e to be small: e = 216 + 1 is usual.

You need a carefully designed randomised message padding scheme.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 5 / 21



In practice

Choose k = 1024, or k = 2048 to prevent n being factored.

For efficiency of encryption, choose e to be small: e = 216 + 1 is usual.

You need a carefully designed randomised message padding scheme.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 5 / 21



In practice

Choose k = 1024, or k = 2048 to prevent n being factored.

For efficiency of encryption, choose e to be small: e = 216 + 1 is usual.

You need a carefully designed randomised message padding scheme.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 5 / 21



Textbook RSA is insecure!

Attack 1: If Bob transmits ‘Yes’ or ‘No’, Eve can decrypt. (Anyone can
encrypt.)

Attack 2: The Jacobi symbol of m is not changed by encryption.

Attack 3: If m is short, c = me (no modular reduction). Decrypt by taking
real eth roots.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 6 / 21



Textbook RSA is insecure!

Attack 1: If Bob transmits ‘Yes’ or ‘No’, Eve can decrypt. (Anyone can
encrypt.)

Attack 2: The Jacobi symbol of m is not changed by encryption.

Attack 3: If m is short, c = me (no modular reduction). Decrypt by taking
real eth roots.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 6 / 21



Textbook RSA is insecure!

Attack 1: If Bob transmits ‘Yes’ or ‘No’, Eve can decrypt. (Anyone can
encrypt.)

Attack 2: The Jacobi symbol of m is not changed by encryption.

Attack 3: If m is short, c = me (no modular reduction). Decrypt by taking
real eth roots.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 6 / 21



What is a PKC?
Three public algorithms (probabilistic polynomial time Turing machines):

KeyGen

Input: Security parameter (in unary).
Output: Public key, and private key.

Enc

Input: Public key, and message.
Output: Ciphertext.

Dec

Input: Public key, private key, ciphertext.
Output: Message.

For all pairs (pk, sk) output by KeyGen, and all messages m,

Decpk,sk Encpk(m) = m.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 7 / 21



What is a PKC?
Three public algorithms (probabilistic polynomial time Turing machines):

KeyGen

Input: Security parameter (in unary).
Output: Public key, and private key.

Enc

Input: Public key, and message.
Output: Ciphertext.

Dec

Input: Public key, private key, ciphertext.
Output: Message.

For all pairs (pk, sk) output by KeyGen, and all messages m,

Decpk,sk Encpk(m) = m.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 7 / 21



What is a PKC?
Three public algorithms (probabilistic polynomial time Turing machines):

KeyGen

Input: Security parameter (in unary).
Output: Public key, and private key.

Enc

Input: Public key, and message.
Output: Ciphertext.

Dec

Input: Public key, private key, ciphertext.
Output: Message.

For all pairs (pk, sk) output by KeyGen, and all messages m,

Decpk,sk Encpk(m) = m.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 7 / 21



What is a PKC?
Three public algorithms (probabilistic polynomial time Turing machines):

KeyGen

Input: Security parameter (in unary).
Output: Public key, and private key.

Enc

Input: Public key, and message.
Output: Ciphertext.

Dec

Input: Public key, private key, ciphertext.
Output: Message.

For all pairs (pk, sk) output by KeyGen, and all messages m,

Decpk,sk Encpk(m) = m.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 7 / 21



What is a PKC?
Three public algorithms (probabilistic polynomial time Turing machines):

KeyGen

Input: Security parameter (in unary).
Output: Public key, and private key.

Enc

Input: Public key, and message.
Output: Ciphertext.

Dec

Input: Public key, private key, ciphertext.
Output: Message.

For all pairs (pk, sk) output by KeyGen, and all messages m,

Decpk,sk Encpk(m) = m.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 7 / 21



What is an adversary?

An adversary Adv is (usually) a polynomial time, probabilistic Turing
machine.

Adv always has the public key as an input.

Adv has access to a decryption oracle. This is the CCA2 model.
(A passive model, with no oracle access, is also studied.)

Depending on the security model, Adv might have other inputs (e.g. a
challenge ciphertext).

Simon R. Blackburn (RHUL) Searching for a Secure PKC 8 / 21



What is an adversary?

An adversary Adv is (usually) a polynomial time, probabilistic Turing
machine.

Adv always has the public key as an input.

Adv has access to a decryption oracle. This is the CCA2 model.
(A passive model, with no oracle access, is also studied.)

Depending on the security model, Adv might have other inputs (e.g. a
challenge ciphertext).

Simon R. Blackburn (RHUL) Searching for a Secure PKC 8 / 21



What is an adversary?

An adversary Adv is (usually) a polynomial time, probabilistic Turing
machine.

Adv always has the public key as an input.

Adv has access to a decryption oracle. This is the CCA2 model.
(A passive model, with no oracle access, is also studied.)

Depending on the security model, Adv might have other inputs (e.g. a
challenge ciphertext).

Simon R. Blackburn (RHUL) Searching for a Secure PKC 8 / 21



What is an adversary?

An adversary Adv is (usually) a polynomial time, probabilistic Turing
machine.

Adv always has the public key as an input.

Adv has access to a decryption oracle. This is the CCA2 model.
(A passive model, with no oracle access, is also studied.)

Depending on the security model, Adv might have other inputs (e.g. a
challenge ciphertext).

Simon R. Blackburn (RHUL) Searching for a Secure PKC 8 / 21



Defining the Security of a PKC

The minimum security level (for the theoretical cryptographer) is called
IND-CCA2.

Define a two stage game, with a CCA2 adversary.

Stage 1: Use KeyGen to generate (pk, sk).
Adv receives pk as input, and outputs two messages m0 and m1.

Stage 2: Let b ∈ {0, 1} be random. Set c = Encpk(mb).
Adv receives c as input (also a transcript of Stage 1). Adv cannot query
its decryption oracle on c .
Adv outputs a bit b′.

Adv wins the game if b = b′. The PKC is IND-CCA2 secure if for all poly
time adversaries and all polynimials p

Prob(Adv wins) < 1/2 + 1/p(k)

for sufficiently large k .

Simon R. Blackburn (RHUL) Searching for a Secure PKC 9 / 21



Defining the Security of a PKC

The minimum security level (for the theoretical cryptographer) is called
IND-CCA2. Define a two stage game, with a CCA2 adversary.

Stage 1: Use KeyGen to generate (pk, sk).
Adv receives pk as input, and outputs two messages m0 and m1.

Stage 2: Let b ∈ {0, 1} be random. Set c = Encpk(mb).
Adv receives c as input (also a transcript of Stage 1). Adv cannot query
its decryption oracle on c .
Adv outputs a bit b′.

Adv wins the game if b = b′. The PKC is IND-CCA2 secure if for all poly
time adversaries and all polynimials p

Prob(Adv wins) < 1/2 + 1/p(k)

for sufficiently large k .

Simon R. Blackburn (RHUL) Searching for a Secure PKC 9 / 21



Defining the Security of a PKC

The minimum security level (for the theoretical cryptographer) is called
IND-CCA2. Define a two stage game, with a CCA2 adversary.

Stage 1: Use KeyGen to generate (pk, sk).
Adv receives pk as input, and outputs two messages m0 and m1.

Stage 2: Let b ∈ {0, 1} be random. Set c = Encpk(mb).
Adv receives c as input (also a transcript of Stage 1). Adv cannot query
its decryption oracle on c .
Adv outputs a bit b′.

Adv wins the game if b = b′. The PKC is IND-CCA2 secure if for all poly
time adversaries and all polynimials p

Prob(Adv wins) < 1/2 + 1/p(k)

for sufficiently large k .

Simon R. Blackburn (RHUL) Searching for a Secure PKC 9 / 21



Defining the Security of a PKC

The minimum security level (for the theoretical cryptographer) is called
IND-CCA2. Define a two stage game, with a CCA2 adversary.

Stage 1: Use KeyGen to generate (pk, sk).
Adv receives pk as input, and outputs two messages m0 and m1.

Stage 2: Let b ∈ {0, 1} be random. Set c = Encpk(mb).
Adv receives c as input (also a transcript of Stage 1). Adv cannot query
its decryption oracle on c .
Adv outputs a bit b′.

Adv wins the game if b = b′. The PKC is IND-CCA2 secure if for all poly
time adversaries and all polynimials p

Prob(Adv wins) < 1/2 + 1/p(k)

for sufficiently large k .

Simon R. Blackburn (RHUL) Searching for a Secure PKC 9 / 21



Defining the Security of a PKC

The minimum security level (for the theoretical cryptographer) is called
IND-CCA2. Define a two stage game, with a CCA2 adversary.

Stage 1: Use KeyGen to generate (pk, sk).
Adv receives pk as input, and outputs two messages m0 and m1.

Stage 2: Let b ∈ {0, 1} be random. Set c = Encpk(mb).
Adv receives c as input (also a transcript of Stage 1). Adv cannot query
its decryption oracle on c .
Adv outputs a bit b′.

Adv wins the game if b = b′. The PKC is IND-CCA2 secure if for all poly
time adversaries and all polynimials p

Prob(Adv wins) < 1/2 + 1/p(k)

for sufficiently large k .

Simon R. Blackburn (RHUL) Searching for a Secure PKC 9 / 21



Textbook RSA is not IND-CCA2 secure

Enc must be randomised in an IND-CCA2 secure system.

The decryption oracle needs to give no useful information to Adv.
In particular:

I Submitting modified challenge ciphertexts is no good to Adv.
I Submitting random ciphertexts gives no useful information.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 10 / 21



Textbook RSA is not IND-CCA2 secure

Enc must be randomised in an IND-CCA2 secure system.

The decryption oracle needs to give no useful information to Adv.
In particular:

I Submitting modified challenge ciphertexts is no good to Adv.
I Submitting random ciphertexts gives no useful information.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 10 / 21



Textbook RSA is not IND-CCA2 secure

Enc must be randomised in an IND-CCA2 secure system.

The decryption oracle needs to give no useful information to Adv.
In particular:

I Submitting modified challenge ciphertexts is no good to Adv.

I Submitting random ciphertexts gives no useful information.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 10 / 21



Textbook RSA is not IND-CCA2 secure

Enc must be randomised in an IND-CCA2 secure system.

The decryption oracle needs to give no useful information to Adv.
In particular:

I Submitting modified challenge ciphertexts is no good to Adv.
I Submitting random ciphertexts gives no useful information.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 10 / 21



RSA can be made secure

Optimal asymmetric encryption padding (OAEP): a randomised padding
scheme due to Bellare and Rogaway.

Adds randomness;

Destroys algebraic relationships between messages;

Checks padded messages are correctly constructed.

RSA-OAEP is IND-CCA2 secure in the random oracle model,
provided taking eth roots modulo n is hard.

Similar padding schemes exist for discrete log schemes.

Generic methods (Fujisaki–Okamoto) exist too.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 11 / 21



RSA can be made secure

Optimal asymmetric encryption padding (OAEP): a randomised padding
scheme due to Bellare and Rogaway.

Adds randomness;

Destroys algebraic relationships between messages;

Checks padded messages are correctly constructed.

RSA-OAEP is IND-CCA2 secure in the random oracle model,
provided taking eth roots modulo n is hard.

Similar padding schemes exist for discrete log schemes.

Generic methods (Fujisaki–Okamoto) exist too.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 11 / 21



RSA can be made secure

Optimal asymmetric encryption padding (OAEP): a randomised padding
scheme due to Bellare and Rogaway.

Adds randomness;

Destroys algebraic relationships between messages;

Checks padded messages are correctly constructed.

RSA-OAEP is IND-CCA2 secure in the random oracle model,
provided taking eth roots modulo n is hard.

Similar padding schemes exist for discrete log schemes.

Generic methods (Fujisaki–Okamoto) exist too.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 11 / 21



RSA can be made secure

Optimal asymmetric encryption padding (OAEP): a randomised padding
scheme due to Bellare and Rogaway.

Adds randomness;

Destroys algebraic relationships between messages;

Checks padded messages are correctly constructed.

RSA-OAEP is IND-CCA2 secure in the random oracle model,
provided taking eth roots modulo n is hard.

Similar padding schemes exist for discrete log schemes.

Generic methods (Fujisaki–Okamoto) exist too.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 11 / 21



OAEP
... is defined as follows (G , H are hash functions):

Attribution for diagram: Ozga at en.wikipedia

Simon R. Blackburn (RHUL) Searching for a Secure PKC 12 / 21



Some Lessons

Cryptographers are ultimately concerned with creating and
understanding practical systems.

The representation counts: think like a computer.

Security is subtle. Cryptographers have thought hard about security
for 35 years.

So it’s hard to say something new and interesting about security.

Inventing new primitives (such as one-way functions) that
cryptographers know how to build into cryptographic systems will go
down well.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 13 / 21



Some Lessons

Cryptographers are ultimately concerned with creating and
understanding practical systems.

The representation counts: think like a computer.

Security is subtle. Cryptographers have thought hard about security
for 35 years.

So it’s hard to say something new and interesting about security.

Inventing new primitives (such as one-way functions) that
cryptographers know how to build into cryptographic systems will go
down well.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 13 / 21



Some Lessons

Cryptographers are ultimately concerned with creating and
understanding practical systems.

The representation counts: think like a computer.

Security is subtle. Cryptographers have thought hard about security
for 35 years.

So it’s hard to say something new and interesting about security.

Inventing new primitives (such as one-way functions) that
cryptographers know how to build into cryptographic systems will go
down well.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 13 / 21



What do cryptographers want from mathematicians?

Cryptographers are interested in:

Trapdoor one-way permutations. (RSA, for example.)

Sets of commuting transformations that are hard to invert, but
commute with each other. (Exponentiation in a finite field, for
example.)

Any (computationally) hard problem that becomes easy (for a
computer) with some side information.

Good example

Cryptographers love braid groups!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 14 / 21



What do cryptographers want from mathematicians?

Cryptographers are interested in:

Trapdoor one-way permutations. (RSA, for example.)

Sets of commuting transformations that are hard to invert, but
commute with each other. (Exponentiation in a finite field, for
example.)

Any (computationally) hard problem that becomes easy (for a
computer) with some side information.

Good example

Cryptographers love braid groups!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 14 / 21



What do cryptographers want from mathematicians?

Cryptographers are interested in:

Trapdoor one-way permutations. (RSA, for example.)

Sets of commuting transformations that are hard to invert, but
commute with each other. (Exponentiation in a finite field, for
example.)

Any (computationally) hard problem that becomes easy (for a
computer) with some side information.

Good example

Cryptographers love braid groups!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 14 / 21



What do cryptographers want from mathematicians?

Cryptographers are interested in:

Trapdoor one-way permutations. (RSA, for example.)

Sets of commuting transformations that are hard to invert, but
commute with each other. (Exponentiation in a finite field, for
example.)

Any (computationally) hard problem that becomes easy (for a
computer) with some side information.

Good example

Cryptographers love braid groups!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 14 / 21



What do cryptographers want from mathematicians?

Cryptographers are interested in:

Trapdoor one-way permutations. (RSA, for example.)

Sets of commuting transformations that are hard to invert, but
commute with each other. (Exponentiation in a finite field, for
example.)

Any (computationally) hard problem that becomes easy (for a
computer) with some side information.

Good example

Cryptographers love braid groups!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 14 / 21



The Osin–Shpilrain scheme

The Osin–Shpilrain scheme, introduced to ‘explore how non-recursiveness
of a decision problem [...] can be used in public key cryptography’.

Alice publishes presentations for two groups

Γ1 = 〈X1 | R1〉,
Γ2 = 〈X2 | R2〉.

One Γi is trivial, the other is infinite with a word problem that (only) Alice
can solve.
To transmit a bit 0: Bob transmits (w1,w2), where w1 is a random word,
and w2 is a random relation for Γ2.
To transmit a bit 1: Bob transmits (w1,w2), where w2 is a random word,
and w1 is a random relation for Γ1.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 15 / 21



The Osin–Shpilrain scheme

The Osin–Shpilrain scheme, introduced to ‘explore how non-recursiveness
of a decision problem [...] can be used in public key cryptography’.

Alice publishes presentations for two groups

Γ1 = 〈X1 | R1〉,
Γ2 = 〈X2 | R2〉.

One Γi is trivial, the other is infinite with a word problem that (only) Alice
can solve.

To transmit a bit 0: Bob transmits (w1,w2), where w1 is a random word,
and w2 is a random relation for Γ2.
To transmit a bit 1: Bob transmits (w1,w2), where w2 is a random word,
and w1 is a random relation for Γ1.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 15 / 21



The Osin–Shpilrain scheme

The Osin–Shpilrain scheme, introduced to ‘explore how non-recursiveness
of a decision problem [...] can be used in public key cryptography’.

Alice publishes presentations for two groups

Γ1 = 〈X1 | R1〉,
Γ2 = 〈X2 | R2〉.

One Γi is trivial, the other is infinite with a word problem that (only) Alice
can solve.
To transmit a bit 0: Bob transmits (w1,w2), where w1 is a random word,
and w2 is a random relation for Γ2.

To transmit a bit 1: Bob transmits (w1,w2), where w2 is a random word,
and w1 is a random relation for Γ1.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 15 / 21



The Osin–Shpilrain scheme

The Osin–Shpilrain scheme, introduced to ‘explore how non-recursiveness
of a decision problem [...] can be used in public key cryptography’.

Alice publishes presentations for two groups

Γ1 = 〈X1 | R1〉,
Γ2 = 〈X2 | R2〉.

One Γi is trivial, the other is infinite with a word problem that (only) Alice
can solve.
To transmit a bit 0: Bob transmits (w1,w2), where w1 is a random word,
and w2 is a random relation for Γ2.
To transmit a bit 1: Bob transmits (w1,w2), where w2 is a random word,
and w1 is a random relation for Γ1.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 15 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.

Alice assumes an word that is equal to the identity in the group was
generated that way.
Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.
Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.
Alice assumes an word that is equal to the identity in the group was
generated that way.

Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.
Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.
Alice assumes an word that is equal to the identity in the group was
generated that way.
Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.
Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.
Alice assumes an word that is equal to the identity in the group was
generated that way.
Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.

Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.
Alice assumes an word that is equal to the identity in the group was
generated that way.
Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.
Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.
Alice assumes an word that is equal to the identity in the group was
generated that way.
Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.
Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



Is it a cryptosystem?
To decrypt: Alice discards the group that is trivial, and determines
whether or not the remaining word is the identity in the group.
Alice assumes an word that is equal to the identity in the group was
generated that way.
Alice decrypts with overwhelming probability.

Comment

Not a cryptosystem! KeyGen not specified.
Not obvious how to specify KeyGen. Also, Enc not specified precisely.

There is a nice idea to make KeyGen work:

choose a random presentation (has solvable word problem by small
cancellation);

add generators to reduce the length of relators (so small cancellation
theory no longer applies).

Let’s ignore the issue of making this precise.
Simon R. Blackburn (RHUL) Searching for a Secure PKC 16 / 21



What is the security model?

Comment

Not a practical cryptosystem (as the authors admit).

It is motivated by a non-standard security model:

We assume the adversary is unbounded.

We assume the adversary does not know KeyGen.

Comment

Dangerous to create an unmotivated security model.
Shannon’s Maxim is violated here.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 17 / 21



What is the security model?

Comment

Not a practical cryptosystem (as the authors admit).

It is motivated by a non-standard security model:

We assume the adversary is unbounded.

We assume the adversary does not know KeyGen.

Comment

Dangerous to create an unmotivated security model.
Shannon’s Maxim is violated here.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 17 / 21



What is the security model?

Comment

Not a practical cryptosystem (as the authors admit).

It is motivated by a non-standard security model:

We assume the adversary is unbounded.

We assume the adversary does not know KeyGen.

Comment

Dangerous to create an unmotivated security model.
Shannon’s Maxim is violated here.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 17 / 21



What is the security model?

Comment

Not a practical cryptosystem (as the authors admit).

It is motivated by a non-standard security model:

We assume the adversary is unbounded.

We assume the adversary does not know KeyGen.

Comment

Dangerous to create an unmotivated security model.
Shannon’s Maxim is violated here.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 17 / 21



What is the security model?

Comment

Not a practical cryptosystem (as the authors admit).

It is motivated by a non-standard security model:

We assume the adversary is unbounded.

We assume the adversary does not know KeyGen.

Comment

Dangerous to create an unmotivated security model.

Shannon’s Maxim is violated here.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 17 / 21



What is the security model?

Comment

Not a practical cryptosystem (as the authors admit).

It is motivated by a non-standard security model:

We assume the adversary is unbounded.

We assume the adversary does not know KeyGen.

Comment

Dangerous to create an unmotivated security model.
Shannon’s Maxim is violated here.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 17 / 21



What is the security model?

Another assumption

Osin and Shpilrain assume that the adversary cannot use the public key to
determine which group Γi is trivial.

Note that the problem of finding which group is trivial is decidable
(given the public key). So this assumption is a significant restriction.

But how can this be made rigorous? (Is computing an equivalent
problem OK?)

We could say that the adversary is not given the public key: but isn’t
this a symmetric key security model? (Then why not use the one-time
pad?)

Maybe the adversary is just given an encryption oracle. A highly
non-standard assumption for a public key system!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 18 / 21



What is the security model?

Another assumption

Osin and Shpilrain assume that the adversary cannot use the public key to
determine which group Γi is trivial.

Note that the problem of finding which group is trivial is decidable
(given the public key). So this assumption is a significant restriction.

But how can this be made rigorous? (Is computing an equivalent
problem OK?)

We could say that the adversary is not given the public key: but isn’t
this a symmetric key security model? (Then why not use the one-time
pad?)

Maybe the adversary is just given an encryption oracle. A highly
non-standard assumption for a public key system!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 18 / 21



What is the security model?

Another assumption

Osin and Shpilrain assume that the adversary cannot use the public key to
determine which group Γi is trivial.

Note that the problem of finding which group is trivial is decidable
(given the public key). So this assumption is a significant restriction.

But how can this be made rigorous? (Is computing an equivalent
problem OK?)

We could say that the adversary is not given the public key: but isn’t
this a symmetric key security model? (Then why not use the one-time
pad?)

Maybe the adversary is just given an encryption oracle. A highly
non-standard assumption for a public key system!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 18 / 21



What is the security model?

Another assumption

Osin and Shpilrain assume that the adversary cannot use the public key to
determine which group Γi is trivial.

Note that the problem of finding which group is trivial is decidable
(given the public key). So this assumption is a significant restriction.

But how can this be made rigorous? (Is computing an equivalent
problem OK?)

We could say that the adversary is not given the public key: but isn’t
this a symmetric key security model? (Then why not use the one-time
pad?)

Maybe the adversary is just given an encryption oracle. A highly
non-standard assumption for a public key system!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 18 / 21



What is the security model?

Another assumption

Osin and Shpilrain assume that the adversary cannot use the public key to
determine which group Γi is trivial.

Note that the problem of finding which group is trivial is decidable
(given the public key). So this assumption is a significant restriction.

But how can this be made rigorous? (Is computing an equivalent
problem OK?)

We could say that the adversary is not given the public key: but isn’t
this a symmetric key security model? (Then why not use the one-time
pad?)

Maybe the adversary is just given an encryption oracle. A highly
non-standard assumption for a public key system!

Simon R. Blackburn (RHUL) Searching for a Secure PKC 18 / 21



The perils of not thinking like a computer

Osin and Shpilrain claim that an unbounded adversary cannot decrypt
with probability better than 3/4.

Their argument: With probability 1/2, Bob has sent two identity elements
to Alice. Since Eve does not know which group is trivial, Eve gets no
information in this case, so can only guess.

Why this does not convince: Eve does not want to solve this problem! She
is given words (w1,w2) and needs to answer the following question:

Which wi is (most likely to have been) a relation of Γi generated by Bob?

This can be solved by simulating Bob’s encryption algorithm.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 19 / 21



The perils of not thinking like a computer

Osin and Shpilrain claim that an unbounded adversary cannot decrypt
with probability better than 3/4.

Their argument: With probability 1/2, Bob has sent two identity elements
to Alice. Since Eve does not know which group is trivial, Eve gets no
information in this case, so can only guess.

Why this does not convince: Eve does not want to solve this problem! She
is given words (w1,w2) and needs to answer the following question:

Which wi is (most likely to have been) a relation of Γi generated by Bob?

This can be solved by simulating Bob’s encryption algorithm.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 19 / 21



The perils of not thinking like a computer

Osin and Shpilrain claim that an unbounded adversary cannot decrypt
with probability better than 3/4.

Their argument: With probability 1/2, Bob has sent two identity elements
to Alice. Since Eve does not know which group is trivial, Eve gets no
information in this case, so can only guess.

Why this does not convince: Eve does not want to solve this problem! She
is given words (w1,w2) and needs to answer the following question:

Which wi is (most likely to have been) a relation of Γi generated by Bob?

This can be solved by simulating Bob’s encryption algorithm.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 19 / 21



The perils of not thinking like a computer

Osin and Shpilrain claim that an unbounded adversary cannot decrypt
with probability better than 3/4.

Their argument: With probability 1/2, Bob has sent two identity elements
to Alice. Since Eve does not know which group is trivial, Eve gets no
information in this case, so can only guess.

Why this does not convince: Eve does not want to solve this problem! She
is given words (w1,w2) and needs to answer the following question:

Which wi is (most likely to have been) a relation of Γi generated by Bob?

This can be solved by simulating Bob’s encryption algorithm.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 19 / 21



The perils of not thinking like a computer

Osin and Shpilrain claim that an unbounded adversary cannot decrypt
with probability better than 3/4.

Their argument: With probability 1/2, Bob has sent two identity elements
to Alice. Since Eve does not know which group is trivial, Eve gets no
information in this case, so can only guess.

Why this does not convince: Eve does not want to solve this problem! She
is given words (w1,w2) and needs to answer the following question:

Which wi is (most likely to have been) a relation of Γi generated by Bob?

This can be solved by simulating Bob’s encryption algorithm.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 19 / 21



A summary of Osin–Shpilrain

We have not ‘broken’ the Osin–Shpilrain cryptosystem.

Not possible until it is reasonably well specified: a (very) common
problem with group-based cryptosystems.

We have criticised the security model. The model doesn’t seem to say
much about what a cryptographer means by security.
Non-standard security models are a (fairly) common problem with
group-based cryptosystems.

Motivation is problematic. Where is the link to an undecidable
problem, as promised?

For the above reasons, mainstream cryptographers are not likely to
think this cryptosystem is important.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 20 / 21



A summary of Osin–Shpilrain

We have not ‘broken’ the Osin–Shpilrain cryptosystem.
Not possible until it is reasonably well specified: a (very) common
problem with group-based cryptosystems.

We have criticised the security model. The model doesn’t seem to say
much about what a cryptographer means by security.
Non-standard security models are a (fairly) common problem with
group-based cryptosystems.

Motivation is problematic. Where is the link to an undecidable
problem, as promised?

For the above reasons, mainstream cryptographers are not likely to
think this cryptosystem is important.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 20 / 21



A summary of Osin–Shpilrain

We have not ‘broken’ the Osin–Shpilrain cryptosystem.
Not possible until it is reasonably well specified: a (very) common
problem with group-based cryptosystems.

We have criticised the security model. The model doesn’t seem to say
much about what a cryptographer means by security.

Non-standard security models are a (fairly) common problem with
group-based cryptosystems.

Motivation is problematic. Where is the link to an undecidable
problem, as promised?

For the above reasons, mainstream cryptographers are not likely to
think this cryptosystem is important.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 20 / 21



A summary of Osin–Shpilrain

We have not ‘broken’ the Osin–Shpilrain cryptosystem.
Not possible until it is reasonably well specified: a (very) common
problem with group-based cryptosystems.

We have criticised the security model. The model doesn’t seem to say
much about what a cryptographer means by security.
Non-standard security models are a (fairly) common problem with
group-based cryptosystems.

Motivation is problematic. Where is the link to an undecidable
problem, as promised?

For the above reasons, mainstream cryptographers are not likely to
think this cryptosystem is important.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 20 / 21



A summary of Osin–Shpilrain

We have not ‘broken’ the Osin–Shpilrain cryptosystem.
Not possible until it is reasonably well specified: a (very) common
problem with group-based cryptosystems.

We have criticised the security model. The model doesn’t seem to say
much about what a cryptographer means by security.
Non-standard security models are a (fairly) common problem with
group-based cryptosystems.

Motivation is problematic. Where is the link to an undecidable
problem, as promised?

For the above reasons, mainstream cryptographers are not likely to
think this cryptosystem is important.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 20 / 21



A summary of Osin–Shpilrain

We have not ‘broken’ the Osin–Shpilrain cryptosystem.
Not possible until it is reasonably well specified: a (very) common
problem with group-based cryptosystems.

We have criticised the security model. The model doesn’t seem to say
much about what a cryptographer means by security.
Non-standard security models are a (fairly) common problem with
group-based cryptosystems.

Motivation is problematic. Where is the link to an undecidable
problem, as promised?

For the above reasons, mainstream cryptographers are not likely to
think this cryptosystem is important.

Simon R. Blackburn (RHUL) Searching for a Secure PKC 20 / 21



Some Links

This talk will appear soon on my home page:

http://www.ma.rhul.ac.uk/sblackburn

S.R. Blackburn, C. Cid and C. Mullan, ’Group theory in cryptography’,
Groups St Andrews 2009 in Bath, Volume 1 (CUP, 2011) 133-149.

http://arxiv.org/abs/0906.5545

N. Smart, ‘Cryptography, an Introduction’, 3rd edition.

http://www.cs.bris.ac.uk/~nigel/

Simon R. Blackburn (RHUL) Searching for a Secure PKC 21 / 21

http://www.ma.rhul.ac.uk/sblackburn
http://arxiv.org/abs/0906.5545
http://www.cs.bris.ac.uk/~nigel/

	Attacks on Textbook RSA
	Formalising security
	Some lessons
	A critique of a group-based PKC

