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Code Equivalence (CE)

* Code Equivalence [Petrank and Roth, 1997]
— Given the generator matrices of two linear codes C and C’
— Decide if Cis equivalent to C’ up to a permutation of the

codeword coordinates
A search variant of CE:

— Find a permutation between two given equivalent codes

 Hardness [Petrank and Roth, 1997]

— Code Equivalence is unlikely NP-complete,
— but at least as hard as Graph Isomorphism

* There’s an efficient reduction from Graph Isomorphism to CE



CE and Code-based Cryptosystems

Secret code C q-ary |n, k]-code q-ary |[n,n — lk]-code

M: k X n generator | M: k X n parity check

matrix of C matrix over qu of C
Secret key : ) :
S: k X k invertible matrix over Fq
P:n X n permutation matrix
Public key M = SMP

* If the secret code is known to the adversary

— recover secret key S and P = solve CE for the secret code
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CE and Code-based Cryptosystems

* The secret code can be known to the adversary

— if the space of all codes of the same parameters (g, n, k)
and same family as the secret code is small.

* Example: Reed-Muller codes (g=2)

— used in the Sildelnikov cryptosystem [Sidelnikov, 1994]

— there’s a single Reed-Muller code of given length and
dimension.

 Example: special binary Goppa codes

— those generated by polynomials of binary coefficients
— can exhaustively search [Loidreau and Sendrier, 2001]



Best Known Algorithm for CE

e Support Splitting Algorithm [Sendrier, 1999]
— Classical, deterministic

— Efficient for binary codes with small hull dimension,
including binary Goppa codes.

— Likely to be efficient for non-binary codes with small hull
dimension

— Inefficient for other codes, such as Reed-Muller codes.



Can Quantum Algorithms Do Better?

 The most popular paradigm of quantum algorithms
— generalize Shor’s algorithms
— reply on quantum Fourier transform
— solve the class of hidden subgroup problems (HSP).

— Nearly all known quantum algorithms that provide
exponential speedup are designed in this paradigm.

* There’s a natural reduction from CE to HSP
— So, can CE be solved efficiently by Shor-like algorithms?
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Hidden Subgroup Problem (HSP)

 HSP over a finite group G:

— Input: a black-box function f on G that separates the left
(or right) cosets of an unknown subgroup H < G, i.e.,

f(x) = f(y) ift xH = yH
— Qutput: a generating set for H.

* Well-known interesting cases
— HSP over cyclic groups Z,, —> factorization
— HSP over Z, x Z, —> discrete logarithm
— HSP over symmetric groups S,, -2 Graph Isomorphism
— HSP over dihedral groups D, = unique-Shortest-vector



* To solve the HSP over ¢ with hidden subgroup H

Shor-like Algorithms

Quantum Fourier Sampling (QFS) over G using
back box f that separates cosets of H

l

[

a probability distribution, denoted QFS.(H)

/

!

Classically recover H using information from the
distribution QFS.(H)




Quantum Fourier Sampling (QFS)

Uniform superposition over G

Apply quantum black box for f l

uniform superposition
over the coset gH

random coset state | g/}

Quantum Fourier transform
over G

/ distribution /
weak
N Measure / onp

Z[p(gH )| 2 s)

AN

Strw diztr:i(li)uti.;)n
s J

[ block matrix corresponding to } QFS.(H)

irreducible representation p
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Efficiency of Shor-like Algorithms

* QFS is efficient for HSP over abelian groups.

 Some nonabelian HSPs may be efficiently solvable

— They have efficient quantum Fourier transforms.
— Subexponential time for dihedral HSP [Kuperberg, 2003]

* Strong QFS doesn’t work for S, if |H| = 2
— it can’t distinguish among conjugates of H and the trivial one
— i.e.,, QFS.(gHg™1) is close to QFS,({1}), for most g € G.
— [Moore, Russell, Schulman, 2008].
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Reduce CE to HSP

Search variant of Code Equivalence

!

Scrambler-Permutation Problem

!

Hidden Shift Problem

!

Hidden Subgroup Problem
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CE to Scrambler-Permutation

e Scrambler-Permutation Problem

> Input: k X n matrices M and M’ over a field F,: oF, such
that M' = SMP for some (S, P)eGL,(F,) X S,
» Output: (S, P)

e Special case: attacking McEliece systems
>l=1 (Fql =F,;)

> M is a generator matrix of a g-ary |n, k]-code.

e Special case: attacking Neiderreiter systems

» M is parity check matrix of a g-ary [n,n — lk]-code.



Scrambler-Permutation to Hidden Shift

* Hidden Shift Problem over a finite group G:
» Input: two functions f, f,on G s.t. 3seG satisfying

fi(sg) = f,(g)forallged
» Output: a hidden shift s

Input: M and M" = SMP. Output: (S, P)eGL,(F,) X S,
v

Hidden Shift Problem over GL,(F)xS;

> Input: f,(X,Y) = X"IMY and f,(X,Y) = X"1M'Y

> Output: a hidden shift (S~1, P)




Hidden Shift to Hidden Subgroup

Hidden Shift Problem over a finite group G:
» Input: two functions f, f,on G s.t. 3se( satisfying

fi1(sg) = f,(g)forallged
» Output: a hidden shift s

!

HSP over wreath product G! Z, (semidirect product of G? and Z,)
» Input: function f defined as:

f((gpgz)r O) = (fl(gl)»fz(gz))
f((9192),1) = (f2(92), f1(g1))




Hidden Shift to Hidden Subgroup

Hidden Shift Problem over a finite group G:
» Input: two functions f, f,on G s.t. 3se( satisfying

fi1(sg) = f,(g)forallged
» Output: a hidden shift s

HSP over wreath product G! Z, (semidirect product of G? and Z,)

> Output: subgroup H = ((Hy, s 1Hys),0) U ((Hys, s 1Hy), 1)
where

Hy = {g € G|f1(g) = fl(l)} <G (fl must separate}
H,s = The set of all hidden shifts \\r'ght cosets of Hy




Scrambler-Permutation to HSP

Scrambler-Permutation Problem
> Input: M and M" = SMP for some (S, P)eGL,(F,) X S,
» Output: (S, P)

HSP over the wreath product (GL,(F,) X S )t Z,

> hidden subgroup: H = ((Hy, s 1Hys),0) U ((Hys, s 1Hy), 1)
where
Ho ={(S,P)|S"'MP = M} < GL,(F,) X S,
s=(5"1,pP)

Can this HSP be solved efficiently by strong QFS?
Can QFS distinguish conjugates gHg~! and {1}?
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Our Results

 We show that in many cases of interest,

— QFS.(gHg™1) is exponentially close to QFS.({1}), for most
g € G.

— In such a case, H is called indistinguishable by strong QFS.
* ApplytoG =S, with |[H| = 2
* Apply to the CE for many codes, including

— Goppa codes, generalized Reed-Solomon codes
[Dinh, Moore, Russell, CRYPTO 2011]

— Reed-Muller codes
[Dinh, Moore, Russell, Preprint 2011, arXiv:1111.4382]



http://arxiv.org/abs/1111.4382

Hidden Symmetries

e Recall: the hidden subgroup reduced from matrix M is
determined by the subgroup
Hy ={(S,P)|S™IMP = M} < GLk(Fq) XS,

* Projection of Hy onto S, is the automorphism group
Aut(M) :={P € 5,,|3S € GLk(Fq),SMP = M}

— Each P € Aut(M) has the same number N of preimages
S € GL,(F,) in this projection.

— Fact: Let r be the column rank of M. Then N < gtk(k=7),

— Hence, |Hy| < |Aut(M)] gtk



General Results for CE

* Theorem [Dinh, Moore, Russell, CRYPTO 2011]:
— Assume k? < 0.2nlog, n.

— The hidden subgroup reduced from matrix M is
indistinguishable by strong QFS if

1) |Aut(M)]| < e°™
2) The minimal degree of Aut(M) is = Q(n).
3) The columnrankof of M is > k — o(y/n)/l.

The minimal degree of Aut(M) is the minimal number of
points moved by a non-identity permutation in Aut(M).




HSP-hard Codes

 What codes make CE hard for Shor-like algorithms?

— A linear code is called HSP-hard if it has a generator matrix or
parity check matrix M s.t. the hidden subgroup reduced from
M is indistinguishable by strong QFS.
* Observe: If M is a generator matrix of a code C

— Then Aut(M) = Aut(C), and M has full rank.
* Corollary: Let C be a g-ary |n, k]-code such that
k* < 0.2nlog, n. Then C is HSP-hard if
1) |Aut(C)| < e°™
2) The minimal degree of Aut(C) is = Q(n).




Reed-Muller Codes are HSP-hard

* Reed-Muller code RM(r, m)
— {(f(al): if(an))lf € l:“2 [Xl' . "Xm]» deg(f) = T};

where (a4, ..., @,,) is a fixed ordered list of all vectors in F,™

m
— has lengthn = 2™ and dimension k = }5_, (j )

— Ifr < 0.1m, thenk < r( M < p047m ,and k2 < 0.2nm

O.lm)
for sufficiently large m.

* Theorem: Reed-Muller codes RM(r, m) withr < 0.1m
and m sufficiently large are HSP-hard.




Automorphism Group of
Reed-Muller Codes

* Fact:
Aut(RM(r, m)) = general affine group of space F,™
= {o4p: F,™ > F,™, 0,4 ,(x) = Ax + b|A € GL,,,(F,), b € F,™}
* Propositions:

1. |Aut(RM(r, m))l = |GL,,,(F,)| % IF,™| < 2m2+m

< 20(log?n) < e wheren = 2m

2. The minimal degree of Aut(RM(r, m)) is exactly 2™m~1,



Automorphism Group of
Reed-Muller Codes

2a. The minimal degree of Aut(RM(r, m)) is < 2™~ 1,
Recall: min deg. of Aut(C):= min{supp(m)|m € Aut(C), w # Id},
where supp(m) = #{i: (i) # i}.
Proof:
— An affine transformation gy o: F,”™ — F,™ with support 2™~*

1 1
aAo(x)zAx=< 1. )x
) 11

— This gy ¢ fixes all vectors x € F,”™ with x,, = 0.

— There are 2™ — 2™~ = 2™~1 yectors not fixed by a4 ¢



Automorphism Group of
Reed-Muller Codes

2b. The minimal degree of Aut(RM(r,m)) is > 2™M~1,

— Claim 1: If o4, fixes a set S that spans F,™, then g4, = 1d.

— Claim 2: Any set S cF,™ with size > 2™~ ! spans F,™.

—>No none-identity affine transformation can fix >2™~1 vectors.



Automorphism Group of
Reed-Muller Codes

2b. The minimal degree of Aut(RM(r,m)) is > 2™M~1,

— Claim 1: If o4, fixes a set S that spans F,™, then g4, = 1d.

Proof: Lets € Sand S’ = S — 5. Then S’ also spans F,™, and A
fixes §’, in which case A = 1. Then b = 0. Note 04 o = Id.

— Claim 2: Any set S cF,™ with size > 2™~ ! spans F,™.

—>No none-identity affine transformation can fix >2™~1 vectors.



Automorphism Group of
Reed-Muller Codes

2b. The minimal degree of Aut(RM(r,m)) is > 2™M~1,

— Claim 1: If o4, fixes a set S that spans F,™, then g4, = 1d.

Proof: Lets € Sand S’ = S — 5. Then S’ also spans F,™, and A
fixes §’, in which case A = 1. Then b = 0. Note 04 o = Id.

— Claim 2: Any set S cF,™ with size > 2™~ ! spans F,™.

Proof: Let BCS be a maximal set that consists of linearly
independent vectors. Since B spans S, 2!Bl > |S| > 2™~1 Then
|B| = m. So B, and therefore S, spans F,™.

—>No none-identity affine transformation can fix >2™~1 vectors.



Open Question and Notes

 Are there other HSP-hard codes that are of
cryptographic interest?

* Cautionary notes

— Shor-like algorithms are unlikely to help break code-based
cryptosystems using HSP-hard codes.

— But we have not shown that other quantum algorithms, or
even classical ones, cannot break code-based cryptosystems.

— Nor have we shown that such an algorithm would violate a
natural hardness assumption (such as lattice-based
cryptosystems and Learning With Errors).



