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Code Equivalence (CE) 

• Code Equivalence [Petrank and Roth, 1997] 

– Given the generator matrices of two linear codes C and C’ 

– Decide if C is equivalent to C’ up to a permutation of the 
codeword coordinates 

• A search variant of CE: 

– Find a permutation between two given equivalent codes 

• Hardness [Petrank and Roth, 1997] 

– Code Equivalence is unlikely NP-complete, 

– but at least as hard as Graph Isomorphism  
• There’s an efficient reduction from Graph Isomorphism to CE 
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CE and Code-based Cryptosystems 

• If the secret code is known to the adversary 

– recover secret key 𝑆 and 𝑃  solve CE for the secret code  
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McELiece systems Neiderreiter systems 

Secret code 𝐶  𝑞-ary [𝑛, 𝑘]-code  𝑞-ary [𝑛, 𝑛 − 𝑙𝑘]-code 

Secret key 

𝑀: 𝑘 × 𝑛 generator 
matrix  of 𝐶  

𝑀: 𝑘 × 𝑛 parity check 
matrix  over 𝐅𝑞𝑙  of 𝐶  

𝑆: 𝑘 × 𝑘 invertible matrix  over 𝐅𝑞 

𝑃: 𝑛 × 𝑛 permutation matrix 

Public key 𝑀’ = 𝑆𝑀𝑃 



CE and Code-based Cryptosystems 

• The secret code can be known to the adversary 

– if the space of all codes of the same parameters (𝑞, 𝑛, 𝑘) 
and same family as the secret code is small. 

• Example: Reed-Muller codes (𝑞=2)  

– used in the Sildelnikov cryptosystem [Sidelnikov, 1994] 

– there’s a single Reed-Muller code of given length and 
dimension. 

• Example: special binary Goppa codes  

– those generated by polynomials of binary coefficients 

– can exhaustively search [Loidreau and Sendrier, 2001]  
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Best Known Algorithm for CE 

• Support Splitting Algorithm [Sendrier, 1999] 

– Classical, deterministic 

– Efficient for binary codes with small hull dimension, 
including binary Goppa codes. 

– Likely to be efficient for non-binary codes with small hull 
dimension 

– Inefficient for other codes, such as Reed-Muller codes. 
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Can Quantum Algorithms Do Better? 

• The most popular paradigm of quantum algorithms  

– generalize Shor’s algorithms 

– reply on quantum Fourier transform 

– solve the class of hidden subgroup problems (HSP). 

– Nearly all known quantum algorithms that provide 
exponential speedup are designed in this paradigm. 

 

• There’s a natural reduction from CE to HSP  

– So, can CE be solved efficiently by Shor-like algorithms? 
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Hidden Subgroup Problem (HSP) 

• HSP over a finite group 𝐺: 
– Input: a black-box function 𝑓 on 𝐺 that separates the left 

(or right) cosets of an unknown subgroup 𝐻 < 𝐺, i.e., 
𝑓(𝑥)  =  𝑓(𝑦)  iff  𝑥𝐻 =  𝑦𝐻 

– Output: a generating set for 𝐻. 

• Well-known interesting cases 

– HSP over cyclic groups 𝐙𝑁     factorization 

– HSP over 𝐙𝑁 × 𝐙𝑁        discrete logarithm 

– HSP over symmetric groups 𝑆𝑛     Graph Isomorphism 

– HSP over dihedral groups 𝐷𝑛     unique-Shortest-vector 
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Shor-like Algorithms 

• To solve the HSP over 𝐺 with hidden subgroup 𝐻 
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Quantum Fourier Sampling (QFS) over 𝐺 using 
back box 𝑓 that separates cosets of 𝐻 

a probability distribution, denoted QFS𝐺(𝐻) 

Classically recover 𝐻 using information from the 
distribution QFS𝐺(𝐻) 



Quantum Fourier Sampling (QFS) 

  

random coset state gH

Uniform superposition over G 



 gH 
ij
,i, j

,i, j



Apply quantum black box for f 

Quantum Fourier transform 
over G 

Measure 

distribution 
on ρ weak 

strong 

uniform superposition 
over the coset gH 

block matrix corresponding to 
irreducible representation ρ 

distribution 
on (ρ, j) 

Hang Dinh - Indiana University South Bend 13 

QFS𝐺(𝐻) 



Efficiency of Shor-like Algorithms 

• QFS is efficient for HSP over abelian groups.  

• Some nonabelian HSPs may be efficiently solvable 

– They have efficient quantum Fourier transforms.  

– Subexponential time for dihedral HSP [Kuperberg, 2003] 

• Strong QFS doesn’t work for 𝑆𝑛 if |𝐻| = 2  

– it can’t distinguish among conjugates of 𝐻 and the trivial one 

– i.e., QFS𝐺(𝑔𝐻𝑔
−1) is close to QFS𝐺({1}), for most 𝑔 ∈ 𝐺. 

– [Moore, Russell, Schulman, 2008]. 
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Reduce CE to HSP 
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Search variant of Code Equivalence 

Scrambler-Permutation Problem 

Hidden Shift Problem 

Hidden Subgroup Problem 



CE to Scrambler-Permutation 

• Scrambler-Permutation Problem 

 Input: 𝑘 × 𝑛 matrices 𝑀 and 𝑀′ over a field 𝐅𝑞𝑙  Fq such 

that 𝑀′ = 𝑆𝑀𝑃  for some (𝑆, 𝑃)GL𝑘(𝐅𝑞) × 𝑆𝑛 

Output: (𝑆, 𝑃) 

• Special case: attacking McEliece systems 

 𝑙 = 1     (𝐅𝑞𝑙 = 𝐅𝑞)  

𝑀 is a generator matrix of a 𝑞-ary [𝑛, 𝑘]-code. 

• Special case: attacking Neiderreiter systems 

𝑀 is parity check matrix of a 𝑞-ary [𝑛, 𝑛 − 𝑙𝑘]-code. 
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Scrambler-Permutation to Hidden Shift 

• Hidden Shift Problem over a finite group 𝐺: 

 Input: two functions 𝑓1, 𝑓2 on 𝐺 s.t. ∃𝑠𝐺 satisfying  

𝑓1(𝑠𝑔)  =  𝑓2(𝑔) for all 𝑔 ∈ 𝐺     

Output: a hidden shift 𝑠 
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Input: 𝑀 and 𝑀′ = 𝑆𝑀𝑃. Output: (𝑆, 𝑃)GL𝑘(𝐅𝑞) × 𝑆𝑛 

 
 Hidden Shift Problem over GLk(Fq)×Sn 

 Input:  𝑓1 𝑋, 𝑌 =  𝑋−1𝑀𝑌   and 𝑓2 𝑋, 𝑌 =  𝑋−1𝑀′𝑌  

 Output:  a hidden shift (𝑆−1, 𝑃) 
 



Hidden Shift to Hidden Subgroup 

 Hidden Shift Problem over a finite group 𝐺: 

 Input: two functions 𝑓1, 𝑓2 on 𝐺 s.t. ∃𝑠𝐺 satisfying  

𝑓1(𝑠𝑔)  =  𝑓2(𝑔) for all 𝑔 ∈ 𝐺     

Output: a hidden shift 𝑠 
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HSP over wreath product 𝐺  𝐙2(semidirect product of 𝐺2 and 𝐙2) 

 Input: function 𝑓 defined as: 

𝑓 𝑔1, 𝑔2 , 0 = 𝑓1 𝑔1 , 𝑓2 𝑔2  

                             𝑓((𝑔1, 𝑔2), 1) = (𝑓2(𝑔2), 𝑓1(𝑔1)) 
   
 

~
 



Hidden Shift to Hidden Subgroup 

 Hidden Shift Problem over a finite group 𝐺: 

 Input: two functions 𝑓1, 𝑓2 on 𝐺 s.t. ∃𝑠𝐺 satisfying  

𝑓1(𝑠𝑔)  =  𝑓2(𝑔) for all 𝑔 ∈ 𝐺     

Output: a hidden shift 𝑠 

Hang Dinh - Indiana University South Bend 20 

HSP over wreath product 𝐺  𝐙2(semidirect product of 𝐺2 and 𝐙2) 

 Output: subgroup 𝐻 = ( 𝐻0, 𝑠
−1𝐻0𝑠 , 0) ∪ ( 𝐻0𝑠, 𝑠−1𝐻0 , 1) 

     where  
  𝐻0   = 𝑔 ∈ 𝐺 𝑓1 𝑔 = 𝑓1 1 < 𝐺  
  𝐻0𝑠 = The set of all hidden shifts 
 

~
 

𝑓1 must separate 
right cosets of 𝐻0  



Scrambler-Permutation to HSP 

Scrambler-Permutation Problem 
 Input: 𝑀 and 𝑀′ = 𝑆𝑀𝑃  for some 𝑆, 𝑃 GL𝑘 𝐅𝑞 × 𝑆𝑛 

 Output: (𝑆, 𝑃) 

HSP over the wreath product  (GL𝑘 𝐅𝑞 × 𝑆𝑛)  Z2  

 hidden subgroup: 𝐻 = ( 𝐻0, 𝑠
−1𝐻0𝑠 , 0) ∪ ( 𝐻0𝑠, 𝑠−1𝐻0 , 1) 

     where  

  𝐻0   = (𝑆, 𝑃) 𝑆−1𝑀𝑃 = 𝑀 < GL𝑘(𝐅𝑞) × 𝑆𝑛 

  𝑠 = (𝑆−1, 𝑃) 

~
 

Can this HSP be solved efficiently by strong QFS? 
Can QFS distinguish conjugates 𝑔𝐻𝑔−1 and {1}? 
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Our Results 

• We show that in many cases of interest,  

– QFS𝐺(𝑔𝐻𝑔
−1) is exponentially close to QFS𝐺({1}), for most 

𝑔 ∈ 𝐺.  

– In such a case, 𝐻 is called indistinguishable by strong QFS.  

• Apply to 𝐺 = 𝑆𝑛 with |𝐻| ≥ 2 

• Apply to the CE for many codes, including 

– Goppa codes, generalized Reed-Solomon codes 
[Dinh, Moore, Russell, CRYPTO 2011] 

– Reed-Muller codes 
[Dinh, Moore, Russell, Preprint 2011 , arXiv:1111.4382] 
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Hidden Symmetries 

• Recall: the hidden subgroup reduced from matrix 𝑀 is 
determined by the subgroup 

𝐻0 = (𝑆, 𝑃) 𝑆−1𝑀𝑃 = 𝑀 < GL𝑘(𝐅𝑞) × 𝑆𝑛 

• Projection of 𝐻0 onto 𝑆𝑛 is the automorphism group 
Aut 𝑀 ≔ 𝑃 ∈ 𝑆𝑛 ∃𝑆 ∈ GL𝑘 𝐅𝑞 , 𝑆𝑀𝑃 = 𝑀  

– Each 𝑃 ∈ Aut(𝑀) has the same number 𝑁 of preimages 
𝑆 ∈ GL𝑘 𝐅𝑞  in this projection. 

– Fact: Let 𝑟 be the column rank of 𝑀. Then 𝑁 ≤ 𝑞𝑙𝑘(𝑘−𝑟). 

– Hence, 𝐻0 ≤ |Aut(𝑀)| 𝑞𝑙𝑘(𝑘−𝑟). 
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General Results for CE 

• Theorem [Dinh, Moore, Russell, CRYPTO 2011]:  
– Assume 𝑘2 ≤ 0.2𝑛 log𝑞 𝑛.  

– The hidden subgroup reduced from matrix 𝑀 is 
indistinguishable by strong QFS if 

1) |Aut 𝑀 | ≤ 𝑒𝑜(𝑛) 

2) The minimal degree of Aut(𝑀) is ≥ Ω(𝑛). 

3) The column rank of of 𝑀 is ≥ 𝑘 − 𝑜( 𝑛)/𝑙. 
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The minimal degree of Aut 𝑀  is the minimal number of 
points moved by a non-identity permutation in Aut(𝑀). 



HSP-hard Codes 

• What codes make CE hard for Shor-like algorithms? 

– A linear code is called HSP-hard if it has a generator matrix or 
parity check matrix 𝑀 s.t. the hidden subgroup reduced from 
𝑀 is indistinguishable by strong QFS. 

• Observe: If 𝑀 is a generator matrix of a code 𝐶  

– Then Aut 𝑀 = Aut 𝐶 , and 𝑀 has full rank. 

• Corollary: Let 𝐶 be a 𝑞-ary [𝑛, 𝑘]-code such that 
𝑘2 ≤ 0.2𝑛 log𝑞 𝑛. Then 𝐶 is HSP-hard if 

1) |Aut 𝐶 | ≤ 𝑒𝑜(𝑛) 

2) The minimal degree of Aut(𝐶) is ≥ Ω(𝑛). 
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Reed-Muller Codes are HSP-hard 

• Reed-Muller code RM 𝑟,𝑚  

= 𝑓 𝛼1 , … , 𝑓 𝛼𝑛 𝑓 ∈ 𝐅2 𝑋1, . . , 𝑋𝑚 , deg(𝑓) ≤ 𝑟 , 

 where 𝛼1, … , 𝛼𝑛  is a fixed ordered list of all vectors in 𝐅2
𝑚 

– has length 𝑛 = 2𝑚  and dimension 𝑘 =  
𝑚
𝑗

𝑟
𝑗=0 . 

– If 𝑟 < 0.1𝑚, then 𝑘 < 𝑟
𝑚
0.1𝑚

< 𝑟20.47𝑚 , and 𝑘2 ≤ 0.2𝑛𝑚 

for sufficiently large 𝑚. 

• Theorem: Reed-Muller codes RM 𝑟,𝑚  with 𝑟 < 0.1𝑚  
and 𝑚 sufficiently large are HSP-hard. 
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Automorphism Group of  
Reed-Muller Codes 

• Fact:  

 Aut RM 𝑟,𝑚 = general affine group of space 𝐅2
𝑚 

      = 𝜎𝐴,𝒃: 𝐅2
𝑚 → 𝐅2

𝑚, 𝜎𝐴,𝒃 𝒙 = 𝐴𝒙 + 𝒃 𝐴 ∈ GL𝑚 𝐅2 , 𝒃 ∈ 𝐅2
𝑚  

• Propositions: 

1.  Aut RM 𝑟,𝑚 =  GL𝑚 𝐅2 × 𝐅2
𝑚  ≤ 2𝑚

2+𝑚 

                                          ≤  2𝑂 log2 𝑛 ≤ 𝑒𝑜 𝑛  ,  where 𝑛 = 2𝑚  

2. The minimal degree of Aut(RM(𝑟,𝑚)) is exactly 2𝑚−1. 
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Automorphism Group of  
Reed-Muller Codes 

2a. The minimal degree of Aut(RM(𝑟,𝑚)) is ≤ 2𝑚−1. 

 Recall: min deg. of Aut 𝐶 := min supp π π ∈ Aut 𝐶 , 𝜋 ≠ Id ,  

        where  supp π ≔ #{𝑖: 𝜋(𝑖) ≠ 𝑖} . 

 Proof:   

– An affine transformation 𝜎𝐴,𝟎: 𝐅2
𝑚 → 𝐅2

𝑚 with support 2𝑚−1 

𝜎𝐴,𝟎 𝒙 = 𝐴𝒙 =
𝟏  𝟏
 ⋱  
  𝟏

𝒙 

– This 𝜎𝐴,𝟎 fixes all vectors 𝒙 ∈ 𝐅2
𝑚 with 𝑥𝑚 = 0.  

– There are 2𝑚 − 2𝑚−1 = 2𝑚−1 vectors not fixed by 𝜎𝐴,𝟎 
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Automorphism Group of  
Reed-Muller Codes 

2b. The minimal degree of 𝐴𝑢𝑡(RM(𝑟,𝑚)) is ≥ 2𝑚−1. 

– Claim 1: If 𝜎𝐴,𝒃 fixes a set 𝑆 that spans 𝐅2
𝑚, then 𝜎𝐴,𝒃 = Id. 

Proof: Let 𝒔 ∈ 𝑆 and 𝑆′ = 𝑆 − 𝒔. Then 𝑆’ also spans 𝐅2
𝑚, and 𝐴 

fixes 𝑆’, in which case 𝐴 = 𝟏. Then 𝒃 = 𝟎. Note 𝜎𝟏,𝟎 = Id. 

– Claim 2: Any set 𝑆 𝐅2
𝑚 with size > 2𝑚−1 spans 𝐅2

𝑚. 

Proof: Let 𝐵𝑆 be a maximal set that consists of linearly 

independent vectors. Since 𝐵 spans 𝑆,  2|𝐵| ≥ 𝑆 > 2𝑚−1. Then 
𝐵 = 𝑚.  So 𝐵, and therefore 𝑆, spans 𝐅2

𝑚. 

No none-identity affine transformation can fix >2𝑚−1 vectors. 
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Open Question and Notes 

• Are there other HSP-hard codes that are of 
cryptographic interest? 

• Cautionary notes 

– Shor-like algorithms are unlikely to help break code-based 
cryptosystems using HSP-hard codes. 

– But we have not shown that other quantum algorithms, or 
even classical ones, cannot break code-based cryptosystems. 

– Nor have we shown that such an algorithm would violate a 
natural hardness assumption (such as lattice-based 
cryptosystems and Learning With Errors). 
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