<u>Code Equivalence is Hard for</u> <u>Shor-like Quantum Algorithms</u>

Hang Dinh – Indiana University South Bend *joint work with*

Cristopher Moore – University of New Mexico **Alexander Russell** – University of Connecticut

Outline

- Overview/Motivation
 - Code Equivalence
 - Why care?
- Shor-like algorithms
 - Quantum Fourier Sampling (QFS)
 - Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
 - General results
 - Codes that make Code Equivalence hard for QFS

Code Equivalence (CE)

- Code Equivalence [Petrank and Roth, 1997]
 - Given the generator matrices of two linear codes C and C'
 - Decide if C is equivalent to C' up to a permutation of the codeword coordinates
- A search variant of CE:
 - Find a permutation between two given equivalent codes
- Hardness [Petrank and Roth, 1997]
 - Code Equivalence is unlikely NP-complete,
 - but at least as hard as Graph Isomorphism
 - There's an efficient reduction from Graph Isomorphism to CE

CE and Code-based Cryptosystems

	McELiece systems	Neiderreiter systems
Secret code C	q-ary $[n, k]$ -code	q-ary $[n, n - lk]$ -code
Secret key	$\frac{M}{k} \times n \text{ generator}$ matrix of C	$\frac{M}{k} \times n \text{ parity check}$ matrix over \mathbf{F}_{q^l} of C
	S : $k \times k$ invertible matrix over \mathbf{F}_q	
	P : $n \times n$ permutation matrix	
Public key	M' = SMP	

- If the secret code is known to the adversary
 - recover secret key S and $P \rightarrow$ solve CE for the secret code

CE and Code-based Cryptosystems

- The secret code can be known to the adversary
 - if the space of all codes of the same parameters (q, n, k) and same family as the secret code is small.
- <u>Example</u>: Reed-Muller codes (q=2)
 - used in the Sildelnikov cryptosystem [Sidelnikov, 1994]
 - there's a *single* Reed-Muller code of given length and dimension.
- Example: *special* binary Goppa codes
 - those generated by polynomials of binary coefficients
 - can exhaustively search [Loidreau and Sendrier, 2001]

Best Known Algorithm for CE

- Support Splitting Algorithm [Sendrier, 1999]
 - Classical, deterministic
 - Efficient for **binary** codes with small hull dimension, including binary Goppa codes.
 - Likely to be efficient for non-binary codes with small hull dimension
 - Inefficient for other codes, such as Reed-Muller codes.

Can Quantum Algorithms Do Better?

- The most popular paradigm of quantum algorithms
 - generalize Shor's algorithms
 - reply on quantum Fourier transform
 - solve the class of hidden subgroup problems (HSP).
 - Nearly all known quantum algorithms that provide exponential speedup are designed in this paradigm.
- There's a natural reduction from CE to HSP
 - So, can CE be solved efficiently by Shor-like algorithms?

Outline

- Overview/Motivation
 - Code Equivalence
 - Why care?
- Shor-like algorithms
 - Quantum Fourier Sampling (QFS)
 - Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
 - General results
 - Codes that make Code Equivalence hard for QFS

Hidden Subgroup Problem (HSP)

- HSP over a finite group G:
 - <u>Input</u>: a black-box function f on G that separates the left (or right) cosets of an unknown subgroup H < G, i.e., f(x) = f(y) iff xH = yH
 - <u>Output</u>: a generating set for H.
- Well-known interesting cases
 - HSP over cyclic groups \mathbf{Z}_N
 - HSP over $\mathbf{Z}_N \times \mathbf{Z}_N$
 - HSP over symmetric groups S_n
 - HSP over dihedral groups D_n

- \rightarrow factorization
- \rightarrow discrete logarithm
- \rightarrow Graph Isomorphism
- \rightarrow unique-Shortest-vector

Shor-like Algorithms

• To solve the HSP over G with hidden subgroup H

Quantum Fourier Sampling (QFS)

Efficiency of Shor-like Algorithms

- QFS is efficient for HSP over abelian groups.
- Some nonabelian HSPs *may* be efficiently solvable
 - They have efficient quantum Fourier transforms.
 - Subexponential time for dihedral HSP [Kuperberg, 2003]
- Strong QFS doesn't work for S_n if |H| = 2
 - it can't distinguish among conjugates of H and the trivial one
 - − i.e., $QFS_G(gHg^{-1})$ is close to $QFS_G({1})$, for most $g \in G$.
 - [Moore, Russell, Schulman, 2008].

Outline

- Overview/Motivation
 - Code Equivalence
 - Why care?
- Shor-like algorithms
 - Quantum Fourier Sampling (QFS)
 - Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
 - General results
 - Codes that make Code Equivalence hard for QFS

Reduce CE to HSP

CE to Scrambler-Permutation

• Scrambler-Permutation Problem

▶ Input: k × n matrices M and M' over a field F_q^l ⊇F_q such that M' = SMP for some (S, P)∈GL_k(F_q) × S_n
 ▶ Output: (S, P)

• <u>Special case</u>: attacking McEliece systems

 $\geq l = 1$ ($\mathbf{F}_{q^l} = \mathbf{F}_q$)

 $\succ M$ is a generator matrix of a q-ary [n, k]-code.

• <u>Special case</u>: attacking Neiderreiter systems

> *M* is parity check matrix of a *q*-ary [n, n - lk]-code.

Scrambler-Permutation to Hidden Shift

• Hidden Shift Problem over a finite group G:

➢ Input: two functions f_1, f_2 on G s.t. ∃s∈G satisfying $f_1(sg) = f_2(g) \text{ for all } g \in G$

Output: a hidden shift s

Input: *M* and M' = SMP. Output: $(S, P) \in GL_k(\mathbf{F}_a) \times S_n$

Hidden Shift Problem over $GL_k(\mathbf{F}_q) \times S_n$

➤ Input:
$$f_1(X, Y) = X^{-1}MY$$
 and $f_2(X, Y) = X^{-1}M'Y$

> Output: a hidden shift (S^{-1}, P)

Hidden Shift to Hidden Subgroup

Hidden Shift Problem over a finite group G: > Input: two functions f_1, f_2 on G s.t. $\exists s \in G$ satisfying $f_1(sg) = f_2(g)$ for all $g \in G$ > Output: a hidden shift s

HSP over wreath product $G \wr \mathbf{Z}_2$ (semidirect product of G^2 and \mathbf{Z}_2)

 \succ Input: function f defined as:

$$f((g_1, g_2), 0) = (f_1(g_1), f_2(g_2))$$

$$f((g_1, g_2), 1) = (f_2(g_2), f_1(g_1))$$

Hidden Shift to Hidden Subgroup

Hidden Shift Problem over a finite group G: \triangleright Input: two functions f_1, f_2 on G s.t. $\exists s \in G$ satisfying $f_1(\mathbf{s}g) = f_2(g)$ for all $g \in G$ Output: a hidden shift s **HSP** over wreath product $G \wr \mathbf{Z}_2$ (semidirect product of G^2 and \mathbf{Z}_2) > Output: subgroup $H = ((H_0, s^{-1}H_0s), 0) \cup ((H_0s, s^{-1}H_0), 1)$ where $H_0 = \{g \in G | f_1(g) = f_1(1)\} < G$ f_1 must separate right cosets of H_0 $H_0 s$ = The set of all hidden shifts

Scrambler-Permutation to HSP

Scrambler-Permutation Problem

➢ Input: *M* and *M'* = *SMP* for some (*S*, *P*)∈GL_k(**F**_q) × S_n
➢ Output: (*S*, *P*)

HSP over the wreath product $(GL_k(\mathbf{F}_q) \times S_n) \wr \mathbf{Z}_2$

➢ hidden subgroup: $H = ((H_0, s^{-1}H_0s), 0) \cup ((H_0s, s^{-1}H_0), 1)$ where

$$H_0 = \{(S,P) | S^{-1}MP = M\} < GL_k(\mathbf{F}_q) \times S_n$$

$$\mathbf{s} = (\mathbf{S}^{-1}, \mathbf{P})$$

Can this HSP be solved efficiently by strong QFS? Can QFS distinguish conjugates gHg^{-1} and $\{1\}$?

Hang Dinh - IU South Bend

Outline

- Overview/Motivation
 - Code Equivalence
 - Why care?
- Shor-like algorithms
 - Quantum Fourier Sampling (QFS)
 - Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP

• Our results

- General results
- Codes that make Code Equivalence hard for QFS

Our Results

- We show that in many cases of interest,
 - $QFS_G(gHg^{-1})$ is exponentially close to $QFS_G(\{1\})$, for most $g \in G$.
 - In such a case, *H* is called *indistinguishable* by strong QFS.
- Apply to $G = S_n$ with $|H| \ge 2$
- Apply to the CE for many codes, including
 - Goppa codes, generalized Reed-Solomon codes
 [Dinh, Moore, Russell, CRYPTO 2011]
 - Reed-Muller codes
 [Dinh, Moore, Russell, Preprint 2011, <u>arXiv:1111.4382</u>]

Hidden Symmetries

- Recall: the hidden subgroup reduced from matrix M is determined by the subgroup $H_0 = \{(S, P) | S^{-1}MP = M\} < GL_k(\mathbf{F}_a) \times S_n$
- Projection of H_0 onto S_n is the *automorphism group* Aut $(M) \coloneqq \{P \in S_n | \exists S \in GL_k(\mathbf{F}_q), SMP = M\}$
 - Each $P \in Aut(M)$ has the same number N of preimages $S \in GL_k(\mathbf{F}_q)$ in this projection.
 - <u>Fact</u>: Let r be the column rank of M. Then $N \leq q^{lk(k-r)}$.
 - Hence, $|H_0| \leq |\operatorname{Aut}(M)| q^{lk(k-r)}$.

General Results for CE

- <u>Theorem</u> [Dinh, Moore, Russell, CRYPTO 2011]:
 - Assume $k^2 \leq 0.2n \log_q n$.
 - The hidden subgroup reduced from matrix *M* is indistinguishable by strong QFS if
 - 1) $|\operatorname{Aut}(M)| \le e^{o(n)}$
 - 2) The *minimal degree* of Aut(M) is $\geq \Omega(n)$.
 - 3) The column rank of of *M* is $\geq k o(\sqrt{n})/l$.

The *minimal degree* of Aut(M) is the minimal number of points *moved* by a non-identity permutation in Aut(M).

HSP-hard Codes

- What codes make CE hard for Shor-like algorithms?
 - A linear code is called *HSP-hard* if it has a generator matrix or parity check matrix *M* s.t. the hidden subgroup reduced from *M* is indistinguishable by strong QFS.
- Observe: If *M* is a generator matrix of a code *C* Then Aut(*M*) = Aut(*C*), and *M* has full rank.
- <u>Corollary</u>: Let C be a q-ary [n, k]-code such that $k^2 \le 0.2n \log_q n$. Then C is HSP-hard if
 - 1) $|Aut(C)| \le e^{o(n)}$
 - 2) The minimal degree of Aut(C) is $\geq \Omega(n)$.

Reed-Muller Codes are HSP-hard

• Reed-Muller code RM(r, m)

 $= \{ (f(\alpha_1), \dots, f(\alpha_n)) | f \in \mathbf{F}_2[X_1, \dots, X_m], \deg(f) \le r \},$ where $(\alpha_1, \dots, \alpha_n)$ is a fixed ordered list of all vectors in \mathbf{F}_2^m

- has length
$$n = 2^m$$
 and dimension $k = \sum_{j=0}^r \binom{m}{j}$.

- If r < 0.1m, then $k < r \binom{m}{0.1m} < r2^{0.47m}$, and $k^2 \le 0.2nm$ for sufficiently large m.

• <u>Theorem</u>: Reed-Muller codes RM(r, m) with r < 0.1mand m sufficiently large are HSP-hard.

• <u>Fact</u>:

Aut(RM(r,m)) = general affine group of space \mathbf{F}_2^m = $\{\sigma_{A,\boldsymbol{b}}: \mathbf{F}_2^m \to \mathbf{F}_2^m, \sigma_{A,\boldsymbol{b}}(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b} | A \in GL_m(\mathbf{F}_2), \boldsymbol{b} \in \mathbf{F}_2^m\}$

Propositions:

1.
$$\left|\operatorname{Aut}(\operatorname{RM}(r,m))\right| = \left|\operatorname{GL}_m(\mathbf{F}_2)\right| \times |\mathbf{F}_2^m| \le 2^{m^2+m}$$

 $\le 2^{O\left(\log^2 n\right)} \le e^{O(n)}$, where $n = 2^m$

2. The minimal degree of Aut(RM(r, m)) is exactly 2^{m-1} .

2a. The minimal degree of Aut(RM(r, m)) is $\leq 2^{m-1}$. *Recall*: min deg. of Aut(C):= min{supp(π)| $\pi \in Aut(C), \pi \neq Id$ }, where supp(π) := #{ $i: \pi(i) \neq i$ }.

Proof:

- An affine transformation $\sigma_{A,0}: \mathbf{F}_2^m \to \mathbf{F}_2^m$ with support 2^{m-1} $\sigma_{A,0}(\mathbf{x}) = A\mathbf{x} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \mathbf{x}$
- This $\sigma_{A,0}$ fixes all vectors $\mathbf{x} \in \mathbf{F}_2^m$ with $x_m = 0$.
- There are $2^m 2^{m-1} = 2^{m-1}$ vectors not fixed by $\sigma_{A,0}$

2b. The minimal degree of Aut(RM(r, m)) is $\geq 2^{m-1}$.

- <u>Claim 1</u>: If $\sigma_{A,b}$ fixes a set S that spans \mathbf{F}_2^{m} , then $\sigma_{A,b} = \text{Id}$.

- <u>Claim 2</u>: Any set $S \subseteq \mathbf{F}_2^m$ with size $> 2^{m-1}$ spans \mathbf{F}_2^m .

 \rightarrow No none-identity affine transformation can fix >2^{*m*-1} vectors.

2b. The minimal degree of Aut(RM(r, m)) is $\geq 2^{m-1}$.

- <u>Claim 1</u>: If $\sigma_{A,b}$ fixes a set *S* that spans \mathbf{F}_2^m , then $\sigma_{A,b} = \mathrm{Id}$. *Proof*: Let $\mathbf{s} \in S$ and $S' = S - \mathbf{s}$. Then *S*' also spans \mathbf{F}_2^m , and *A* fixes *S*', in which case $A = \mathbf{1}$. Then $\mathbf{b} = \mathbf{0}$. Note $\sigma_{\mathbf{1},\mathbf{0}} = \mathrm{Id}$.
- <u>Claim 2</u>: Any set $S \subseteq \mathbf{F}_2^m$ with size $> 2^{m-1}$ spans \mathbf{F}_2^m .

\rightarrow No none-identity affine transformation can fix >2^{*m*-1} vectors.

2b. The minimal degree of Aut(RM(r, m)) is $\geq 2^{m-1}$.

- <u>Claim 1</u>: If $\sigma_{A,b}$ fixes a set *S* that spans \mathbf{F}_2^m , then $\sigma_{A,b} = \mathrm{Id}$. *Proof*: Let $\mathbf{s} \in S$ and $S' = S - \mathbf{s}$. Then *S*' also spans \mathbf{F}_2^m , and *A*

fixes S', in which case $A = \mathbf{1}$. Then $\mathbf{b} = \mathbf{0}$. Note $\sigma_{\mathbf{1},\mathbf{0}} = \mathrm{Id}$.

- <u>Claim 2</u>: Any set $S \subseteq \mathbf{F}_2^m$ with size $> 2^{m-1}$ spans \mathbf{F}_2^m .

Proof: Let $B \subseteq S$ be a maximal set that consists of linearly independent vectors. Since B spans S, $2^{|B|} \ge |S| > 2^{m-1}$. Then |B| = m. So B, and therefore S, spans \mathbf{F}_2^m .

→ No none-identity affine transformation can fix >2^{m-1} vectors.

Open Question and Notes

- Are there other HSP-hard codes that are of cryptographic interest?
- Cautionary notes
 - Shor-like algorithms are unlikely to help break code-based cryptosystems using HSP-hard codes.
 - But we have not shown that other quantum algorithms, or even classical ones, cannot break code-based cryptosystems.
 - Nor have we shown that such an algorithm would violate a natural hardness assumption (such as lattice-based cryptosystems and Learning With Errors).