
Code Equivalence is Hard for
Shor-like Quantum Algorithms

Hang Dinh – Indiana University South Bend

joint work with

Cristopher Moore – University of New Mexico

Alexander Russell – University of Connecticut

Webinar on Symbolic Computations and Post-Quantum Cryptography
(SCPQ Webinar May 17, 2012)

http://stevenslive.wimba.com/launcher.cgi?room=SCPQ_2011_0929_1205_42
http://stevenslive.wimba.com/launcher.cgi?room=SCPQ_2011_0929_1205_42
http://stevenslive.wimba.com/launcher.cgi?room=SCPQ_2011_0929_1205_42
http://stevenslive.wimba.com/launcher.cgi?room=SCPQ_2011_0929_1205_42

Outline

• Overview/Motivation

– Code Equivalence

– Why care?

• Shor-like algorithms

– Quantum Fourier Sampling (QFS)

– Hidden Subgroup Problems (HSP)

• Reduction from Code Equivalence to HSP

• Our results

– General results

– Codes that make Code Equivalence hard for QFS

Hang Dinh - Indiana University South Bend 2

Code Equivalence (CE)

• Code Equivalence [Petrank and Roth, 1997]

– Given the generator matrices of two linear codes C and C’

– Decide if C is equivalent to C’ up to a permutation of the
codeword coordinates

• A search variant of CE:

– Find a permutation between two given equivalent codes

• Hardness [Petrank and Roth, 1997]

– Code Equivalence is unlikely NP-complete,

– but at least as hard as Graph Isomorphism
• There’s an efficient reduction from Graph Isomorphism to CE

Hang Dinh - Indiana University South Bend 3

CE and Code-based Cryptosystems

• If the secret code is known to the adversary

– recover secret key 𝑆 and 𝑃  solve CE for the secret code

Hang Dinh - Indiana University South Bend 4

McELiece systems Neiderreiter systems

Secret code 𝐶 𝑞-ary [𝑛, 𝑘]-code 𝑞-ary [𝑛, 𝑛 − 𝑙𝑘]-code

Secret key

𝑀: 𝑘 × 𝑛 generator
matrix of 𝐶

𝑀: 𝑘 × 𝑛 parity check
matrix over 𝐅𝑞𝑙 of 𝐶

𝑆: 𝑘 × 𝑘 invertible matrix over 𝐅𝑞

𝑃: 𝑛 × 𝑛 permutation matrix

Public key 𝑀’ = 𝑆𝑀𝑃

CE and Code-based Cryptosystems

• The secret code can be known to the adversary

– if the space of all codes of the same parameters (𝑞, 𝑛, 𝑘)
and same family as the secret code is small.

• Example: Reed-Muller codes (𝑞=2)

– used in the Sildelnikov cryptosystem [Sidelnikov, 1994]

– there’s a single Reed-Muller code of given length and
dimension.

• Example: special binary Goppa codes

– those generated by polynomials of binary coefficients

– can exhaustively search [Loidreau and Sendrier, 2001]

Hang Dinh - Indiana University South Bend 6

Best Known Algorithm for CE

• Support Splitting Algorithm [Sendrier, 1999]

– Classical, deterministic

– Efficient for binary codes with small hull dimension,
including binary Goppa codes.

– Likely to be efficient for non-binary codes with small hull
dimension

– Inefficient for other codes, such as Reed-Muller codes.

Hang Dinh - Indiana University South Bend 7

Can Quantum Algorithms Do Better?

• The most popular paradigm of quantum algorithms

– generalize Shor’s algorithms

– reply on quantum Fourier transform

– solve the class of hidden subgroup problems (HSP).

– Nearly all known quantum algorithms that provide
exponential speedup are designed in this paradigm.

• There’s a natural reduction from CE to HSP

– So, can CE be solved efficiently by Shor-like algorithms?

Hang Dinh - Indiana University South Bend 8

Outline

• Overview/Motivation

– Code Equivalence

– Why care?

• Shor-like algorithms

– Quantum Fourier Sampling (QFS)

– Hidden Subgroup Problems (HSP)

• Reduction from Code Equivalence to HSP

• Our results

– General results

– Codes that make Code Equivalence hard for QFS

Hang Dinh - Indiana University South Bend 9

Hidden Subgroup Problem (HSP)

• HSP over a finite group 𝐺:
– Input: a black-box function 𝑓 on 𝐺 that separates the left

(or right) cosets of an unknown subgroup 𝐻 < 𝐺, i.e.,
𝑓(𝑥) = 𝑓(𝑦) iff 𝑥𝐻 = 𝑦𝐻

– Output: a generating set for 𝐻.

• Well-known interesting cases

– HSP over cyclic groups 𝐙𝑁  factorization

– HSP over 𝐙𝑁 × 𝐙𝑁  discrete logarithm

– HSP over symmetric groups 𝑆𝑛  Graph Isomorphism

– HSP over dihedral groups 𝐷𝑛  unique-Shortest-vector

Hang Dinh - Indiana University South Bend 10

Shor-like Algorithms

• To solve the HSP over 𝐺 with hidden subgroup 𝐻

Hang Dinh - Indiana University South Bend 12

Quantum Fourier Sampling (QFS) over 𝐺 using
back box 𝑓 that separates cosets of 𝐻

a probability distribution, denoted QFS𝐺(𝐻)

Classically recover 𝐻 using information from the
distribution QFS𝐺(𝐻)

Quantum Fourier Sampling (QFS)

random coset state gH

Uniform superposition over G



 gH 
ij
,i, j

,i, j



Apply quantum black box for f

Quantum Fourier transform
over G

Measure

distribution
on ρ weak

strong

uniform superposition
over the coset gH

block matrix corresponding to
irreducible representation ρ

distribution
on (ρ, j)

Hang Dinh - Indiana University South Bend 13

QFS𝐺(𝐻)

Efficiency of Shor-like Algorithms

• QFS is efficient for HSP over abelian groups.

• Some nonabelian HSPs may be efficiently solvable

– They have efficient quantum Fourier transforms.

– Subexponential time for dihedral HSP [Kuperberg, 2003]

• Strong QFS doesn’t work for 𝑆𝑛 if |𝐻| = 2

– it can’t distinguish among conjugates of 𝐻 and the trivial one

– i.e., QFS𝐺(𝑔𝐻𝑔
−1) is close to QFS𝐺({1}), for most 𝑔 ∈ 𝐺.

– [Moore, Russell, Schulman, 2008].

Hang Dinh - Indiana University South Bend 14

Outline

• Overview/Motivation

– Code Equivalence

– Why care?

• Shor-like algorithms

– Quantum Fourier Sampling (QFS)

– Hidden Subgroup Problems (HSP)

• Reduction from Code Equivalence to HSP

• Our results

– General results

– Codes that make Code Equivalence hard for QFS

Hang Dinh - Indiana University South Bend 15

Reduce CE to HSP

Hang Dinh - Indiana University South Bend 16

Search variant of Code Equivalence

Scrambler-Permutation Problem

Hidden Shift Problem

Hidden Subgroup Problem

CE to Scrambler-Permutation

• Scrambler-Permutation Problem

 Input: 𝑘 × 𝑛 matrices 𝑀 and 𝑀′ over a field 𝐅𝑞𝑙 Fq such

that 𝑀′ = 𝑆𝑀𝑃 for some (𝑆, 𝑃)GL𝑘(𝐅𝑞) × 𝑆𝑛

Output: (𝑆, 𝑃)

• Special case: attacking McEliece systems

 𝑙 = 1 (𝐅𝑞𝑙 = 𝐅𝑞)

𝑀 is a generator matrix of a 𝑞-ary [𝑛, 𝑘]-code.

• Special case: attacking Neiderreiter systems

𝑀 is parity check matrix of a 𝑞-ary [𝑛, 𝑛 − 𝑙𝑘]-code.

Hang Dinh - Indiana University South Bend 17

Scrambler-Permutation to Hidden Shift

• Hidden Shift Problem over a finite group 𝐺:

 Input: two functions 𝑓1, 𝑓2 on 𝐺 s.t. ∃𝑠𝐺 satisfying

𝑓1(𝑠𝑔) = 𝑓2(𝑔) for all 𝑔 ∈ 𝐺

Output: a hidden shift 𝑠

Hang Dinh - Indiana University South Bend 18

Input: 𝑀 and 𝑀′ = 𝑆𝑀𝑃. Output: (𝑆, 𝑃)GL𝑘(𝐅𝑞) × 𝑆𝑛

 Hidden Shift Problem over GLk(Fq)×Sn

 Input: 𝑓1 𝑋, 𝑌 = 𝑋−1𝑀𝑌 and 𝑓2 𝑋, 𝑌 = 𝑋−1𝑀′𝑌

 Output: a hidden shift (𝑆−1, 𝑃)

Hidden Shift to Hidden Subgroup

 Hidden Shift Problem over a finite group 𝐺:

 Input: two functions 𝑓1, 𝑓2 on 𝐺 s.t. ∃𝑠𝐺 satisfying

𝑓1(𝑠𝑔) = 𝑓2(𝑔) for all 𝑔 ∈ 𝐺

Output: a hidden shift 𝑠

Hang Dinh - Indiana University South Bend 19

HSP over wreath product 𝐺 𝐙2(semidirect product of 𝐺2 and 𝐙2)

 Input: function 𝑓 defined as:

𝑓 𝑔1, 𝑔2 , 0 = 𝑓1 𝑔1 , 𝑓2 𝑔2

 𝑓((𝑔1, 𝑔2), 1) = (𝑓2(𝑔2), 𝑓1(𝑔1))

~

Hidden Shift to Hidden Subgroup

 Hidden Shift Problem over a finite group 𝐺:

 Input: two functions 𝑓1, 𝑓2 on 𝐺 s.t. ∃𝑠𝐺 satisfying

𝑓1(𝑠𝑔) = 𝑓2(𝑔) for all 𝑔 ∈ 𝐺

Output: a hidden shift 𝑠

Hang Dinh - Indiana University South Bend 20

HSP over wreath product 𝐺 𝐙2(semidirect product of 𝐺2 and 𝐙2)

 Output: subgroup 𝐻 = (𝐻0, 𝑠
−1𝐻0𝑠 , 0) ∪ (𝐻0𝑠, 𝑠−1𝐻0 , 1)

 where
 𝐻0 = 𝑔 ∈ 𝐺 𝑓1 𝑔 = 𝑓1 1 < 𝐺
 𝐻0𝑠 = The set of all hidden shifts

~

𝑓1 must separate
right cosets of 𝐻0

Scrambler-Permutation to HSP

Scrambler-Permutation Problem
 Input: 𝑀 and 𝑀′ = 𝑆𝑀𝑃 for some 𝑆, 𝑃 GL𝑘 𝐅𝑞 × 𝑆𝑛

 Output: (𝑆, 𝑃)

HSP over the wreath product (GL𝑘 𝐅𝑞 × 𝑆𝑛) Z2

 hidden subgroup: 𝐻 = (𝐻0, 𝑠
−1𝐻0𝑠 , 0) ∪ (𝐻0𝑠, 𝑠−1𝐻0 , 1)

 where

 𝐻0 = (𝑆, 𝑃) 𝑆−1𝑀𝑃 = 𝑀 < GL𝑘(𝐅𝑞) × 𝑆𝑛

 𝑠 = (𝑆−1, 𝑃)

~

Can this HSP be solved efficiently by strong QFS?
Can QFS distinguish conjugates 𝑔𝐻𝑔−1 and {1}?

Hang Dinh - IU South Bend

Outline

• Overview/Motivation

– Code Equivalence

– Why care?

• Shor-like algorithms

– Quantum Fourier Sampling (QFS)

– Hidden Subgroup Problems (HSP)

• Reduction from Code Equivalence to HSP

• Our results

– General results

– Codes that make Code Equivalence hard for QFS

Hang Dinh - Indiana University South Bend 22

Our Results

• We show that in many cases of interest,

– QFS𝐺(𝑔𝐻𝑔
−1) is exponentially close to QFS𝐺({1}), for most

𝑔 ∈ 𝐺.

– In such a case, 𝐻 is called indistinguishable by strong QFS.

• Apply to 𝐺 = 𝑆𝑛 with |𝐻| ≥ 2

• Apply to the CE for many codes, including

– Goppa codes, generalized Reed-Solomon codes
[Dinh, Moore, Russell, CRYPTO 2011]

– Reed-Muller codes
[Dinh, Moore, Russell, Preprint 2011 , arXiv:1111.4382]

Hang Dinh - Indiana University South Bend 23

http://arxiv.org/abs/1111.4382

Hidden Symmetries

• Recall: the hidden subgroup reduced from matrix 𝑀 is
determined by the subgroup

𝐻0 = (𝑆, 𝑃) 𝑆−1𝑀𝑃 = 𝑀 < GL𝑘(𝐅𝑞) × 𝑆𝑛

• Projection of 𝐻0 onto 𝑆𝑛 is the automorphism group
Aut 𝑀 ≔ 𝑃 ∈ 𝑆𝑛 ∃𝑆 ∈ GL𝑘 𝐅𝑞 , 𝑆𝑀𝑃 = 𝑀

– Each 𝑃 ∈ Aut(𝑀) has the same number 𝑁 of preimages
𝑆 ∈ GL𝑘 𝐅𝑞 in this projection.

– Fact: Let 𝑟 be the column rank of 𝑀. Then 𝑁 ≤ 𝑞𝑙𝑘(𝑘−𝑟).

– Hence, 𝐻0 ≤ |Aut(𝑀)| 𝑞𝑙𝑘(𝑘−𝑟).

Hang Dinh - Indiana University South Bend 24

General Results for CE

• Theorem [Dinh, Moore, Russell, CRYPTO 2011]:
– Assume 𝑘2 ≤ 0.2𝑛 log𝑞 𝑛.

– The hidden subgroup reduced from matrix 𝑀 is
indistinguishable by strong QFS if

1) |Aut 𝑀 | ≤ 𝑒𝑜(𝑛)

2) The minimal degree of Aut(𝑀) is ≥ Ω(𝑛).

3) The column rank of of 𝑀 is ≥ 𝑘 − 𝑜(𝑛)/𝑙.

Hang Dinh - Indiana University South Bend 25

The minimal degree of Aut 𝑀 is the minimal number of
points moved by a non-identity permutation in Aut(𝑀).

HSP-hard Codes

• What codes make CE hard for Shor-like algorithms?

– A linear code is called HSP-hard if it has a generator matrix or
parity check matrix 𝑀 s.t. the hidden subgroup reduced from
𝑀 is indistinguishable by strong QFS.

• Observe: If 𝑀 is a generator matrix of a code 𝐶

– Then Aut 𝑀 = Aut 𝐶 , and 𝑀 has full rank.

• Corollary: Let 𝐶 be a 𝑞-ary [𝑛, 𝑘]-code such that
𝑘2 ≤ 0.2𝑛 log𝑞 𝑛. Then 𝐶 is HSP-hard if

1) |Aut 𝐶 | ≤ 𝑒𝑜(𝑛)

2) The minimal degree of Aut(𝐶) is ≥ Ω(𝑛).

Hang Dinh - Indiana University South Bend 26

Reed-Muller Codes are HSP-hard

• Reed-Muller code RM 𝑟,𝑚

= 𝑓 𝛼1 , … , 𝑓 𝛼𝑛 𝑓 ∈ 𝐅2 𝑋1, . . , 𝑋𝑚 , deg(𝑓) ≤ 𝑟 ,

 where 𝛼1, … , 𝛼𝑛 is a fixed ordered list of all vectors in 𝐅2
𝑚

– has length 𝑛 = 2𝑚 and dimension 𝑘 =
𝑚
𝑗

𝑟
𝑗=0 .

– If 𝑟 < 0.1𝑚, then 𝑘 < 𝑟
𝑚
0.1𝑚

< 𝑟20.47𝑚 , and 𝑘2 ≤ 0.2𝑛𝑚

for sufficiently large 𝑚.

• Theorem: Reed-Muller codes RM 𝑟,𝑚 with 𝑟 < 0.1𝑚
and 𝑚 sufficiently large are HSP-hard.

Hang Dinh - Indiana University South Bend 27

Automorphism Group of
Reed-Muller Codes

• Fact:

 Aut RM 𝑟,𝑚 = general affine group of space 𝐅2
𝑚

 = 𝜎𝐴,𝒃: 𝐅2
𝑚 → 𝐅2

𝑚, 𝜎𝐴,𝒃 𝒙 = 𝐴𝒙 + 𝒃 𝐴 ∈ GL𝑚 𝐅2 , 𝒃 ∈ 𝐅2
𝑚

• Propositions:

1. Aut RM 𝑟,𝑚 = GL𝑚 𝐅2 × 𝐅2
𝑚 ≤ 2𝑚

2+𝑚

 ≤ 2𝑂 log2 𝑛 ≤ 𝑒𝑜 𝑛 , where 𝑛 = 2𝑚

2. The minimal degree of Aut(RM(𝑟,𝑚)) is exactly 2𝑚−1.

Hang Dinh - Indiana University South Bend 28

Automorphism Group of
Reed-Muller Codes

2a. The minimal degree of Aut(RM(𝑟,𝑚)) is ≤ 2𝑚−1.

 Recall: min deg. of Aut 𝐶 := min supp π π ∈ Aut 𝐶 , 𝜋 ≠ Id ,

 where supp π ≔ #{𝑖: 𝜋(𝑖) ≠ 𝑖} .

 Proof:

– An affine transformation 𝜎𝐴,𝟎: 𝐅2
𝑚 → 𝐅2

𝑚 with support 2𝑚−1

𝜎𝐴,𝟎 𝒙 = 𝐴𝒙 =
𝟏 𝟏
 ⋱
 𝟏

𝒙

– This 𝜎𝐴,𝟎 fixes all vectors 𝒙 ∈ 𝐅2
𝑚 with 𝑥𝑚 = 0.

– There are 2𝑚 − 2𝑚−1 = 2𝑚−1 vectors not fixed by 𝜎𝐴,𝟎

Hang Dinh - Indiana University South Bend 29

𝟏
𝟏

Automorphism Group of
Reed-Muller Codes

2b. The minimal degree of 𝐴𝑢𝑡(RM(𝑟,𝑚)) is ≥ 2𝑚−1.

– Claim 1: If 𝜎𝐴,𝒃 fixes a set 𝑆 that spans 𝐅2
𝑚, then 𝜎𝐴,𝒃 = Id.

Proof: Let 𝒔 ∈ 𝑆 and 𝑆′ = 𝑆 − 𝒔. Then 𝑆’ also spans 𝐅2
𝑚, and 𝐴

fixes 𝑆’, in which case 𝐴 = 𝟏. Then 𝒃 = 𝟎. Note 𝜎𝟏,𝟎 = Id.

– Claim 2: Any set 𝑆 𝐅2
𝑚 with size > 2𝑚−1 spans 𝐅2

𝑚.

Proof: Let 𝐵𝑆 be a maximal set that consists of linearly

independent vectors. Since 𝐵 spans 𝑆, 2|𝐵| ≥ 𝑆 > 2𝑚−1. Then
𝐵 = 𝑚. So 𝐵, and therefore 𝑆, spans 𝐅2

𝑚.

No none-identity affine transformation can fix >2𝑚−1 vectors.

Hang Dinh - Indiana University South Bend 30

Automorphism Group of
Reed-Muller Codes

2b. The minimal degree of 𝐴𝑢𝑡(RM(𝑟,𝑚)) is ≥ 2𝑚−1.

– Claim 1: If 𝜎𝐴,𝒃 fixes a set 𝑆 that spans 𝐅2
𝑚, then 𝜎𝐴,𝒃 = Id.

Proof: Let 𝒔 ∈ 𝑆 and 𝑆′ = 𝑆 − 𝒔. Then 𝑆’ also spans 𝐅2
𝑚, and 𝐴

fixes 𝑆’, in which case 𝐴 = 𝟏. Then 𝒃 = 𝟎. Note 𝜎𝟏,𝟎 = Id.

– Claim 2: Any set 𝑆 𝐅2
𝑚 with size > 2𝑚−1 spans 𝐅2

𝑚.

Proof: Let 𝐵𝑆 be a maximal set that consists of linearly

independent vectors. Since 𝐵 spans 𝑆, 2|𝐵| ≥ 𝑆 > 2𝑚−1. Then
𝐵 = 𝑚. So 𝐵, and therefore 𝑆, spans 𝐅2

𝑚.

No none-identity affine transformation can fix >2𝑚−1 vectors.

Hang Dinh - Indiana University South Bend 31

Automorphism Group of
Reed-Muller Codes

2b. The minimal degree of 𝐴𝑢𝑡(RM(𝑟,𝑚)) is ≥ 2𝑚−1.

– Claim 1: If 𝜎𝐴,𝒃 fixes a set 𝑆 that spans 𝐅2
𝑚, then 𝜎𝐴,𝒃 = Id.

Proof: Let 𝒔 ∈ 𝑆 and 𝑆′ = 𝑆 − 𝒔. Then 𝑆’ also spans 𝐅2
𝑚, and 𝐴

fixes 𝑆’, in which case 𝐴 = 𝟏. Then 𝒃 = 𝟎. Note 𝜎𝟏,𝟎 = Id.

– Claim 2: Any set 𝑆 𝐅2
𝑚 with size > 2𝑚−1 spans 𝐅2

𝑚.

Proof: Let 𝐵𝑆 be a maximal set that consists of linearly

independent vectors. Since 𝐵 spans 𝑆, 2|𝐵| ≥ 𝑆 > 2𝑚−1. Then
𝐵 = 𝑚. So 𝐵, and therefore 𝑆, spans 𝐅2

𝑚.

No none-identity affine transformation can fix >2𝑚−1 vectors.

Hang Dinh - Indiana University South Bend 32

Open Question and Notes

• Are there other HSP-hard codes that are of
cryptographic interest?

• Cautionary notes

– Shor-like algorithms are unlikely to help break code-based
cryptosystems using HSP-hard codes.

– But we have not shown that other quantum algorithms, or
even classical ones, cannot break code-based cryptosystems.

– Nor have we shown that such an algorithm would violate a
natural hardness assumption (such as lattice-based
cryptosystems and Learning With Errors).

Hang Dinh - Indiana University South Bend 33

