Code Equivalence is Hard for Shor-like Quantum Algorithms

Hang Dinh - Indiana University South Bend joint work with
Cristopher Moore - University of New Mexico
Alexander Russell - University of Connecticut

Outline

- Overview/Motivation
- Code Equivalence
- Why care?
- Shor-like algorithms
- Quantum Fourier Sampling (QFS)
- Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
- General results
- Codes that make Code Equivalence hard for QFS

Code Equivalence (CE)

- Code Equivalence [Petrank and Roth, 1997]
- Given the generator matrices of two linear codes C and C'
- Decide if C is equivalent to C^{\prime} up to a permutation of the codeword coordinates
- A search variant of CE:
- Find a permutation between two given equivalent codes
- Hardness [Petrank and Roth, 1997]
- Code Equivalence is unlikely NP-complete,
- but at least as hard as Graph Isomorphism
- There's an efficient reduction from Graph Isomorphism to CE

CE and Code-based Cryptosystems

	McELiece systems	Neiderreiter systems
Secret code C	q-ary $[n, k]$-code	q-ary $[n, n-l k]$-code
Secret key	$M: k \times n$ generator matrix of C	$M: k \times n$ parity check matrix over $\mathbf{F}_{q} l$ of C

- If the secret code is known to the adversary
- recover secret key S and $P \rightarrow$ solve CE for the secret code

CE and Code-based Cryptosystems

- The secret code can be known to the adversary
- if the space of all codes of the same parameters (q, n, k) and same family as the secret code is small.
- Example: Reed-Muller codes ($q=2$)
- used in the Sildelnikov cryptosystem [Sidelnikov, 1994]
- there's a single Reed-Muller code of given length and dimension.
- Example: special binary Goppa codes
- those generated by polynomials of binary coefficients
- can exhaustively search [Loidreau and Sendrier, 2001]

Best Known Algorithm for CE

- Support Splitting Algorithm [Sendrier, 1999]
- Classical, deterministic
- Efficient for binary codes with small hull dimension, including binary Goppa codes.
- Likely to be efficient for non-binary codes with small hull dimension
- Inefficient for other codes, such as Reed-Muller codes.

Can Quantum Algorithms Do Better?

- The most popular paradigm of quantum algorithms
- generalize Shor's algorithms
- reply on quantum Fourier transform
- solve the class of hidden subgroup problems (HSP).
- Nearly all known quantum algorithms that provide exponential speedup are designed in this paradigm.
- There's a natural reduction from CE to HSP
- So, can CE be solved efficiently by Shor-like algorithms?

outine

- Overview/Motivation
- Code Equivalence
- Why care?
- Shor-like algorithms
- Quantum Fourier Sampling (QFS)
- Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
- General results
- Codes that make Code Equivalence hard for QFS

Hidden Subgroup Problem (HSP)

- HSP over a finite group G :
- Input: a black-box function f on G that separates the left (or right) cosets of an unknown subgroup $H<G$, i.e.,

$$
f(x)=f(y) \text { iff } x H=y H
$$

- Output: a generating set for H.
- Well-known interesting cases
- HSP over cyclic groups $\mathbf{Z}_{N} \rightarrow$ factorization
- HSP over $\mathbf{Z}_{N} \times \mathbf{Z}_{N} \quad \rightarrow$ discrete logarithm
- HSP over symmetric groups $S_{n} \rightarrow$ Graph Isomorphism
- HSP over dihedral groups $D_{n} \rightarrow$ unique-Shortest-vector

Shor-like Algorithms

- To solve the HSP over G with hidden subgroup H

> Quantum Fourier Sampling (QFS) over G using back box f that separates cosets of H
a probability distribution, denoted $\mathrm{QFS}_{G}(H)$

Classically recover H using information from the distribution $\mathrm{QFS}_{G}(H)$

Quantum Fourier Sampling (QFS)

Efficiency of Shor-like Algorithms

- QFS is efficient for HSP over abelian groups.
- Some nonabelian HSPs may be efficiently solvable
- They have efficient quantum Fourier transforms.
- Subexponential time for dihedral HSP [Kuperberg, 2003]
- Strong QFS doesn't work for S_{n} if $|H|=2$
- it can't distinguish among conjugates of H and the trivial one
- i.e., $\mathrm{QFS}_{G}\left(g H g^{-1}\right)$ is close to $\operatorname{QFS}_{G}(\{1\})$, for most $g \in G$.
- [Moore, Russell, Schulman, 2008].

outine

- Overview/Motivation
- Code Equivalence
- Why care?
- Shor-like algorithms
- Quantum Fourier Sampling (QFS)
- Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
- General results
- Codes that make Code Equivalence hard for QFS

Reduce CE to HSP

CE to Scrambler-Permutation

- Scrambler-Permutation Problem
$>$ Input: $k \times n$ matrices M and M^{\prime} over a field $\mathbf{F}_{q} \supseteq \mathbf{F}_{q}$ such that $M^{\prime}=S M P$ for some $(S, P) \in \mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n}$
$>$ Output: (S, P)
- Special case: attacking McEliece systems
$>l=1 \quad\left(\mathbf{F}_{q^{l}}=\mathbf{F}_{q}\right)$
$>M$ is a generator matrix of a q-ary $[n, k]$-code.
- Special case: attacking Neiderreiter systems
$>M$ is parity check matrix of a q-ary $[n, n-l k]$-code.

Scrambler-Permutation to Hidden Shift

- Hidden Shift Problem over a finite group G :
$>$ Input: two functions f_{1}, f_{2} on G s.t. $\exists s \in G$ satisfying

$$
f_{1}(s g)=f_{2}(g) \text { for all } g \in G
$$

$>$ Output: a hidden shift s

Input: M and $M^{\prime}=S M P$. Output: $(S, P) \in \mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n}$

Hidden Shift Problem over $\mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n}$
$>$ Input: $f_{1}(X, Y)=X^{-1} M Y$ and $f_{2}(X, Y)=X^{-1} M^{\prime} Y$
$>$ Output: a hidden shift $\left(S^{-1}, P\right)$

Hidden Shift to Hidden Subgroup

Hidden Shift Problem over a finite group G :
$>$ Input: two functions f_{1}, f_{2} on G s.t. $\exists s \in G$ satisfying

$$
f_{1}(s g)=f_{2}(g) \text { for all } g \in G
$$

$>$ Output: a hidden shift s

HSP over wreath product $G \imath \mathbf{Z}_{2}$ (semidirect product of G^{2} and \mathbf{Z}_{2})
$>$ Input: function f defined as:

$$
\begin{aligned}
& f\left(\left(g_{1}, g_{2}\right), 0\right)=\left(f_{1}\left(g_{1}\right), f_{2}\left(g_{2}\right)\right) \\
& f\left(\left(g_{1}, g_{2}\right), 1\right)=\left(f_{2}\left(g_{2}\right), f_{1}\left(g_{1}\right)\right)
\end{aligned}
$$

Hidden Shift to Hidden Subgroup

Hidden Shift Problem over a finite group G :
$>$ Input: two functions f_{1}, f_{2} on G s.t. $\exists s \in G$ satisfying

$$
f_{1}(s g)=f_{2}(g) \text { for all } g \in G
$$

$>$ Output: a hidden shift s

HSP over wreath product $G \backslash \mathbf{Z}_{2}$ (semidirect product of G^{2} and \mathbf{Z}_{2})
$>$ Output: subgroup $H=\left(\left(H_{0}, s^{-1} H_{0} s\right), 0\right) \cup\left(\left(H_{0} s, s^{-1} H_{0}\right), 1\right)$ where

$$
\begin{array}{lr}
H_{0}=\left\{g \in G \mid f_{1}(g)=f_{1}(1)\right\}<G \quad\left\{\begin{aligned}
f_{1} \text { must separate } \\
\text { right cosets of } H_{0}
\end{aligned}\right. \\
H_{0} s=\text { The set of all hidden shifts }
\end{array}
$$

Scrambler-Permutation to HSP

Scrambler-Permutation Problem

$>$ Input: M and $M^{\prime}=S M P$ for some $(S, P) \in \mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n}$
$>$ Output: (S, P)

HSP over the wreath product $\left(\mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n}\right)$) \mathbf{Z}_{2}
$>$ hidden subgroup: $H=\left(\left(H_{0}, s^{-1} H_{0} s\right), 0\right) \cup\left(\left(H_{0} s, s^{-1} H_{0}\right), 1\right)$ where

$$
\begin{aligned}
& H_{0}=\left\{(S, P) \mid S^{-1} M P=M\right\}<\mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n} \\
& S=\left(S^{-1}, P\right)
\end{aligned}
$$

Can this HSP be solved efficiently by strong QFS?
Can QFS distinguish conjugates gHg^{-1} and $\{1\}$?

outine

- Overview/Motivation
- Code Equivalence
- Why care?
- Shor-like algorithms
- Quantum Fourier Sampling (QFS)
- Hidden Subgroup Problems (HSP)
- Reduction from Code Equivalence to HSP
- Our results
- General results
- Codes that make Code Equivalence hard for QFS

Our Results

- We show that in many cases of interest,
$-\mathrm{QFS}_{G}\left(g \mathrm{Hg}^{-1}\right)$ is exponentially close to $\mathrm{QFS}_{G}(\{1\})$, for most $g \in G$.
- In such a case, H is called indistinguishable by strong QFS.
- Apply to $G=S_{n}$ with $|H| \geq 2$
- Apply to the CE for many codes, including
- Goppa codes, generalized Reed-Solomon codes [Dinh, Moore, Russell, CRYPTO 2011]
- Reed-Muller codes
[Dinh, Moore, Russell, Preprint 2011 , arXiv:1111.4382]

Hidden Symmetries

- Recall: the hidden subgroup reduced from matrix M is determined by the subgroup

$$
H_{0}=\left\{(S, P) \mid S^{-1} M P=M\right\}<\mathrm{GL}_{k}\left(\mathbf{F}_{q}\right) \times S_{n}
$$

- Projection of H_{0} onto S_{n} is the automorphism group $\operatorname{Aut}(M):=\left\{P \in S_{n} \mid \exists S \in \mathrm{GL}_{k}\left(\mathbf{F}_{q}\right), S M P=M\right\}$
- Each $P \in \operatorname{Aut}(M)$ has the same number N of preimages $S \in \mathrm{GL}_{k}\left(\mathbf{F}_{q}\right)$ in this projection.
- Fact: Let r be the column rank of M. Then $N \leq q^{l k(k-r)}$.
- Hence, $\left|H_{0}\right| \leq|\operatorname{Aut}(M)| q^{l k(k-r)}$.

General Results for CE

- Theorem [Dinh, Moore, Russell, CRYPTO 2011]:
- Assume $k^{2} \leq 0.2 n \log _{q} n$.
- The hidden subgroup reduced from matrix M is indistinguishable by strong QFS if

1) $|\operatorname{Aut}(M)| \leq e^{o(n)}$
2) The minimal degree of $\operatorname{Aut}(M)$ is $\geq \Omega(n)$.
3) The column rank of of M is $\geq k-o(\sqrt{n}) / l$.

The minimal degree of $\operatorname{Aut}(M)$ is the minimal number of points moved by a non-identity permutation in $\operatorname{Aut}(M)$.

HSP-hard Codes

- What codes make CE hard for Shor-like algorithms?
- A linear code is called HSP-hard if it has a generator matrix or parity check matrix M s.t. the hidden subgroup reduced from M is indistinguishable by strong QFS.
- Observe: If M is a generator matrix of a code C - Then $\operatorname{Aut}(M)=\operatorname{Aut}(C)$, and M has full rank.
- Corollary: Let C be a q-ary $[n, k]$-code such that $k^{2} \leq 0.2 n \log _{q} n$. Then C is HSP-hard if

1) $|\operatorname{Aut}(C)| \leq e^{o(n)}$
2) The minimal degree of $\operatorname{Aut}(C)$ is $\geq \Omega(n)$.

Reed-Muller Codes are HSP-hard

- Reed-Muller code $\operatorname{RM}(r, m)$

$$
=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid f \in \mathbf{F}_{2}\left[X_{1}, . ., X_{m}\right], \operatorname{deg}(f) \leq r\right\},
$$ where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a fixed ordered list of all vectors in $\mathbf{F}_{2}{ }^{m}$

- has length $n=2^{m}$ and dimension $k=\sum_{j=0}^{r}\binom{m}{j}$.
- If $r<0.1 m$, then $k<r\binom{m}{0.1 m}<r 2^{0.47 m}$, and $k^{2} \leq 0.2 n m$ for sufficiently large m.
- Theorem: Reed-Muller codes $\operatorname{RM}(r, m)$ with $r<0.1 m$ and m sufficiently large are HSP-hard.

Automorphism Group of Reed-Muller Codes

- Fact:
$\operatorname{Aut}(\operatorname{RM}(r, m))=$ general affine group of space $\mathbf{F}_{2}{ }^{m}$
$=\left\{\sigma_{A, \boldsymbol{b}}: \mathbf{F}_{2}{ }^{m} \rightarrow \mathbf{F}_{2}{ }^{m}, \sigma_{A, \boldsymbol{b}}(\boldsymbol{x})=A \boldsymbol{x}+\boldsymbol{b} \mid A \in \mathrm{GL}_{m}\left(\mathbf{F}_{2}\right), \boldsymbol{b} \in \mathbf{F}_{2}{ }^{m}\right\}$
- Propositions:

1. $|\operatorname{Aut}(\operatorname{RM}(r, m))|=\left|\mathrm{GL}_{m}\left(\mathbf{F}_{2}\right)\right| \times\left|\mathbf{F}_{2}{ }^{m}\right| \leq 2^{m^{2}+m}$

$$
\leq 2^{o\left(\log ^{2} n\right)} \leq e^{o(n)}, \text { where } n=2^{m}
$$

2. The minimal degree of $\operatorname{Aut}(\operatorname{RM}(r, m))$ is exactly 2^{m-1}.

Automorphism Group of Reed-Muller Codes

2a. The minimal degree of $\operatorname{Aut}(\operatorname{RM}(r, m))$ is $\leq 2^{m-1}$.
Recall: min deg. of $\operatorname{Aut}(C):=\min \{\operatorname{supp}(\pi) \mid \pi \in \operatorname{Aut}(C), \pi \neq \mathrm{Id}\}$, where $\operatorname{supp}(\pi):=\#\{i: \pi(i) \neq i\}$.
Proof:

- An affine transformation $\sigma_{A, \mathbf{0}}: \mathbf{F}_{2}{ }^{m} \rightarrow \mathbf{F}_{2}{ }^{m}$ with support 2^{m-1}

$$
\sigma_{A, 0}(x)=A x=\left(\begin{array}{llll}
1 & & & 1 \\
& 1 & \ddots & \\
& & 1 & \\
& & & 1
\end{array}\right) x
$$

- This $\sigma_{A, 0}$ fixes all vectors $\boldsymbol{x} \in \mathbf{F}_{2}{ }^{m}$ with $x_{m}=0$.
- There are $2^{m}-2^{m-1}=2^{m-1}$ vectors not fixed by $\sigma_{A, \mathbf{0}}$

Automorphism Group of Reed-Muller Codes

2b. The minimal degree of $\operatorname{Aut}(\operatorname{RM}(r, m))$ is $\geq 2^{m-1}$.

- Claim 1: If $\sigma_{A, \boldsymbol{b}}$ fixes a set S that spans $\mathbf{F}_{2}{ }^{m}$, then $\sigma_{A, \boldsymbol{b}}=$ Id.
- Claim 2: Any set $S \subseteq \mathbf{F}_{2}{ }^{m}$ with size $>2^{m-1}$ spans $\mathbf{F}_{2}{ }^{m}$.
\rightarrow No none-identity affine transformation can fix $>2^{m-1}$ vectors.

Automorphism Group of Reed-Muller Codes

2b. The minimal degree of $\operatorname{Aut}(\operatorname{RM}(r, m))$ is $\geq 2^{m-1}$.

- Claim 1: If $\sigma_{A, \boldsymbol{b}}$ fixes a set S that spans $\mathbf{F}_{2}{ }^{m}$, then $\sigma_{A, \boldsymbol{b}}=$ Id.

Proof: Let $\boldsymbol{s} \in S$ and $S^{\prime}=S-\boldsymbol{s}$. Then S^{\prime} also spans $\mathbf{F}_{2}{ }^{m}$, and A fixes S^{\prime}, in which case $A=\mathbf{1}$. Then $\boldsymbol{b}=\mathbf{0}$. Note $\sigma_{\mathbf{1 , 0}}=\mathrm{Id}$.

- Claim 2: Any set $S \subseteq \mathbf{F}_{2}{ }^{m}$ with size $>2^{m-1}$ spans $\mathbf{F}_{2}{ }^{m}$.
\rightarrow No none-identity affine transformation can fix $>2^{m-1}$ vectors.

Automorphism Group of Reed-Muller Codes

2b. The minimal degree of $\operatorname{Aut}(\operatorname{RM}(r, m))$ is $\geq 2^{m-1}$.

- Claim 1: If $\sigma_{A, \boldsymbol{b}}$ fixes a set S that spans $\mathbf{F}_{2}{ }^{m}$, then $\sigma_{A, \boldsymbol{b}}=$ Id.

Proof: Let $\boldsymbol{s} \in S$ and $S^{\prime}=S-\boldsymbol{s}$. Then S^{\prime} also spans $\mathbf{F}_{2}{ }^{m}$, and A fixes S^{\prime}, in which case $A=\mathbf{1}$. Then $\boldsymbol{b}=\mathbf{0}$. Note $\sigma_{\mathbf{1}, \mathbf{0}}=$ Id.

- Claim 2: Any set $S \subseteq \mathbf{F}_{2}{ }^{m}$ with size $>2^{m-1}$ spans $\mathbf{F}_{2}{ }^{m}$.

Proof: Let $B \subseteq S$ be a maximal set that consists of linearly independent vectors. Since B spans $S, 2^{|B|} \geq|S|>2^{m-1}$. Then $|B|=m$. So B, and therefore S, spans $\mathbf{F}_{2}{ }^{m}$.
\rightarrow No none-identity affine transformation can fix $>2^{m-1}$ vectors.

Open Question and Notes

- Are there other HSP-hard codes that are of cryptographic interest?
- Cautionary notes
- Shor-like algorithms are unlikely to help break code-based cryptosystems using HSP-hard codes.
- But we have not shown that other quantum algorithms, or even classical ones, cannot break code-based cryptosystems.
- Nor have we shown that such an algorithm would violate a natural hardness assumption (such as lattice-based cryptosystems and Learning With Errors).

