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Commutators

(G , ·) – group.

Definition
For a, b ∈ G define:
b−1ab called the conjugate of a by b
a−1b−1ab called the commutator of a and b.

Notation:
[a, b] = a−1b−1ab
ab = b−1ab.
We use vector notation a = (a1, . . . , an) for tuples of elements in G .
ab denotes (ab

1 , . . . , a
b
n).
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Commutator identity

Let g ∈ G . Then given

a = (a1, . . . , an) and a′ = (a′1, . . . , a
′
n), where a′i = g−1aig ,

a = aε1

i1
. . . aεkik .

one can compute

[g , a] =
(
a′ε1

i1
. . . a′εkik

)−1 · aε1

i1
. . . aεkik

[a, g ] = [g , a]−1.

Knowledge of g is not necessary to compute [g , a]!
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Commutator key-agreement protocol (ephemeral CKA)

I. Anshel, M. Anshel, and D. Goldefeld, An algebraic method for public-key cryptography, (1999).

Fix a group G and tuples a = (a1, . . . , an) and b = (b1, . . . , bn).

Alice Bob
private key a = aε1

i1
. . . aεkik b = bε1

i1
. . . aεkik

public key b
a

ab

⇓

K = [a, b]

For Alice: K = [a, b].

For Bob: K = [a, b].
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The CKA-problem

The tuples a, b, ab, b
a

uniquely define the commutator K = [a, b]. The problem of
computing K(a, b, ab, b

a
) is called the commutator key-agreement problem.

(Simultaneous conjugacy search problem) Given (a1, . . . , an) and (a′1, . . . , a
′
n)

find any element y ∈ G satisfying a′i = y−1aiy.

CKA-problem is treated as follows:

1 find a conjugator y for the tuples a and a′;

2 find a conjugator x for the tuples b and b
′
;

3 compute K ′ = [x , y ] and hope that K ′ = K .

Surprisingly this approach works in practice:

length-based attacks,

attacks using automatic structure of the braid group (braid group was initially
proposed to be used as a platform group).
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Large subgroup attack

V. Shpilrain and A. Ushakov, The conjugacy search problem in public key cryptography: unnecessary and insufficient,

2004.

In general K ′ 6= K. To ensure that K ′ = K one has to solve a (presumably) harder
problem:

(SCSP relative to a subgroup) Given a and a′ find any y ∈ 〈b1, . . . , bn〉
satisfying a′ = ay .

The decision version of this problem was recently proved to be unsolvable for braid
groups.

For the original parameter values it was shown that:

Elements of public tuples often generate the whole group (large subgroup attack);

SCSP and SCSP relative to a subgroup are equivalent;

An evil party, say Bob, can choose his tuple b so that it will be easy to recover
Alice’s private key.

A. Miasnikov, V. Shpilrain and A. Ushakov, Random subgroups of braid groups: an approach to cryptanalysis of a braid

group based cryptographic protocol, (2006).
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Authenticated CKA protocol

Fix a group G and tuples a = (a1, . . . , an) and b = (b1, . . . , bn).

Alice Bob

static private key a ∈ F (a) b ∈ F (b)

static public key b
a

ab

ephemeral private key x ∈ F (a) y ∈ F (b)

ephemeral public key b
x

ay

shared key a−1b−1[xa−1, yb−1]ab

K =a−1b−1[xa−1, yb−1]ab

=[a, b] · [b, x ] · [x , y ] · [y , a] · [a, b]

For Alice: [a, b] · [b, x ] · [x , y ] · [y , a] · [a, b]

For Bob: [a, b] · [b, x ] · [x , y ] · [y , a] · [a, b].

To impersonate Bob, Eve should be able to solve the following computational problem:

(The authentication problem)

For any Alice’s ephemeral public key b
x

reply with some tuple ay ;

compute the shared key a−1b−1[xa−1, yb−1]ab.

Alexander Ushakov, sasha.ushakov@gmail.com () Authenticated CKA May 2, 2012 7 / 15



Authentication problem

K =a−1b−1[xa−1, yb−1]ab

=[a, b] · [b, x ] · [x , y ] · [y , a] · [a, b].

Theorem
The CKA-problem for G can be efficiently solved if and only if the authentication
problem for G can be efficiently solved.

Proof.
“⇒” Assume we can efficiently solve CKA-problem. To solve authentication problem

Eve generates random y ,

sends ay to Alice,

computes all the commutators in the product K = [a, b] · [b, x ] · [x , y ] · [y , a] · [a, b].

“⇐” Assume we can solve the authentication problem. Then for a particular tuple
ay = ab we have K = [a, b]. Hence, we can solve the CKA-problem.
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Full-forward secrecy

Assume that a passive adversary Eve learned the static private keys a ∈ F (a) and
b ∈ F (b).

Theorem
If Eve can compute the shared key K for a new session between Alice and Bob with
(unknown) ephemeral keys x and y, then she can compute [x , y ], i.e., can solve an
instance of the CKA-problem.

Eve can compute [x , y ] as follows:

[x , y ] = b−1[b−1, x ]a−1ba · K · b−1a−1b[y , a−1]a,

where K = a−1b−1[xa−1, yb−1]ab.
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Known-key security

Let K1, . . . ,Kn be session keys for Alice and Bob. Assume that there exists a polynomial
time algorithm which solves the following problem:{

K1, . . . ,Kn

public info for n + 1 run
⇒ Kn+1. (1)

Then, using the identity

[x , y ] = b−1[b−1, x ]a−1ba · K · b−1a−1b[y , a−1]a.

we can solve the following problem{
[x1, y1], . . . , [xn, yn]
public info

⇒ [xn+1, yn+1],

The ephemeral keys xn+1 and yn+1 are chosen randomly and independently from the key
space. Hence, there exists a polynomial time algorithm solving the problem

public info⇒ [xn+1, yn+1]

Thus, there exists a polynomial time algorithm solving the CKA-problem.
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Key-compromise impersonation

Alice Bob

static private key a ∈ F (a) b ∈ F (b)

static public key b
a

ab

ephemeral private key x ∈ F (a) y ∈ F (b)

ephemeral public key b
x

ay

shared key a−1b−1[xa−1, yb−1]ab

If Eve learned Alice’s static private key, then she can authenticate to Bob as Alice.
The situation when knowledge of Alice’s static private key allows Eve authenticate to
Alice as Bob is called key-compromise impersonation.

The following scenario leads to key-compromise impersonation in our protocol.

Eve sends ab (known publicly) as an ephemeral public key to Alice.

This makes K = [a, b].

Eve does not know b, but she knows a and, hence, can compute [a, b].

Thus, Eve can impersonate Bob to Alice.

Ad-hoc fix: Alice should not accept the shared key K = [a, b].
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Zero-knowledge authentication protocol

Alice the prover Bob the verifier

static private key a ∈ F (a) b ∈ F (b)

static public key α = b
a

β = ab

commitment γ = αx

A single round of the protocol is performed as follows:

Alice chooses a random x ∈ F (a) and sends the commitment γ = αx to Bob.

Bob replies with a random value c ∈ {0, 1} called the challenge.

If c = 0, then Alice sends the element z = x ∈ F (a) in which case Bob checks if
the equality γ = αz is satisfied.

If c = 1, then Alice sends the commutator K = [b, ax ] in which case Bob checks if
K = [b, ax ] is correct.

Theorem
Completeness property holds.

Proof.
Both, Alice and Bob can compute [b, ax ].
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Soundness property

Assume that CKA-problem is hard. Hence, SCSP in G is hard too.

Alice the prover Bob the verifier

static private key a ∈ F (a) b ∈ F (b)

static public key α = b
a

β = ab

commitment γ = αx = b
ax

Response is z = x if c = 0 and K = [b, ax ] if c = 1.

If Eve can guess the value of c , then she can correctly respond with a proper
answer to Bob’s challenge.
On the other hand if she improperly guesses c , then:

(c = 0) Eve has to solve the SCSP for (α, γ) which is hard.

(c = 1) Eve has to find the commutator [b, ax ]. If she would be able to do
that, then she would be able to compute [b, a] = x · [x , b] · K · x−1, i.e., to
solve an instance of CKA-problem

Hence, the soundness error of a single round is 1/2 and repeating one round 100
times we can make it 2−100.
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Homework

Study computational properties of the CKA-problem in different groups.
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Thank you
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