
Algebraic Fault Attacks

Martin Kreuzer

Universität Passau

martin.kreuzer@uni-passau.de

Webinar “Symbolic Computation and

Post-Quantum Cryptography”

The Internet, Apr. 19, 2012

1

Contents

2

Contents

1. Algebraic Attacks

2-a

Contents

1. Algebraic Attacks

2. Fault Attacks

2-b

Contents

1. Algebraic Attacks

2. Fault Attacks

3. A Fault Attack on LED

2-c

Contents

1. Algebraic Attacks

2. Fault Attacks

3. A Fault Attack on LED

4. Algebraic Fault Attacks

2-d

Contents

1. Algebraic Attacks

2. Fault Attacks

3. A Fault Attack on LED

4. Algebraic Fault Attacks

5. Defences Against Fault Attacks

2-e

Contents

1. Algebraic Attacks

2. Fault Attacks

3. A Fault Attack on LED

4. Algebraic Fault Attacks

5. Defences Against Fault Attacks

6. Solving Methods for Fault Equations

2-f

Collaborators

Prof. Dr. Ilia Polian

Chair of Technical Informatics

Faculty of Computer Science and Mathematics

University of Passau, Germany

Philipp Jovanovic

Faculty of Computer Science and Mathematics

University of Passau, Germany

3

1 – Algebraic Attacks

A man who tells the truth

4

1 – Algebraic Attacks

A man who tells the truth

needs a fast horse.

4-a

1 – Algebraic Attacks

A man who tells the truth

needs a fast horse.

A cryptosystem consists of the following parts:

a set P , called plaintext space,

a set C, called ciphertext space,

a set K, called key space,

for every k ∈ K a map ǫk : P −→ C, called encryption map

and a map δk : C −→ P , called decryption map such that

δk ◦ ǫk = idP .

4-b

1 – Algebraic Attacks

A man who tells the truth

needs a fast horse.

A cryptosystem consists of the following parts:

a set P , called plaintext space,

a set C, called ciphertext space,

a set K, called key space,

for every k ∈ K a map ǫk : P −→ C, called encryption map

and a map δk : C −→ P , called decryption map such that

δk ◦ ǫk = idP .

Idea: Reduce the task of breaking a cryptosystem to the task of

solving a polynomial system!

4-c

Let the plain text space and the cipher text space be of the form

P = Kn and C = Km with a finite field K. (Usually K = F2.)

5

Let the plain text space and the cipher text space be of the form

P = Kn and C = Km with a finite field K. (Usually K = F2.)

Remark 1.1 Every map ϕ : Kn −→ Km is given by polynomials,

i.e. there exist polynomials f1, . . . , fm ∈ K[x1, . . . , xn] such that

ϕ(a1, . . . , an) = (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

for all (a1, . . . , an) ∈ Kn.

5-a

Let the plain text space and the cipher text space be of the form

P = Kn and C = Km with a finite field K. (Usually K = F2.)

Remark 1.1 Every map ϕ : Kn −→ Km is given by polynomials,

i.e. there exist polynomials f1, . . . , fm ∈ K[x1, . . . , xn] such that

ϕ(a1, . . . , an) = (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

for all (a1, . . . , an) ∈ Kn.

Remark 1.2 (Attacking a Symmetric Block Cipher)

Assume that one or more plaintext – ciphertext pairs are known.

Write the encryption map using polynomials in indeterminates

representing the key bits (k1, . . . , kℓ), the plaintext bits (a1, . . . , an),

and possibly intermediate states xi, yj .

5-b

6

Substitute the given plaintext unit (a1, . . . , an) and the

corresponding cyphertext unit (b1, . . . , bm) in

ǫk(a1, . . . , an)

= (f1(k1, . . . , kℓ, xi, yj , a1, . . . , an), . . . , fm(k1, . . . , kℓ, xi, yj , a1, . . . , an))

= (b1, . . . , bm)

Then solve the resulting polynomial system for the key

indeterminates (k1, . . . , kℓ) and (possibly) the intermediate state bits

xi, yj .

7

Remark 1.3 (Attacking a Public Key Cryptosystem)

Algebraic attacks work even better for public key cryptosystems. Let

the decryption map be given by

δk(b1, . . . , bm)

= (f1(k1, . . . , kℓ, b1, . . . , bm), . . . , fn(k1, . . . , kℓ, b1, . . . , bm))

= (a1, . . . , an)

Since we can generate many ciphertext-plaintext pairs, we can

produce a very overdetermined polynomial system for (k1, . . . , kℓ).

8

Remark 1.3 (Attacking a Public Key Cryptosystem)

Algebraic attacks work even better for public key cryptosystems. Let

the decryption map be given by

δk(b1, . . . , bm)

= (f1(k1, . . . , kℓ, b1, . . . , bm), . . . , fn(k1, . . . , kℓ, b1, . . . , bm))

= (a1, . . . , an)

Since we can generate many ciphertext-plaintext pairs, we can

produce a very overdetermined polynomial system for (k1, . . . , kℓ).

Example 1.4 In 2003, J.C. Faugere and A. Joux broke the Hidden

Field Equation (HFE) cryptosystem for some suggested parameters

by solving 80 equations of degree 2 in 80 indeterminates over F2

using a Gröbner basis approach.

8-a

2 – Fault Attacks

To find fault is easy.

9

2 – Fault Attacks

To find fault is easy.

To do better may be difficult.

(Plutarch)

9-a

2 – Fault Attacks

To find fault is easy.

To do better may be difficult.

(Plutarch)

A fault attack is a particular kind of side-channel attack. The

attacker does not directly target the encryption (or decryption) map,

but rather its implementation.

9-b

2 – Fault Attacks

To find fault is easy.

To do better may be difficult.

(Plutarch)

A fault attack is a particular kind of side-channel attack. The

attacker does not directly target the encryption (or decryption) map,

but rather its implementation.

Some standard techniques for fault attacks use fault injection to

manipulate logical values being processed by an electronic circuit, e.g.

• manipulation of the power-supply voltage to cause miscalculations,

• manipulation of a circuit’s clock, and

• parasitic charge-carrier generation by a laser beam.

9-c

For a successful fault attack, the following capabilities of the attacker

will be assumed:

10

For a successful fault attack, the following capabilities of the attacker

will be assumed:

Sufficient temporal resolution: For instance, by measuring the

electromagnetic field, the attacker should to be able to determine

which part of the algorithm is currently carried out. For instance, for

a multi-round block cipher, the attacker should know which round is

currently executed.

10-a

For a successful fault attack, the following capabilities of the attacker

will be assumed:

Sufficient temporal resolution: For instance, by measuring the

electromagnetic field, the attacker should to be able to determine

which part of the algorithm is currently carried out. For instance, for

a multi-round block cipher, the attacker should know which round is

currently executed.

Sufficient spacial resolution: The attacker should have some

approximate knowledge in which register or memory cells a certain

intermediate state of the computation is stored. While, for example,

a laser may not have the precision to target individual memory cells,

it may be able to target a register.

10-b

Example 2.1 (The Bellcore Attack)

In 1996, three employees of Bell Communications Research

found an attack that breaks a CRT-RSA decryption device by

injecting a single fault.

To decode y = xe, the CRT method computes m1 = yd(mod p) and

m2 = yd(mod q) and recombines x = am1 + bm2(modn) with

suitable a = ℓ q and b = k p. If we disturb the computation of m1,

then gcd(x− x̂, n) = q.

11

Example 2.1 (The Bellcore Attack)

In 1996, three employees of Bell Communications Research

found an attack that breaks a CRT-RSA decryption device by

injecting a single fault.

To decode y = xe, the CRT method computes m1 = yd(mod p) and

m2 = yd(mod q) and recombines x = am1 + bm2(modn) with

suitable a = ℓ q and b = k p. If we disturb the computation of m1,

then gcd(x− x̂, n) = q.

Example 2.2 (Optical Fault Induction)

In 2002, Skorobogatov and Anderson suggested a very simple and

effective way to induce faults in smartcards and microcontrollers

using a flashgun (30$) and a laser pointer ($5).

11-a

12

Fault Attacks on DES

Example 2.3 The first fault attack on DES was suggested by

Biham and Shamir in 1997. They assume that it is possible to flip

exactly one bit at an unknown point in the DES algorithm, and they

need to repeat this with 50-200 encryptions of the same plain text.

13

Fault Attacks on DES

Example 2.3 The first fault attack on DES was suggested by

Biham and Shamir in 1997. They assume that it is possible to flip

exactly one bit at an unknown point in the DES algorithm, and they

need to repeat this with 50-200 encryptions of the same plain text.

This was improved many times. For instance, in 2010, Courtois,

Jackson and Ware showed that it suffices to create one faulty

ciphertext by flipping two bits in round 13 and guessing 24 key bits.

(There are 56 key bits and 16 rounds.)

13-a

Fault Attacks on DES

Example 2.3 The first fault attack on DES was suggested by

Biham and Shamir in 1997. They assume that it is possible to flip

exactly one bit at an unknown point in the DES algorithm, and they

need to repeat this with 50-200 encryptions of the same plain text.

This was improved many times. For instance, in 2010, Courtois,

Jackson and Ware showed that it suffices to create one faulty

ciphertext by flipping two bits in round 13 and guessing 24 key bits.

(There are 56 key bits and 16 rounds.)

Also variants such as Triple-DES have been attacked successfully.

13-b

Fault Attacks on AES

Example 2.4 The first fault attack on AES was reported by Blömer

and Seifert in 2003. They assume that an attacker is able to perform

128 encryptions of the same plain text and set a specific bit to zero

at a specific point in the algorithm each time.

14

Fault Attacks on AES

Example 2.4 The first fault attack on AES was reported by Blömer

and Seifert in 2003. They assume that an attacker is able to perform

128 encryptions of the same plain text and set a specific bit to zero

at a specific point in the algorithm each time.

Example 2.5 The initial fault attack on AES has been improved in

several ways. A state-of-the-art variant was presented by Tunstall,

Mukhopadhyay and Ali in 2011, using the following fault model:

the attacker can create a fault at the first byte of the input state

matrix of round 8. (Standard AES performs 10 rounds.) Fault

induction is achieved by changing the clock frequency or the power

supply voltage at a specific point during the AES encryption

algorithm. The key space is reduced to about 28 candidate keys.

14-a

Fault Attacks on PRESENT

PRESENT is an ultra lightweight block cipher introduced in 2007.

It has 64 bit states, 80 or 128 bit keys, and performs 31 encryption

rounds.

15

Fault Attacks on PRESENT

PRESENT is an ultra lightweight block cipher introduced in 2007.

It has 64 bit states, 80 or 128 bit keys, and performs 31 encryption

rounds.

Example 2.6 In 2010, G. Wang and S. Wang presented a fault

attack on the key schedule of PRESENT. They assume that the

attacker is able to create a fault in one nibble (4 bit) of the round key

K31. Using 64 pairs of correct and faulty ciphertexts, they can reduce

the search space to 229 key candidates.

15-a

Fault Attacks on PRESENT

PRESENT is an ultra lightweight block cipher introduced in 2007.

It has 64 bit states, 80 or 128 bit keys, and performs 31 encryption

rounds.

Example 2.6 In 2010, G. Wang and S. Wang presented a fault

attack on the key schedule of PRESENT. They assume that the

attacker is able to create a fault in one nibble (4 bit) of the round key

K31. Using 64 pairs of correct and faulty ciphertexts, they can reduce

the search space to 229 key candidates.

Moreover, reduced-round versions of PRESENT have been subjected

to differential cryptoanalysis by M. Wang.

15-b

3 – A Fault Attack on LED

If an experiment works

16

3 – A Fault Attack on LED

If an experiment works

something has gone wrong.

(Finagle’s Eighth Law)

16-a

3 – A Fault Attack on LED

If an experiment works

something has gone wrong.

(Finagle’s Eighth Law)

The LED (Light Encryption Device) cipher is a block cipher

introduced in 2011 having the following properties:

16-b

3 – A Fault Attack on LED

If an experiment works

something has gone wrong.

(Finagle’s Eighth Law)

The LED (Light Encryption Device) cipher is a block cipher

introduced in 2011 having the following properties:

• 64-bit block cipher, small and fast like PRESENT

• uses one or two 64 bit keys (LED-64, LED-128), no key schedule

• uses 32 rounds for LED-64 and 48 rounds for LED-128

16-c

3 – A Fault Attack on LED

If an experiment works

something has gone wrong.

(Finagle’s Eighth Law)

The LED (Light Encryption Device) cipher is a block cipher

introduced in 2011 having the following properties:

• 64-bit block cipher, small and fast like PRESENT

• uses one or two 64 bit keys (LED-64, LED-128), no key schedule

• uses 32 rounds for LED-64 and 48 rounds for LED-128

• provably secure against classical cryptoanalysis

• extremely small silicone footprint

16-d

17

Description of LED

The current state of LED is represented by a 4x4 matrix of nibbles

S =















s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16















which corresponds to the 64-bit tuple s1 ‖ s2 ‖ · · · ‖ s16. The key is

similarly represented by K = (ki).

18

Description of LED

The current state of LED is represented by a 4x4 matrix of nibbles

S =















s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16















which corresponds to the 64-bit tuple s1 ‖ s2 ‖ · · · ‖ s16. The key is

similarly represented by K = (ki).

The entries si correspond to elements of F16 = F2[x]/〈x
4 + x+ 1〉 and

are represented by coefficient tuples in hexadecimal form:

x3 + x+ 1 7−→ 1 0 1 1 7−→ B

18-a

Every round of LED consists of four operations:

AddConstants SubCells ShiftRows MixColumnsSerial

4 cells

4 cells

element of F16

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Every four rounds there is a key addition.

19

AddConstants (AC): A round constant consisting of a tuple of six

bits (b5, b4, b3, b2, b1, b0) is defined as follows.

Before the first round, we start with the zero tuple. In consecutive

rounds, we start with the previous round constant. Then we shift the

six bits one position to the left. The new value of b0 is computed as

b5 + b4 + 1. This results in the following round constants.

Rounds Constants

1-24 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E,1D,3A,35,2B,16,2C,18,30

25-48 21,02,05,0B,17,2E,1C,38,31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Form x = b5 || b4 || b3 and y = b2 || b1 || b0 and add

(

0 x 0 0
1 y 0 0
2 x 0 0
3 y 0 0

)

to the

state matrix.

20

SubCells (SC): Each entry x of the state matrix is replaced by the

element S[x] from the SBox given in the following table. (This is the

SBox used by PRESENT.)

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

21

SubCells (SC): Each entry x of the state matrix is replaced by the

element S[x] from the SBox given in the following table. (This is the

SBox used by PRESENT.)

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

ShiftRows (SR): For i = 1, 2, 3, 4, the i-th row of the state matrix

is shifted cyclically to the left by i− 1 positions.

21-a

SubCells (SC): Each entry x of the state matrix is replaced by the

element S[x] from the SBox given in the following table. (This is the

SBox used by PRESENT.)

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

ShiftRows (SR): For i = 1, 2, 3, 4, the i-th row of the state matrix

is shifted cyclically to the left by i− 1 positions.

MixColumnsSerial (MCS): Each column v of the state matrix is

replaced by the product M · v, where M is the matrix M =

(

4 1 2 2
8 6 5 6
B E A 9
2 2 F B

)

21-b

Fault Propagation in LED

We inject a random fault in the first entry of the state matrix at the

beginning of round 30.

AC

AC

AC

SC

SC

SC

SR

SR

SR

MCS

MCS

MCS AK

r = 30

f f f' f' 4f'

8f'

Bf'

2f'

r = 31

4f'

8f'

Bf'

2f'

4f'

8f'

Bf'

2f'

a

b

c

d

a

b

c

d

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

r = 32

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

q0

q4

q8

q12

q1

q5

q9

q13

q2

q6

q10

q14

q3

q7

q11

q15

q0

q5

q10

q15

q1

q6

q11

q12

q2

q7

q8

q13

q3

q4

q9

q14

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

22

Fault Equations

We consider the correct cipher text c and the faulty cipher text c′ as

starting points and invert every operation of the encryption until the

beginning of round 30. The 4-bit sized elements k0, . . . , k15 of the key

are viewed as indeterminates.

23

Fault Equations

We consider the correct cipher text c and the faulty cipher text c′ as

starting points and invert every operation of the encryption until the

beginning of round 30. The 4-bit sized elements k0, . . . , k15 of the key

are viewed as indeterminates.

AddKey−1: Replace ci by ci + ki and c′i by c′i + ki.

23-a

Fault Equations

We consider the correct cipher text c and the faulty cipher text c′ as

starting points and invert every operation of the encryption until the

beginning of round 30. The 4-bit sized elements k0, . . . , k15 of the key

are viewed as indeterminates.

AddKey−1: Replace ci by ci + ki and c′i by c′i + ki.

MixColumnSerial−1: Multiply by the inverse matrix

M−1 =

(

C C D 4
3 8 4 5
7 6 2 E
D 9 9 D

)

and get the expressions

C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12) resp.

C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12).

23-b

ShiftRows−1: The expressions are permuted, but not changed.

24

ShiftRows−1: The expressions are permuted, but not changed.

SubCells−1: If S−1 is the inverse of the LED SBox, we get

S−1(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12)) resp.

S−1(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12)).

24-a

ShiftRows−1: The expressions are permuted, but not changed.

SubCells−1: If S−1 is the inverse of the LED SBox, we get

S−1(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12)) resp.

S−1(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12)).

Fault Indeterminates: Now equate the difference of the traces

of c and c′ with indeterminates coming from the fault propagation.

4a = S−1(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12))

+ S−1(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12))

and similar equations for the other 15 entries of the state matrix

result. Altogether, we find 16 equations over F16 in the

indeterminates a, b, c, d representing the fault propagation and the

indeteminates k1, . . . , k16 representing the secret key.

24-b

Key Tuple Filtering

Next we use the fault equations to reduce the set of candidate keys

until it is small enough for an exhaustive search.

25

Key Tuple Filtering

Next we use the fault equations to reduce the set of candidate keys

until it is small enough for an exhaustive search.

Let x be one of the fault indeterminates {a, b, c, d} and let

i ∈ {1, 2, 3, 4}.

25-a

Key Tuple Filtering

Next we use the fault equations to reduce the set of candidate keys

until it is small enough for an exhaustive search.

Let x be one of the fault indeterminates {a, b, c, d} and let

i ∈ {1, 2, 3, 4}.

Each fault equation Ex,i depends only on 4 key indeterminates.

25-b

Key Tuple Filtering

Next we use the fault equations to reduce the set of candidate keys

until it is small enough for an exhaustive search.

Let x be one of the fault indeterminates {a, b, c, d} and let

i ∈ {1, 2, 3, 4}.

Each fault equation Ex,i depends only on 4 key indeterminates.

Compute a list Sx,i of length 16. Its j-th entry is the set of all

4-tuples of values of key indeterminates for which Ex,i evaluates to

the j-th element of F16. (These are 165 evaluations of simple

polynomials.)

25-c

Key Tuple Filtering

Next we use the fault equations to reduce the set of candidate keys

until it is small enough for an exhaustive search.

Let x be one of the fault indeterminates {a, b, c, d} and let

i ∈ {1, 2, 3, 4}.

Each fault equation Ex,i depends only on 4 key indeterminates.

Compute a list Sx,i of length 16. Its j-th entry is the set of all

4-tuples of values of key indeterminates for which Ex,i evaluates to

the j-th element of F16. (These are 165 evaluations of simple

polynomials.)

Now find all values jx such that the j-th entry of Sx,1(jx) and

Sx,2(jx) and Sx,3(jx) and Sx,4(jx) are all non-empty. A field element

jx is called a possible fault value for x.

25-d

Finally, for all possible fault tuples (ja, jb, jc, jd) intersect those sets

Sx,i which correspond to equations involving the same key

indeterminates:

(k0, k4, k8, k12) : Sa,0(ja) ∩ Sd,1(jd) ∩ Sc,2(jc) ∩ Sb,3(jb)

(k1, k5, k9, k13) : Sa,3(ja) ∩ Sd,0(jd) ∩ Sc,1(jc) ∩ Sb,2(jb)

(k2, k6, k10, k14) : Sa,2(ja) ∩ Sd,3(jd) ∩ Sc,0(jc) ∩ Sb,1(jb)

(k3, k7, k11, k15) : Sa,1(ja) ∩ Sd,2(jd) ∩ Sc,3(jc) ∩ Sb,0(jb)

26

Finally, for all possible fault tuples (ja, jb, jc, jd) intersect those sets

Sx,i which correspond to equations involving the same key

indeterminates:

(k0, k4, k8, k12) : Sa,0(ja) ∩ Sd,1(jd) ∩ Sc,2(jc) ∩ Sb,3(jb)

(k1, k5, k9, k13) : Sa,3(ja) ∩ Sd,0(jd) ∩ Sc,1(jc) ∩ Sb,2(jb)

(k2, k6, k10, k14) : Sa,2(ja) ∩ Sd,3(jd) ∩ Sc,0(jc) ∩ Sb,1(jb)

(k3, k7, k11, k15) : Sa,1(ja) ∩ Sd,2(jd) ∩ Sc,3(jc) ∩ Sb,0(jb)

The resulting tuples (k0, . . . , k15) form the key candidate set. Each

of the intersections contains typically 24 − 28 elements. The key

candidate set contains typically 219 − 225 key tuples.

26-a

Finally, for all possible fault tuples (ja, jb, jc, jd) intersect those sets

Sx,i which correspond to equations involving the same key

indeterminates:

(k0, k4, k8, k12) : Sa,0(ja) ∩ Sd,1(jd) ∩ Sc,2(jc) ∩ Sb,3(jb)

(k1, k5, k9, k13) : Sa,3(ja) ∩ Sd,0(jd) ∩ Sc,1(jc) ∩ Sb,2(jb)

(k2, k6, k10, k14) : Sa,2(ja) ∩ Sd,3(jd) ∩ Sc,0(jc) ∩ Sb,1(jb)

(k3, k7, k11, k15) : Sa,1(ja) ∩ Sd,2(jd) ∩ Sc,3(jc) ∩ Sb,0(jb)

The resulting tuples (k0, . . . , k15) form the key candidate set. Each

of the intersections contains typically 24 − 28 elements. The key

candidate set contains typically 219 − 225 key tuples.

The key candidate sets are pairwise disjoint. Only one of them

contains the correct key. It remains to find out which.

26-b

Key Set Filtering

Let x0, x4, x8, x12 be the entries of the first column of the state

matrix at the beginning of round 31. Fault propagation yields

x′

0 = x0 + 4f ′ x′

8 = x8 + Bf ′

x′

4 = x4 + 8f ′ x′

12 = x12 + 2f ′

for the faulty entries x′
i.

27

Key Set Filtering

Let x0, x4, x8, x12 be the entries of the first column of the state

matrix at the beginning of round 31. Fault propagation yields

x′

0 = x0 + 4f ′ x′

8 = x8 + Bf ′

x′

4 = x4 + 8f ′ x′

12 = x12 + 2f ′

for the faulty entries x′
i. Let y0, y4, y8, y12 be the values in the first

column after AddColumns and SubCells. We get

S(x0 + 0) = y0

S(x4 + 1) = y4

S(x8 + 2) = y8

S(x12 + 3) = y12

S(x′

0 + 0) = y0 + a

S(x′

4 + 1) = y4 + b

S(x′

8 + 2) = y8 + c

S(x′

12 + 3) = y12 + d

27-a

This yields the equations

4f ′ = S−1(y0) + S−1(y0 + a)

8f ′ = S−1(y4) + S−1(y4 + b)

Bf ′ = S−1(y8) + S−1(y8 + c)

2f ′ = S−1(y12) + S−1(y12 + d)

For every fault tuple (ja, jb, jc, jd), check whether this system has a

solution. In this way we can discard many fault tuples and the

corresponding key sets, as the following table and figure show.

#fault tuples 2 3 4 5 6 8 9 10 12 16 18 24 36

ø discarded 0.4 0.9 1.4 2.0 2.5 3.6 3.7 5.0 6.1 8.4 8.4 12.6 24.0

28

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 8 9 10 12 16 18 24 36

fault tuples

#occurrences
#discards

29

4 – Algebraic Fault Attacks

People will accept your ideas much more readily

30

4 – Algebraic Fault Attacks

People will accept your ideas much more readily

if you tell them Grothendieck said it first.

(Algebraics Anonymous)

30-a

4 – Algebraic Fault Attacks

People will accept your ideas much more readily

if you tell them Grothendieck said it first.

(Algebraics Anonymous)

Idea: Combine algebraic attacks and fault attacks!

30-b

4 – Algebraic Fault Attacks

People will accept your ideas much more readily

if you tell them Grothendieck said it first.

(Algebraics Anonymous)

Idea: Combine algebraic attacks and fault attacks!

More precise idea: Describe a cipher algebraically using

multivariate polynomials. Describe the fault equations using

multivariate polynomials. Then solve the resulting poylnomial

system for the key indeterminates.

30-c

An Algebraic Fault Attack for LED

First Step: Determine the polynomials describing the steps of an

LED round. Describe an LED state s1 ‖ s2 ‖ · · · ‖ s16 by representing

si ∈ F16 using si = c4i−3x
3 + c4i−2x

2 + c4i−1x+ c4i by elements

c1, . . . , c64 ∈ F2 where we use F16
∼= F2[x]/〈x

4 + x+ 1〉.

31

An Algebraic Fault Attack for LED

First Step: Determine the polynomials describing the steps of an

LED round. Describe an LED state s1 ‖ s2 ‖ · · · ‖ s16 by representing

si ∈ F16 using si = c4i−3x
3 + c4i−2x

2 + c4i−1x+ c4i by elements

c1, . . . , c64 ∈ F2 where we use F16
∼= F2[x]/〈x

4 + x+ 1〉.

Let pi be the plaintext bits, ki the key bits, x
(r)
i the input state bits

of the SBox in round r, y
(r)
i intermediate state bits of round r, z

(r)
i

output state bits of round r, and ci the ciphertext bits.

31-a

An Algebraic Fault Attack for LED

First Step: Determine the polynomials describing the steps of an

LED round. Describe an LED state s1 ‖ s2 ‖ · · · ‖ s16 by representing

si ∈ F16 using si = c4i−3x
3 + c4i−2x

2 + c4i−1x+ c4i by elements

c1, . . . , c64 ∈ F2 where we use F16
∼= F2[x]/〈x

4 + x+ 1〉.

Let pi be the plaintext bits, ki the key bits, x
(r)
i the input state bits

of the SBox in round r, y
(r)
i intermediate state bits of round r, z

(r)
i

output state bits of round r, and ci the ciphertext bits.

Thus we are constructing polynomials in the ring

F2[pi, ki, x
(r)
i , y

(r)
i , z

(r)
i , ci] having 6336 indeterminates.

31-b

AddConstants: For the first round, we combine the key addition

and the addition of the matrix corresponding to the first round

constant (b5, b4, . . . , b0) = (0, . . . , 0, 1) and get

x
(1)
i = pi + ki + 1 for i = 20, 24, 35, 51, 52, 56,

x
(1)
i = pi + ki otherwise.

32

AddConstants: For the first round, we combine the key addition

and the addition of the matrix corresponding to the first round

constant (b5, b4, . . . , b0) = (0, . . . , 0, 1) and get

x
(1)
i = pi + ki + 1 for i = 20, 24, 35, 51, 52, 56,

x
(1)
i = pi + ki otherwise.

For later rounds, we let (b
(r)
5 , . . . , b

(r)
0) be the r-th round constants.

We obtain

x
(r)
i = z

(r−1)
i + 1 for i = 20, 35, 51, 52 x

(r)
i = z

(r−1)
i + b

(r)
5 for i = 6, 38

x
(r)
i = z

(r−1)
i + b

(r)
4 for i = 7, 39 x

(r)
i = z

(r−1)
i + b

(r)
3 for i = 8, 40

x
(r)
i = z

(r−1)
i + b

(r)
2 for i = 22, 54 x

(r)
i = z

(r−1)
i + b

(r)
1 for i = 23, 55

x
(r)
i = z

(r−1)
i + b

(r)
0 for i = 24, 56 x

(r)
i = z

(r−1)
i otherwise

32-a

SubCells: The input (x1, x2, x3, x4) and output (y1, y2, y3, y4) of the

4-bit SBox are related by the polynomials

y1 = x1x2x4 + x1x3x4 + x2x3x4 + x2x3 + x1 + x3 + x4 + 1

y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4 + x3x4 + x1 + x2 + 1

y3 = x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 + x1 + x3

y4 = x2x3 + x1 + x2 + x4

33

SubCells: The input (x1, x2, x3, x4) and output (y1, y2, y3, y4) of the

4-bit SBox are related by the polynomials

y1 = x1x2x4 + x1x3x4 + x2x3x4 + x2x3 + x1 + x3 + x4 + 1

y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4 + x3x4 + x1 + x2 + 1

y3 = x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 + x1 + x3

y4 = x2x3 + x1 + x2 + x4

ShiftRows: We combine the action of SubCells and ShiftRows into

one set of polynomials. The permutation representing ShiftRows is

σ = (17 29 25 21)(18 30 26 22)(19 31 27 23)(20 32 28 24)

(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)

(49 53 57 61)(50 54 58 62)(51 55 59 63)(52 56 60 64)

33-a

Letting iℓ = 4i− 4 + ℓ, we obtain, for i = 1, . . . , 16, polynomials

Y
(r)
σ(i1)

= X
(r)
i1

X
(r)
i2

X
(r)
i4

+X
(r)
i1

X
(r)
i3

X
(r)
i4

+X
(r)
i2

X
(r)
i3

X
(r)
i4

+

X
(r)
i2

X
(r)
i3

+X
(r)
i1

+X
(r)
i3

+X
(r)
i4

+ 1

Y
(r)
σ(i2)

= X
(r)
i1

X
(r)
i2

X
(r)
i4

+X
(r)
i1

X
(r)
i3

X
(r)
i4

+X
(r)
i1

X
(r)
i3

+

X
(r)
i1

X
(r)
i4

+X
(r)
i3

X
(r)
i4

+X
(r)
i1

+X
(r)
i2

+ 1

Y
(r)
σ(i3)

= X
(r)
i1

X
(r)
i2

X
(r)
i4

+X
(r)
i1

X
(r)
i3

X
(r)
i4

+X
(r)
i2

X
(r)
i3

X
(r)
i4

+

X
(r)
i1

X
(r)
i2

+X
(r)
i1

X
(r)
i3

+X
(r)
i1

+X
(r)
i3

Y
(r)
σ(i4)

= X
(r)
i2

X
(r)
i3

+X
(r)
i1

+X
(r)
i2

+X
(r)
i4

34

MixColumnsSerial: Each column v of the state matrix has to be

replaced by M · v, where M =

(

4 1 2 2
8 6 5 6
B E A 9
2 2 F B

)

. This yields the equations

z
(r)
1 = y

(r)
3 + y

(r)
17 + y

(r)
34 + y

(r)
50

z
(r)
2 = y

(r)
1 + y

(r)
4 + y

(r)
18 + y

(r)
35 + y

(r)
51

z
(r)
3 = y

(r)
1 + y

(r)
2 + y

(r)
19 + y

(r)
33 + y

(r)
36 + y

(r)
49 + y

(r)
52

z
(r)
4 = y

(r)
2 + y

(r)
20 + y

(r)
33 + y

(r)
49 .

and further 60 equations of this type.

35

MixColumnsSerial: Each column v of the state matrix has to be

replaced by M · v, where M =

(

4 1 2 2
8 6 5 6
B E A 9
2 2 F B

)

. This yields the equations

z
(r)
1 = y

(r)
3 + y

(r)
17 + y

(r)
34 + y

(r)
50

z
(r)
2 = y

(r)
1 + y

(r)
4 + y

(r)
18 + y

(r)
35 + y

(r)
51

z
(r)
3 = y

(r)
1 + y

(r)
2 + y

(r)
19 + y

(r)
33 + y

(r)
36 + y

(r)
49 + y

(r)
52

z
(r)
4 = y

(r)
2 + y

(r)
20 + y

(r)
33 + y

(r)
49 .

and further 60 equations of this type.

Final key addition: We have ci = z
(32)
i + ki for i = 1, . . . , 64.

35-a

Second Step: Find polynomials representing the fault equations.

Up to now, the fault equations involve S−1, the inverse of the SBox.

36

Second Step: Find polynomials representing the fault equations.

Up to now, the fault equations involve S−1, the inverse of the SBox.

Using the identification F16
∼= F2[x]/〈x

4 + x+ 1〉, the map

S−1 : F16 −→ F16 is given by the interpolation polynomial

f(y) = (x2 + 1) + (x2 + 1)y + (x3 + x)y2 + (x3 + x2 + 1)y3 + xy4

+(x3 + 1)y5 + (x3 + 1)y7 + (x+ 1)y9 + (x2 + 1)y10 + (x3 + 1)y11

+(x3 + x)y12 + (x+ 1)y13 + (x3 + x2 + 1)y14

Instead of applying S−1, we can now substitute the right-hand sides

of the fault equations for y in this polynomial.

36-a

Third Step: Recall that the fault equations are of the form Ea,0 :

a = D · (S−1(C·(c1 + k1) + C·(c5 + k5) + D·(c9 + k9) + 4·(c13 + k13))

+S−1(C·(c′1 + k1) + C·(c′5 + k5) + D·(c′9 + k9) + 4·(c′13 + k13)))

By subtracting the right-hand sides of Ea,0, Ea,1, Ea,2, Ea,3 we get

three polynomials over F16. Proceeding similarly for Eb,i, Ec,i, Ed,i

we get 12 polynomials over F16.

37

Third Step: Recall that the fault equations are of the form Ea,0 :

a = D · (S−1(C·(c1 + k1) + C·(c5 + k5) + D·(c9 + k9) + 4·(c13 + k13))

+S−1(C·(c′1 + k1) + C·(c′5 + k5) + D·(c′9 + k9) + 4·(c′13 + k13)))

By subtracting the right-hand sides of Ea,0, Ea,1, Ea,2, Ea,3 we get

three polynomials over F16. Proceeding similarly for Eb,i, Ec,i, Ed,i

we get 12 polynomials over F16.

The coefficient polynomials of 1, x, x2, x3 then yield 48 polynomials

over F2 representing the fault equations.

37-a

Third Step: Recall that the fault equations are of the form Ea,0 :

a = D · (S−1(C·(c1 + k1) + C·(c5 + k5) + D·(c9 + k9) + 4·(c13 + k13))

+S−1(C·(c′1 + k1) + C·(c′5 + k5) + D·(c′9 + k9) + 4·(c′13 + k13)))

By subtracting the right-hand sides of Ea,0, Ea,1, Ea,2, Ea,3 we get

three polynomials over F16. Proceeding similarly for Eb,i, Ec,i, Ed,i

we get 12 polynomials over F16.

The coefficient polynomials of 1, x, x2, x3 then yield 48 polynomials

over F2 representing the fault equations.

Most of these polynomials have degree 2 and 50-170 terms. After

substituting plaintext-ciphertext pairs, usually a few of them become

linear (with about 15-20 terms).

37-b

Experiments and Timings

The polynomial system consisting of the polynomials describing the

encryption and the fault polynomials was solved using the

SAT-solvers MiniSat 2.2 (MS) and Cryptominisat 2.9.3 (CMS)

on an 8 core Xeon processor running at 3.5 GHz. The following

timings are averages of 10 runs using random plaintexts, keys and

faults.

Solver MS (1 thread) CMS (1 thread) CMS (4 threads)

AVG (sec / h) 83947 / 23.31 48961 / 13.60 20859 / 5.79

38

Experiments and Timings

The polynomial system consisting of the polynomials describing the

encryption and the fault polynomials was solved using the

SAT-solvers MiniSat 2.2 (MS) and Cryptominisat 2.9.3 (CMS)

on an 8 core Xeon processor running at 3.5 GHz. The following

timings are averages of 10 runs using random plaintexts, keys and

faults.

Solver MS (1 thread) CMS (1 thread) CMS (4 threads)

AVG (sec / h) 83947 / 23.31 48961 / 13.60 20859 / 5.79

This attack is slower than the direct fault attack, but may be

applicable to more cryptosystems.

38-a

5 – Defences Against Fault Attacks

42.7% of all statistics

39

5 – Defences Against Fault Attacks

42.7% of all statistics

are made up on the spot.

(Statistics Anonymous)

39-a

5 – Defences Against Fault Attacks

42.7% of all statistics

are made up on the spot.

(Statistics Anonymous)

First Defence: Never encrypt the same plaintext twice using

the same key!

39-b

5 – Defences Against Fault Attacks

42.7% of all statistics

are made up on the spot.

(Statistics Anonymous)

First Defence: Never encrypt the same plaintext twice using

the same key!

• If the device is connected to the internet or a phone network, a new

key can be generated for every encryption.

39-c

5 – Defences Against Fault Attacks

42.7% of all statistics

are made up on the spot.

(Statistics Anonymous)

First Defence: Never encrypt the same plaintext twice using

the same key!

• If the device is connected to the internet or a phone network, a new

key can be generated for every encryption.

• (Serial Re-Keying) For offline devices, a session key can be

generated incrementally using a counter. (For instance, the

application transaction counter on a bank card (ATC) is used in this

way.)

39-d

Second Defence: Change your keys regularly!

• Compute session keys from a master key (parallel re-keying) or

use a key schedule.

• The fault attack may also target the key generation algorithm.

40

Second Defence: Change your keys regularly!

• Compute session keys from a master key (parallel re-keying) or

use a key schedule.

• The fault attack may also target the key generation algorithm.

Third Defence: Detect fault attacks!

• Redo (part of) the computation and compare the results to detect

faults. (100% overhead!)

• If a fault is detected, suppress the output of the ciphertext or

output a modified, incorrect ciphertext.

40-a

Fourth Defence: Tolerate and correct faults!

• Use error correcting codes to remove faults that have been injected.

• If the error surpasses the error correction capacity of the code,

output modified, incorrect ciphertext.

41

Fourth Defence: Tolerate and correct faults!

• Use error correcting codes to remove faults that have been injected.

• If the error surpasses the error correction capacity of the code,

output modified, incorrect ciphertext.

Fifth Defence: Protect your hardware!

• Cover the chip with embedded sensors and then resin. If the

sensors detect a physical attack, they disable the chip.

• Drive up the price tag of a physical attack.

41-a

Sixth Defence: Don’t leak information!

• For passive side-channel attacks, one can measure and minimize the

amount of information leaked.

• For active side-channel attacks (such as fault attacks) a lot depends

on the capabilities of the attacker (fault model), in particular his

spacial and temporal resolution.

• Create a hardware and software design which maximizes the

required resources of the attacker.

42

Sixth Defence: Don’t leak information!

• For passive side-channel attacks, one can measure and minimize the

amount of information leaked.

• For active side-channel attacks (such as fault attacks) a lot depends

on the capabilities of the attacker (fault model), in particular his

spacial and temporal resolution.

• Create a hardware and software design which maximizes the

required resources of the attacker.

Seventh Defence: Improve your algorithms!

• Include a security analysis against fault attacks in the algorithm

design.

• Insert data into the computation which can be used by the system

to protect against fault attacks.

42-a

6 – Solving Methods for Fault Equations

I think the next best thing to solving a problem

43

6 – Solving Methods for Fault Equations

I think the next best thing to solving a problem

is finding some humour in it.

(Frank A. Clark)

43-a

6 – Solving Methods for Fault Equations

I think the next best thing to solving a problem

is finding some humour in it.

(Frank A. Clark)

Algebraic attacks and algebraic fault attacks require the solution of a

system of polynomial equations

f1(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

with polynomials f1, . . . , fs ∈ K[x1, . . . , xn] defined over a finite

field K.

43-b

Special properties of the polynomial system:

44

Special properties of the polynomial system:

• The system has usually a unique solution or a small number of

solutions.

44-a

Special properties of the polynomial system:

• The system has usually a unique solution or a small number of

solutions.

• The solution of the system is defined over K.

44-b

Special properties of the polynomial system:

• The system has usually a unique solution or a small number of

solutions.

• The solution of the system is defined over K.

• The field K is usually of characteristic 2, i.e. we have K = F2e

with e > 0.

44-c

Special properties of the polynomial system:

• The system has usually a unique solution or a small number of

solutions.

• The solution of the system is defined over K.

• The field K is usually of characteristic 2, i.e. we have K = F2e

with e > 0.

• We may add the field equations xq
i − xi = 0 to the system, where

q = #K.

44-d

Special properties of the polynomial system:

• The system has usually a unique solution or a small number of

solutions.

• The solution of the system is defined over K.

• The field K is usually of characteristic 2, i.e. we have K = F2e

with e > 0.

• We may add the field equations xq
i − xi = 0 to the system, where

q = #K.

• In particular, if K = F2, we may reduce all terms in the

polynomials fi until they are squarefree.

44-e

Solving Using Gröbner Bases

If the system f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0 has a unique

solution (a1, . . . , an) ∈ Kn, then the reduced Gröbner basis with

respect to any term ordering of the ideal I = 〈f1, . . . , fm〉 is given by

{ x1 − a1, x2 − a2, . . . , xn − an }

Thus, in principle, it suffices to compute the Gröbner basis of I .

Unfortunately, this becomes very hard if the number of

indeterminates increases.

45

Solving Using Gröbner Bases

If the system f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0 has a unique

solution (a1, . . . , an) ∈ Kn, then the reduced Gröbner basis with

respect to any term ordering of the ideal I = 〈f1, . . . , fm〉 is given by

{ x1 − a1, x2 − a2, . . . , xn − an }

Thus, in principle, it suffices to compute the Gröbner basis of I .

Unfortunately, this becomes very hard if the number of

indeterminates increases.

Many variations and improvements have been suggested, for instance

mutants or linearisation.

45-a

Solving Using Linear Algebra

Suppose that K = F2 and that the system has a unique solution

(a1, . . . , an) ∈ F
n
2 . Then we have

xi − ai = g1f1 + · · ·+ gmfm

for certain polynomials g1, . . . , gm ∈ F2[x1, . . . , xn]. This is called a

Hilbert Nullstellensatz certificate. We may proceed as follows.

46

Solving Using Linear Algebra

Suppose that K = F2 and that the system has a unique solution

(a1, . . . , an) ∈ F
n
2 . Then we have

xi − ai = g1f1 + · · ·+ gmfm

for certain polynomials g1, . . . , gm ∈ F2[x1, . . . , xn]. This is called a

Hilbert Nullstellensatz certificate. We may proceed as follows.

• Assume that g1, . . . , gm are all linear and write them down using

indeterminate coefficients.

46-a

Solving Using Linear Algebra

Suppose that K = F2 and that the system has a unique solution

(a1, . . . , an) ∈ F
n
2 . Then we have

xi − ai = g1f1 + · · ·+ gmfm

for certain polynomials g1, . . . , gm ∈ F2[x1, . . . , xn]. This is called a

Hilbert Nullstellensatz certificate. We may proceed as follows.

• Assume that g1, . . . , gm are all linear and write them down using

indeterminate coefficients.

• Compare coefficients in xi =
∑m

j=1 gjfj and in xi + 1 =
∑m

j=1 gjfj

and obtain two linear systems for the indeterminate coefficients.

46-b

Solving Using Linear Algebra

Suppose that K = F2 and that the system has a unique solution

(a1, . . . , an) ∈ F
n
2 . Then we have

xi − ai = g1f1 + · · ·+ gmfm

for certain polynomials g1, . . . , gm ∈ F2[x1, . . . , xn]. This is called a

Hilbert Nullstellensatz certificate. We may proceed as follows.

• Assume that g1, . . . , gm are all linear and write them down using

indeterminate coefficients.

• Compare coefficients in xi =
∑m

j=1 gjfj and in xi + 1 =
∑m

j=1 gjfj

and obtain two linear systems for the indeterminate coefficients.

• If both linear systems have no solution, assume that all gi have

degree 2 and repeat the procedure. Then try degree 3, etc.

46-c

This algorithm is called NLA algorithm.

The worst-case complexity is exponential, but in practice, the Hilbert

Nullstellensatz certificate has frequently a low degree.

47

This algorithm is called NLA algorithm.

The worst-case complexity is exponential, but in practice, the Hilbert

Nullstellensatz certificate has frequently a low degree.

Problem:

The size of the linear system of equations increases rapidly.

Special sparse linear algebra techniques have to be used.

47-a

Solving Using Integer Programming

For simplicity, let us assume that K = F2. We are looking for a tuple

(a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)

...

Fm(a1, . . . , an) ≡ 0 (mod 2)

where F1, . . . , Fm ∈ Z[x1, . . . , xn] are liftings of the polynomials

f1, . . . , fm ∈ F2[x1, . . . , xn].

48

Solving Using Integer Programming

For simplicity, let us assume that K = F2. We are looking for a tuple

(a1, . . . , an) ∈ {0, 1}n such that

F1(a1, . . . , an) ≡ 0 (mod 2)

...

Fm(a1, . . . , an) ≡ 0 (mod 2)

where F1, . . . , Fm ∈ Z[x1, . . . , xn] are liftings of the polynomials

f1, . . . , fm ∈ F2[x1, . . . , xn].

Idea: Formulate these congruences as a system of linear equalities or

inequalities over Z and solve it using an IP-solver.

48-a

Integer Liftings of Congruences: Suppose we are given a

congruence

F (a1, . . . , an) ≡ 0 (mod 2)

with F ∈ Z[x1, . . . , xn] and we are looking for solutions with

0 ≤ ai ≤ 1. For simplicity, let us assume that deg(F) = 2. By

reducing F modulo the field equations x2
i + xi, we may assume that

all terms in the support of F are square-free.

49

Integer Liftings of Congruences: Suppose we are given a

congruence

F (a1, . . . , an) ≡ 0 (mod 2)

with F ∈ Z[x1, . . . , xn] and we are looking for solutions with

0 ≤ ai ≤ 1. For simplicity, let us assume that deg(F) = 2. By

reducing F modulo the field equations x2
i + xi, we may assume that

all terms in the support of F are square-free.

(1) Let k be a new indeterminate. Form the inequality

k ≤ ⌊#Supp(F)/2 ⌋.

49-a

Integer Liftings of Congruences: Suppose we are given a

congruence

F (a1, . . . , an) ≡ 0 (mod 2)

with F ∈ Z[x1, . . . , xn] and we are looking for solutions with

0 ≤ ai ≤ 1. For simplicity, let us assume that deg(F) = 2. By

reducing F modulo the field equations x2
i + xi, we may assume that

all terms in the support of F are square-free.

(1) Let k be a new indeterminate. Form the inequality

k ≤ ⌊#Supp(F)/2 ⌋.

(2) For every term xixj in the support of F , introduce a new

indeterminate yij . Let ℓ be the linear part of F . Form the equation
∑

i,j yij + ℓ− k = 0.

49-b

Integer Liftings of Congruences: Suppose we are given a

congruence

F (a1, . . . , an) ≡ 0 (mod 2)

with F ∈ Z[x1, . . . , xn] and we are looking for solutions with

0 ≤ ai ≤ 1. For simplicity, let us assume that deg(F) = 2. By

reducing F modulo the field equations x2
i + xi, we may assume that

all terms in the support of F are square-free.

(1) Let k be a new indeterminate. Form the inequality

k ≤ ⌊#Supp(F)/2 ⌋.

(2) For every term xixj in the support of F , introduce a new

indeterminate yij . Let ℓ be the linear part of F . Form the equation
∑

i,j yij + ℓ− k = 0.

(3) Form the inequalities xi ≤ 1 and yij ≤ xi and yij ≤ xj and

yij ≥ xi + xj − 1.

49-c

Proposition 6.1 The non-negative solutions of the system

xi ≤ 1 yij ≤ xi yij ≤ xj

yij ≤ xi + xj − 1 k ≤ ⌊#Supp(F)/2 ⌋
∑

i,j

yij + ℓ− k = 0

correspond 1–1 to the solutions (a1, . . . , an) of the congruence

F (a1, . . . , an) ≡ 0 (mod 2) such that 0 ≤ ai ≤ 1.

50

Proposition 6.1 The non-negative solutions of the system

xi ≤ 1 yij ≤ xi yij ≤ xj

yij ≤ xi + xj − 1 k ≤ ⌊#Supp(F)/2 ⌋
∑

i,j

yij + ℓ− k = 0

correspond 1–1 to the solutions (a1, . . . , an) of the congruence

F (a1, . . . , an) ≡ 0 (mod 2) such that 0 ≤ ai ≤ 1.

In this way (and many similar ways) we can translate the given

polynomial system to a system of linear equalities and inequalities

over Z whose non-negative solutions we can find using an IP-solver.

50-a

Solving Using SAT-Solvers

Suppose we are given an equality f(x1, . . . , xn) = 0 with

f ∈ F2[x1, . . . , xn]. We want to find a logical representation of f ,

i.e. a (propositional) logical formula F (preferably in CNF) such that

f(x1, . . . , xn) = 0 iff F (X1, . . . , Xn) = true

51

Solving Using SAT-Solvers

Suppose we are given an equality f(x1, . . . , xn) = 0 with

f ∈ F2[x1, . . . , xn]. We want to find a logical representation of f ,

i.e. a (propositional) logical formula F (preferably in CNF) such that

f(x1, . . . , xn) = 0 iff F (X1, . . . , Xn) = true

(1) The logical representation of x1x2 + x3 is

(X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3) ∧ (¬X1 ∨ ¬X2 ∨X3)

51-a

Solving Using SAT-Solvers

Suppose we are given an equality f(x1, . . . , xn) = 0 with

f ∈ F2[x1, . . . , xn]. We want to find a logical representation of f ,

i.e. a (propositional) logical formula F (preferably in CNF) such that

f(x1, . . . , xn) = 0 iff F (X1, . . . , Xn) = true

(1) The logical representation of x1x2 + x3 is

(X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3) ∧ (¬X1 ∨ ¬X2 ∨X3)

(2) The logical representation of x1 + x2 + x3 is

(X1∨X2∨¬X3)∧(X1∨¬X2∨X3)∧(¬X1∨X2∨X3)∧(¬X1∨¬X2∨¬X3)

51-b

Solving Using SAT-Solvers

Suppose we are given an equality f(x1, . . . , xn) = 0 with

f ∈ F2[x1, . . . , xn]. We want to find a logical representation of f ,

i.e. a (propositional) logical formula F (preferably in CNF) such that

f(x1, . . . , xn) = 0 iff F (X1, . . . , Xn) = true

(1) The logical representation of x1x2 + x3 is

(X1 ∨ ¬X3) ∧ (X2 ∨ ¬X3) ∧ (¬X1 ∨ ¬X2 ∨X3)

(2) The logical representation of x1 + x2 + x3 is

(X1∨X2∨¬X3)∧(X1∨¬X2∨X3)∧(¬X1∨X2∨X3)∧(¬X1∨¬X2∨¬X3)

By combining (1) and (2), we can find a logical representation of a

polynomial system over F2.

51-c

The resulting set of CNF clauses can be tested for satisfiability using

a SAT-solver.

52

The resulting set of CNF clauses can be tested for satisfiability using

a SAT-solver.

The timings for the algebraic fault attack at LED-64 were obtained

in this way.

52-a

The resulting set of CNF clauses can be tested for satisfiability using

a SAT-solver.

The timings for the algebraic fault attack at LED-64 were obtained

in this way.

Example 6.2 One full round of AES corresponds to 8704

polynomial equations in 4352 indeterminates.

A (slightly optimised) logical conversion consists of 367049 clauses

in 49497 logical variables. The SAT-solver MiniSat was able to

solve this set of clauses in 716 seconds.

52-b

The resulting set of CNF clauses can be tested for satisfiability using

a SAT-solver.

The timings for the algebraic fault attack at LED-64 were obtained

in this way.

Example 6.2 One full round of AES corresponds to 8704

polynomial equations in 4352 indeterminates.

A (slightly optimised) logical conversion consists of 367049 clauses

in 49497 logical variables. The SAT-solver MiniSat was able to

solve this set of clauses in 716 seconds.

Thank you for your attention!

52-c

