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Motivation

Many important cryptographic applications require the
underlying primitives to possess some continuity properties.

Biometrics: fingerprints, retina scans, and human voices
change a little over time, and the conditions are also never
exactly the same.

For biometric applications, continuous cryptographic primitives
would be of great interest.
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Fuzzy vault scheme

[Juels, Sudan, 2006]: fuzzy vault scheme – a discrete version
of continuity.

A set of features (minutae) is close to another set if their
intersection is large and their set difference is small.

The protocol was further advanced and implemented, but
then...
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Fuzzy vault scheme

[Juels, Sudan, 2006]: fuzzy vault scheme – a discrete version
of continuity.

A set of features (minutae) is close to another set if their
intersection is large and their set difference is small.

The protocol was further advanced and implemented, but
then...

[Schreier, Boult, 2007]: “Cracking Fuzzy Vaults...”.

[Poon, Miri, 2009] – another attack.

We propose an idea for cryptographic primitives continuous in
the common sense of the word.
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Polynomial systems

Candidate 1: a polynomial mapping f : Rn → Rm for m > n
(for example, m = n + 1) for some ring R (we usually take
R = R or R = C and assume that f has integer coefficients).

Inverting f is equivalent to solving a (slightly) overdetermined
system of polynomial equations:

f1(x1, . . . , xn) = y1,
f2(x2, . . . , xn) = y2,
. . . . . .

fm(x1, . . . , xn) = ym.
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Polynomial systems

How do we solve polynomial equations?

Worst-case: NP-hard already for quadratic equations (finite
field, rational numbers, algebraic numbers, Turing machine or
Blum-Shub-Smale model in an arbitrary field).

Over a finite field, if m is much larger than n, we can linearize:
XSL method.

Systems of n homogeneous equations in n + 1 variables:
Shub-Smale homotopy method with average-case complexity
NO(log logN), where N is the dimension of the space of all such
homogeneous polynomial maps f : Cn+1 → Cn [Bürgisser,
Cucker, 2010].
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Polynomial systems

For overdetermined systems we basically only have Newton’s
method and variations.

Newton’s method has to start in a small enough neighborhood
around the zero in question; there are estimates on the size of
the neighborhood [Dedieu, Smale, 1999].
To make a polynomial system hard, we need to:

make N large (increase the degree and dimension of the
system);
consider a system with many local minima to make Newton’s
method fail.
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Arithmetic circuits

To increase degree, we specify polynomials with arithmetic
circuits.

Some polynomials of very large degree have compact circuit
representations.

Example: (x + y)2
n
has a small circuit representation.

Many natural questions about circuits in this representation
become computationally hard.

E.g., deciding whether a given polynomial is zero is hard for
P#P [Koiran, Perifel, 2007].
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Continuity modulus

To use a continuous hard-to-invert function, we have to
specify an estimate on the continuity modulus

ω(f , δ) = sup
|u−v |<δ

|f (u) − f (v)| ,

where δ is the maximum distance from the exact stored
“password” that should still admit legitimate authentication.

Consider a polynomial defined over a compact domain Ω (of
meaningful values of f ).
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Continuity modulus

We can get an upper bound by induction on the circuit size:
1 for input variables (resp, constants) the continuity modulus is

1 (resp., 0);
2 for a summation gate, wf +g ≤ wf + wg , so we get a new

upper bound by summing the incoming upper bounds;
3 for a multiplication gate,

wfg ≤ wf sup
x∈Ω

g(x) + wg sup
x∈Ω

f (x),

where the supremum can also be estimated inductively:

sup(f + g) ≤ sup f + sup g , sup(fg) ≤ sup f sup g .
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Continuity modulus

However, this bound becomes less and less exact as the size of
the circuit grows, and in certain cases it can result in an
unacceptably forgiving system.

But for a specific x ∈ Ω, we can estimate the continuity
modulus as the derivative at point x which can be computed
recursively:

(f +g) ′(x) = f ′(x)+g ′(x), (fg) ′(x) = f ′(x)g(x)+f (x)g ′(x).
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Protocol

A simple authentication protocol. Alice (A) wants to
authenticate with a server (S) using her biometric data.
At the beginning of the protocol, S stores the biometric data
x , and Alice possesses her data x ′, presumably close to x .

1 A initiates the protocol and represents her biometric data as a
vector x ′ ∈ Cn.

2 S randomly selects an arithmetic circuit f with n input
variables and sends a representation of this circuit to A.

3 A randomly selects a vector r ∈ Cn and a scalar α ∈ C (this is
analogous to random padding), computes f (r + αx ′) and
transmits (r , α, y) for y = f (r + αx ′).

4 S computes ω, the continuity modulus at point r + αx , and
checks that ||y − f (r + αx)|| ≤ ωε. If so, S accepts the
authentication of A.

How do we “randomly select a circuit”?
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Key generation

Circuits are directed graphs.

We build a random circuit node by node.

Each node is labeled by a pair (s, d), where s is one of xi , +,
or ×, and d is a natural number representing the “formal
degree” of this node.
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Key generation

1 Generate the graph (G ,E ) with n + c vertices, n with labels
(xi , 1) and c with labels (±1, 0).

2 Choose outdegrees ki uniformly from 1..K for each vertex and
initialize ki “stubs” for each potential outgoing edge.

3 Until m outputs are generated:
1 Add a new node x , G := G ∪ {x}, select its label, select two parents y and

z uniformly from the “stubs” available at previous vertices, add the
corresponding edges E := E ∪ {(y , x), (z , x)}, and delete one “stub” from y
and z each.

2 Compute the formal degree fdeg(x):

fdeg(x) =

{
max{fdeg(y), fdeg(z)}, if x is a +-vertex,
fdeg(y) + fdeg(z), if x is a ×-vertex.

3 Compute the continuity modulus wx .
4 If fdeg(x) ≥ bD2 c + 1, mark x as an output and do not generate outgoing

“stubs” for it. Otherwise, generate k outgoing “stubs”, where k is chosen
uniformly from 1..K .

4 Delete remaining “stubs” and output (G ,E ).
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Protocol

A simple authentication protocol. Alice (A) wants to
authenticate with a server (S) using her biometric data.
At the beginning of the protocol, S stores the biometric data
x , and Alice possesses her data x ′, presumably close to x .

1 A initiates the protocol and represents her biometric data as a
vector x ′ ∈ Cn.

2 S randomly selects an arithmetic circuit f with n input
variables and sends a representation of this circuit to A.

3 A randomly selects a vector r ∈ Cn and a scalar α ∈ C (this is
analogous to random padding), computes f (r + αx ′) and
transmits (r , α, y) for y = f (r + αx ′).

4 S computes ω, the continuity modulus at point r + αx , and
checks that ||y − f (r + αx)|| ≤ ωε. If so, S accepts the
authentication of A.

What does an adversary have to do?
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Protocol

A passive adversary in this protocol has to solve a system of
polynomial equations f (r + αx) = a with respect to the
unknown x for f specified as an arithmetic circuit.

If a passive adversary has observed k runs of this protocol for
the same server and agent, he faces a problem of solving a
system

f 1(r1 +α1x) = a1, f 2(r2 +α2x) = a2, . . . , f k(rk +αkx) = ak .

Note that it is hard for an adversary to linearize because the
monomials of f i are numerous and, even better, unknown.
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How do we spoil Newton’s method?

We said that, to defeat Newton’s method, we’d like to make
sure f has a lot of local minima, so gradient descent has low
probability of success.

But it would be even better if f had no gradient at all! (or, at
least, was not differentiable often enough)

That’s why we consider tropical constructions.
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Tropical and supertropical circuits

Tropical algebras are based on the tropical semiring (also
known as the min-plus algebra) which is a subset of reals with
an infinity point closed under addition, with two operations:

x ⊕ y = min(x , y), x ⊗ y = x + y .

A tropical monomial:

m = a ⊗ xi1 ⊗ . . .⊗ xin = a + xi1 + . . .+ xin , 1 ≤ ij ≤ n.

A tropical polynomial

p = m1 ⊕ . . .⊕mk = min(m1, . . . ,mk)

is a concave piecewise linear function with several discontinuity
regions.
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Tropical and supertropical circuits

For our continuous cryptographic constructions, we extend the
tropical semiring by regular multiplication and call the
resulting extended semiring (A, ·,⊗,⊕), A ⊆ R ∪ {∞}, a
supertropical algebra.

A supertropical monomial is in fact a polynomial

m(x1, . . . , xn) = x i11
1 x i12

2 . . . x i1n
n ⊗ . . .⊗ x im1

1 x im2
2 . . . x imn

n .

A supertropical polynomial

p(x1, . . . , xn) = m1(x1, . . . , xn)⊕ . . .⊕mk(x1, . . . , xn)

is a minimum of several polynomial functions, i.e., a piecewise
polynomial function which is not necessarily concave anymore
and still has a lot of discontinuity regions.
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Tropical and supertropical circuits

The protocol remains the same, only circuits are now
supertropical (fdeg and continuity modulus for a ⊕-gate are
just max of its parents).
As for the underlying problem, much less is known than for
regular polynomials, but these are hard problems.
There is currently no polynomial algorithm for solving even
linear tropical systems; only very recently weakly polynomial
algorithms appeared [Grigoriev 2010; Akian, Gaubert,
Guterman, 2011].
Tropical polynomial systems are obviously NP-hard; there are
no known good algorithms.
For supertropical linear and polynomial systems, nothing is
known (except that they are obviously at least as hard as
tropical ones).
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An interactive protocol

We suggest a candidate interactive protocol, too, following
[Grigoriev, Shpilrain, 2009].

It relies upon the hardness of matrix conjugation.
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An interactive protocol

1 Alice’s public key is a pair of matrices (A,X−1AX ), where A ∈ G , X ∈ G ;
Alice’s secret key is the matrix X .

2 For his challenge, Bob selects a random matrix B ∈ G and a random
non-invertible endomorphism ϕ of the ring G . Bob sends B and ϕ to
Alice.

3 Alice responds with random positive integers p and q and asks Bob to
send back random nonzero constants c1, c2, and c3 so that the new
(better randomized) challenge is B ′ = c1A + c2B + c3ApBq.

4 Alice responds with ϕ(X−1B ′X ).

5 Bob selects a random word w(x , y) (without negative exponents),
evaluates

M1 = w
(
ϕ(A), ϕ(B ′)

)
, M2 = w

(
ϕ(X−1AX ), ϕ(X−1B ′X )

)
,

and computes their traces. If tr(M1) is sufficiently close to tr(M2), Bob
accepts authentication, otherwise he rejects.
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An interactive protocol

We propose to use this protocol for multivariate polynomials
over an infinite field F.
Note that for an infinite field itself, the adversary could
compute the private key X from the public key (A,C ), find the
space of solutions for the equation AX = XC and sample a
matrix X ′ at random; with probability 1, X ′ will be
nondegenerate.

But for polynomial rings, a random matrix is invertible with
probability zero (its determinant must have degree zero).

Unfortunately, over the (super)tropical semiring the protocol
does not work at all: the only invertible tropical matrices are
monomial [Butkovic, 10].
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Thank you!

Thank you for your attention!
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