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Wiretap channel

In modern wireless
communications secrecy
plays an ever increasing
role.
Wiretap channels were
introduced by Dr. Aaron
D. Wyner (1939-1997), an
American information
theorist, already in 1975
and have recently regained
interest, especially in the
context of physical layer
security.
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The basic problem setting

In a wiretap channel, Alice
is transmitting
confidential data to the
intended receiver Bob over
a fading channel, while an
eavesdropper Eve tries to
intercept the data
received over another
fading channel.
How to transmit data
reliably to Bob so that
Eve cannot intercept it?
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Transmission setting

The secrecy is based on the assumption that Bob’s signal-to-noise
ratio (SNR) is sufficiently large compared to Eve’s SNR, that is, Eve’s
channel is weaker and noisier. Note that Eve is allowed to have infinite
computational power.
In addition, a coset coding strategy introduced by Wyner is employed
in order to confuse Eve. In coset coding, random bits are transmitted
in addition to the data bits.
We assume Alice is using a number field lattice code enabling coset
coding, and that both Bob and Eve have high enough SNRs in order
to perfectly decode their observed lattices.
Due to the SNR assumption, Bob can retrieve the data bits with high
probability, while Alice is only able to retrieve the random bits.
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In a restaurant

The above could be naively compared to the scenario where Alice and
Bob are discussing over a table in a noisy restaurant, and Eve is
eavesdropping in a nearby table located far enough (or behind a wall,
for instance) not to hear the essential contents of the conversation.
In coset coding, random bits could be thought of as Alice yelling
something irrelevant (Eve hears this), and data bits are whispered just
loud enough so that Bob can hear, but Eve can’t because of the longer
distance and higher noise level.
Hence, the secrecy is merely based on the channel quality. Obviously,
this is not always a valid assumption.
The finer lattice intended to Bob is denoted by Λb (whispering), and
the more coarse lattice Λe ⊂ Λb (yelling) embeds random bits in order
to confuse Eve.
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Fading channel model

The channel can be
described by the equation
y = hx + n, where x , y
are the transmitted and
received signal vectors and
h, n describe the random
channel effect and noise
(distribution known, often
assumed circular Gaussian
with zero mean).

Here, for simplicity, we
assume one transmit and one
receive antenna, so
x , y , n ∈ Rn×1, h ∈ Rn×n

(diagonal).

Camilla Hollanti1 Department of Mathematics and System Analysis Aalto University, Finland camilla.hollanti@aalto.fi ()Confusing Eavesdroppers with Algebraic Number Theory
Symbolic Computation and Post-Quantum Cryptography Webinar 22.3.2012 7

/ 34



Goals and results

When employing lattice codes based on algebraic number fields in
wiretap channel coding, certain norm sums pop up in the expression of
the probability of correct decision for Eve the Eavesdropper.
These norm sums closely resemble the famous Dedekind zeta function.
First, numerical analysis reveals a performance-secrecy-complexity
tradeoff: higher secrecy can be achieved with suboptimal lattices at
the cost of slightly reduced (asymptotic) performance. The security
level can be further improved by using skewed lattices, but at the cost
of increased complexity.
The final aim in this talk is to present more universal bounds for Eve’s
probability of correct decision in Rayleigh fading channels by using
zeta functions and geometric analysis.
Let us start with some useful definitions.
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Lattices

Definition
A lattice Λ is a discrete abelian subgroup of a real vector space,

Λ = Zβ1 ⊕ Zβ2 · · · ⊕ Zβs ⊂ Rn,

where the elements β1, . . . , βs ∈ Rn are linearly independent, i.e., form a
lattice basis, and s ≤ n is called the rank of the lattice. Here we only
consider full lattices (s = n).
Let M be the generator matrix of the lattice. The volume of the
fundamental parallelotope (=basic building block) of the lattice is

Vol(Λ) = | det(M)|.

Examples of lattices: lattice of integers Z, lattice of gaussian integers
Z[j ], “golden ratio” lattice Z[1+

√
5

2 ], cyclotomic lattices Z[e2πj/k ] etc.
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Product distance

In terms of error probability, the performance of number field codes can be
measured by the product distance.

Definition

The minimum product distance of a lattice Λ is

dp,min(Λ) = min
0 6=x∈Λ

n∏
i=1

|xi |,

where x = (x1, . . . , xn) ∈ Λ.

Maximizing dp,min minimizes the error probability (of Bob).
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Lattices from number fields

Let K/Q be a totally real number field extension of degree n and
σ1, . . . , σn its embeddings to R.
Let OK denote the ring of integers in K , and
NK/Q(x) = σ1(x) · · ·σn(x) the algebraic norm of x .

Definition
Let x ∈ OK . The canonical embedding ψ : K ↪→ R defines a lattice
Λ = ψ(OK ) in Rn:

ψ(x) = (σ1(x), . . . , σn(x)) ∈ ψ(OK ) ⊂ Rn.

We further have that:

Proposition

dp,min(ψ(OK )) = min
0 6=x∈OK

|NK/Q(x)| = 1.
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Lattices from number fields

As an example, let us consider the field extension Q(θ) over the
rationals Q, and the golden ratio lattice Z[θ] ⊂ Q(θ), where
θ = 1+

√
5

2 .
The degree of the extension is two with a minimal polynomial
x2 − x − 1 and integral basis {1, θ}.
The embeddings to R are

σ1 = idQ(θ) : θ 7→ θ, and σ2 : θ 7→ θ =
1−
√
5

2
.

The code lattice is formed as a finite subset of vectors

ψ(x) = (a + bθ, a + bθ) (a, b ∈ Z).

The minimum product distance is

dp,min(ψ(Z[θ])) = min
0 6=x∈Z[θ]

|σ1(x)||σ2(x)| = min
0 6=x∈Z[θ]

|NK/Q(x)| = 1.
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Coset coding

Let us denote the lattice intended to Bob by Λb = ψ(OK ), and by
Λe ⊂ Λb a sublattice embedding the random bits intended for Eve.
Now the transmitted codeword x is picked from a certain coset Λe + c
belonging to the disjoint union

Λb = ∪2k

j=1Λe + cj

embedding k bits:
x = r + c ∈ Λe + c,

where r embeds the random bits, and c contains the data bits.
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The probability expression and the inverse
norm power sum

Let us recall the expression Pc,e for the probability of a correct
decision for Eve, when observing a lattice Λe .
For the fast fading case (Belfiore-Oggier ICC 2011),

Pc,e '
(

1
4γ2

e

)n/2

Vol(Λb)
∑

0 6=x∈Λe

n∏
i=1

1
|xi |3

, (1)

where γe is the average SNR for Eve assumed sufficiently large so that
Eve can perfectly decode Λe .
Here Λb denotes the lattice intended to Bob, and Λe ⊂ Λb. It can be
concluded that the smaller the sum∑

0 6=x∈Λe

n∏
i=1

1
|xi |3

,

the more confusion Eve is experiencing.
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The probability expression and the inverse
norm power sum

Let x ∈ OK . The transmitted lattice vector in the fast fading case is

x = ψ(x) = (σ1(x), σ2(x), . . . , σn(x)) ∈ Λe ⊂ Rn, (2)

where ψ denotes the canonical embedding and σi are the (now all
real) embeddings of K into R.
The corresponding probability of Eve’s correct decision yields the
following inverse norm power sum to be minimized:

SM =
∑

0 6=x∈OK

1
|NK/Q(x)|3

, (3)

where M denotes the generator matrix of the lattice Λe .
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The probability expression and the inverse
norm power sum

The above sum SM may not converge, since infinitely many elements
can have the same norm.
This happens e.g. when the unit group is infinite, which is the case for
all field extensions other than the trivial one and imaginary quadratic
fields.
In practice, however, we always consider finite signaling alphabets, so
the sum becomes truncated and converges.
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Example codes

Let us next describe three alternative constructions for the fast fading
channel built from different number fields of degree four.
Optimal and nearly optimal unitary lattice generator matrices in terms
of the minimum product distance are provided at Professor Emanuele
Viterbo’s home page.
We will first analyze two orthogonal lattices denoted here by Λ1 and
Λ2 with the respective unitary (i.e., MMT = I4) generator matrices
M1 (optimal) and M2 (suboptimal).
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Example codes

The first construction corresponds to the canonical embedding of
OQ(δ), where δ4 − δ3 − 3δ2 + δ + 1 = 0.
The second construction is based on the Kronecker product of the
lattice generator matrices corresponding to the canonical embeddings
of the rotated Z2 lattices α1Z[

√
2] and α2Z[θ], where

θ = 1+
√

5
2 , α1 = 1

2
√

2+4
and α2 = 3− θ.

Both lattices are rotated versions of Z4 with full diversity and good
minimum product distances,

Ndp,min(Λ1) =
1√

52 · 29
≈ 0.037139...

and
Ndp,min(Λ1) =

1
40
≈ 0.025.
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Example codes

Let us now compare these two (finite) orthogonal constructions by
computing truncated sums

SM(Plim) =
∑

0 6=x∈Λe ,||x||2E≤Plim

1
|NK/Q(x)|3

(4)

for a given power limit Plim.
For a fair comparison, the lattices are normalized to unit energy, i.e.,
to have Vol(Λe) = 1. The volumes of the corresponding superlattices
Λb of Bob will then scale accordingly.
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Comparison of orthogonal codes

Table: Values of SM(Plim) for orthogonal lattices (n = 4) with Plim = Pmax and
with a codebook size |Cort | = (2m + 1)4.

m Pmax Pave SM1(Plim) SM2(Plim)

1 4 2.67 9.12264 · 107 2.83706 · 106

2 16 8.00 2.24565 · 1010 6.46037 · 106

3 36 16.00 2.49382 · 1011 1.16395 · 107

4 64 26.67 2.49829 · 1011 1.52838 · 107

5 100 40.00 2.49851 · 1011 1.99487 · 107

6 144 56.00 2.50437 · 1011 2.38188 · 107

7 196 74.67 2.61395 · 1011 2.69652 · 107

8 256 96.00 2.61736 · 1011 3.00791 · 107

9 324 120.00 2.61739 · 1011 3.42272 · 107

10 400 146.67 2.71764 · 1011 3.68287 · 107
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Skewed lattice

Next, we extend our analysis by computing the inverse norm power
sums for a skewed lattice, denoted by Λ3, corresponding to the
maximal real subfield

Q(τ = ζ15 + ζ−1
15 )

of the 15th cyclotomic field.
Here τ satisfies

τ4 − τ3 − 4τ2 + 4τ + 1 = 0.

The generator matrix is denoted by M3.
The minimum product distance of this lattice is

Ndp,min(Λ3) =
1√
1125

≈ 0.02981...

putting it in between the lattices Λ1 and Λ2 in terms of Ndp,min(Λ).
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Skewed lattice

Table: Values of SM(Plim,m) for a skewed lattice (n = 4) with bounded energy.

m Plim Pmax Pave |Csph| |Cort | SM3(Plim,m)

8 4 3.63 2.66 79 81 1.89195 · 106

5 16 15.71 9.18 555 625 4.24298 · 106

6 16 15.71 9.56 715 625 4.77423 · 106

7 36 35.57 20.33 2405 2401 7.13024 · 106

12 36 24.00 15.24 2401 2401 2.29374 · 106

9 64 63.89 35.67 6929 6561 9.93903 · 106

10 100 99.97 55.72 13663 14641 1.20680 · 107

11 100 99.97 55.57 16053 14641 1.29038 · 107

14 196 195.98 106.63 50975 50625 1.29038 · 107

18 324 323.93 175.95 137273 130321 2.18703 · 107

20 400 399.90 217.31 208411 194481 2.40716 · 107

Camilla Hollanti1 Department of Mathematics and System Analysis Aalto University, Finland camilla.hollanti@aalto.fi ()Confusing Eavesdroppers with Algebraic Number Theory
Symbolic Computation and Post-Quantum Cryptography Webinar 22.3.2012 22

/ 34



Skewed lattice

We can conclude that skewed lattices may significantly increase the
secrecy at practical SNR levels compared to orthogonal lattices.
One has to notice, however, that this bares the price of increased
complexity as we need to carve spherical codebooks by using a bigger
alphabet in order to get the possible benefits.
Block fading channels can be treated analogously.
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Something more universal than numerical
analysis?

The above numerical analysis gives us some insight to the behavior of
the norm sums and hence to the probability of Eve’s correct decision.
However, it would be nice to gain deeper understanding of the nature
of the problem. To this end, we derive algebraic probability bounds
arising from Dedekind zeta functions.
Let us start with definitions.
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Dedekind zeta function

Definition

The Dedekind zeta function of a field K is defined as

ζK (s) =
∑
I⊆OK

1
NK/Q(I)s , (5)

where I runs through the nonzero integral ideals of OK . The sum
converges for <(s) > 1. Since NK/Q(OK ) = 1, we always have

ζK (s) > 1.

From now on, we assume 2 ≤ s ∈ Z since these are the interesting
values for the applications under study.
Remark: The extended Riemann hypothesis states that if ζK (s) = 0
and 0 < <(s) < 1, then <(s) = 1/2.
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Dedekind zeta function

Analogously to the Riemann zeta function, the values of the Dedekind
zeta function at integers encode (at least conjecturally) important
arithmetic data of the field K . For instance, the analytic class number
formula relates the residue at s = 1 to the class number of K , the
regulator of K , the number of roots of unity in K , the absolute
discriminant of K , and the number of real and complex places of K .
The Dedekind zeta function can be written as a Dirichlet series

ζK (s) =
∑
n≥1

an

ns ,

where an = 0 for those n that don’t appear as a norm.
When we derive probability bounds for lattice codes with the aid of
zeta functions, we need to use the same normalization for the zeta
function as used for the lattice code. Otherwise the comparison of the
two norm sums under observation will be meaningless.
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Normalization of zeta functions

Definition

The normalized Dedekind zeta function is denoted and defined as

NζK (s) =
1

ρnsNK/Q(α)s/2

∑
I⊆OK

1
NK/Q(I)s ,

where ρ ∈ R is a real scaling factor such that Vol(ρΛα) = 1. This
normalized zeta function will then be comparable to the norm sum related
to the lattice ρΛα of volume 1. Also the normalized zeta functions
corresponding to different lattices can be meaningfully compared to each
other.
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Bounds for the eavesdropper’s probability of
correct decision

Let us now derive lower and upper bounds for the inverse norm power
sum in the probability expression for the fast fading wiretap channel by
using the Dedekind zeta functions.
Similar bounds can be achieved for the pair-wise error probabilities in
the fading channels, see more details in the reference papers
(Vehkalahti-Lu, H.-Viterbo 2011).
For x ∈ OK , we trivially have that SM > 1 as 1 ∈ OK . Albeit
straightforward, the following result gives us a nontrivial lower bound
6= 1 for the sum SM .
Note that in the proposition below, we do not require K to be totally
real.
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Bounds for the eavesdropper’s probability of
correct decision

Proposition
(Lower Bound) Assume that OK is a principal ideal domain (PID) and Λe
is as above with x ∈ OK . Prior to normalization of the lattice, the
Dedekind zeta function ζK (s) evaluated at s = 3 provides us with a lower
bound for SM , i.e.,

SM > ζK (3) > 1.

More interestingly, if Plim is sufficiently large, the same holds for the
truncated sums,

SM(Plim,N) > ζK (3,N) > 1,

where N denotes the maximum norm included in the sum; |NK/Q(x)| ≤ N
and NK/Q(I) ≤ N.
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Bounds for the eavesdropper’s probability of
correct decision

Next, let us denote by

SM(Plim,N) =
∑
n≤N

b′n
n3 ,

the truncated sum, where b′n 6= 0 for those n that appear as a norm
for x ∈ OK , ||x ||2E ≤ Plim.
An upper bound for the truncated sum is achieved from the truncated
Dedekind zeta function ζK (s,N) evaluated at s = 3.

Proposition
(Upper Bound) Let OK be a PID. Then we have that

SM(Plim,N) ≤ max{b′n | n ≤ N} · ζK (3,N).

Camilla Hollanti1 Department of Mathematics and System Analysis Aalto University, Finland camilla.hollanti@aalto.fi ()Confusing Eavesdroppers with Algebraic Number Theory
Symbolic Computation and Post-Quantum Cryptography Webinar 22.3.2012 30

/ 34



An upper bound from geometric analysis

Let wk be the number of roots of unity in a degree n number field K , and
denote the regulator of K by ρK . Assume that we are using a hypercube
constellation within a lattice, i.e., the vector components have absolute
values ≤ R for some R . Then we have that

Proposition

Pe ≤ K
n−1∑
m=0

(
n − 1
m

)
(log(Rn))n−1−m|D(m)

s ζK (3)|,

where
K =

Cwk

(n − 1)!ρK
,

and C is a constant related to the SNR and R.
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Error Mountain (n=4)

0
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bk = true number of constellation points with norm k ,
fk = (relative) error |bk − nk |, where nk is our estimate.
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Thank you!
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