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Algebraic Cryptanalysis

Crypto primitive

modeling

System solving

Issues

Which algebraic modeling ?

Tradeo� between the degree of the equations/number of variables ?

Solving tools: Gröbner bases ? SAT-solvers ? ...

Structure ?
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Motivations: Algebraic Structures in Cryptology

Where does the structure come from ?

Non-linearity → Security

 Sometimes bi(or multi)-linear
(e.g. AES S-boxes: x · y − 1 = 0 for x 6= 0).

Asymmetric encryption/signature:

 trapdoor (e.g. HFE, Multi-HFE, McEliece).
 Reducing the key sizes is a common issue
→ potential weaknesses due to the structure.

Symmetries, invariants:

 invariance of the solutions under some transformations (e.g.
MinRank).

. . .

Impact on the solving process ?

Complexity ? Dedicated algorithms ?
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Families of structured algebraic systems

Multi-homogeneous systems

McEliece PKC.

MinRank authentication scheme.

. . .

Determinantal systems

MinRank authentication scheme.

Cryptosystems based on rank metric codes.

Hidden Field Equations and variants.

. . .

Systems invariant by symmetries

Discrete log on elliptic and hyperelliptic curves.
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Outline

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE
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Gröbner bases (I)

Gröbner bases

I a polynomial ideal. Gröbner basis (w.r.t. a monomial ordering): G ⊂ I a �nite set
of polynomials such that LM(I) = 〈LM(G)〉.

Buchberger [Buchberger Ph.D. 65].

F4 [Faugère J. of Pure and Appl. Alg. 99].

F5 [Faugère ISSAC'02].

FGLM [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].

0-dimensional system solving

Polynomial system
F4/F5−−−−→ grevlex GB

FGLM−−−−→ lex GB.

XL/MXL

Most of the complexity results also valid for XL/MXL
Buchman/Bulygin/Cabarcas/Ding/Mohamed/Mohamed PQCrypto 2008, Africacrypt
2010,. . .
Ars/Faugère/Imai/Kawazoe/Sugita, Asiacrypt 2004
Albrecht/Cid/Faugère/Perret, eprint
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Gröbner bases (II)

0-dimensional system solving

Polynomial system
F4/F5−−−−→ grevlex GB

FGLM−−−−→ lex GB.

Lexicographical Gröbner basis of 0-dimensional systems

Equivalent system in triangular shape:

f1(x1, . . . , xn) = 0
...

f`(x1, . . . , xn) = 0

f`+1(x2, . . . , xn) = 0
...

fm−1(xn−1, xn) = 0

fm(xn) = 0

=⇒ Find the roots of univariate polynomials
→ easy in �nite �elds.
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Macaulay matrix in degree d

I = 〈f1, . . . , fp〉 deg(fi ) = di � a monomial ordering

Rows: all products tfi where t is a monomial of degree at most d − di .
Columns: monomials of degree at most d.

m1 � · · · � m`

t1f1
...

tk fp




row echelon form of the Macaulay matrix with d su�ciently high

=⇒ Gröbner basis.

Problems

Degree falls.

Rank defect  useless computations.
 Hilbert series: generating series of the rank defects of the Macaulay matrices.

Which d ?  degree of regularity.
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Complexity of Gröbner bases computations

Two main indicators of the complexity

Degree of regularity dreg
 degree that has to be reached to compute the grevlex GB.

Degree of the ideal I = 〈f1, . . . fm〉
 Number of solutions of the system (counted with multiplicities). Gives the rank of
the Macaulay matrix.

System −→ grevlex GB −→ lex GB.
Algorithms grevlex GB Change of Ordering

Complexity O

((n+ dreg

dreg

)ω)
O (n ·#Solω)

Classical bounds (sharp for generic systems)

Let f1, . . . , fn ∈ K[x1, . . . , xn] be a "generic" system.

Macaulay bound: dreg ≤ 1+
∑

1≤i≤n
(di − 1).

Bézout bound: deg(〈f1, . . . , fn〉) ≤
∏

1≤i≤n
di .

Are there sharper bounds for structured systems ?
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Plan

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE
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Multi-homogeneous systems

Multi-homogeneous polynomial

f ∈ K[X (1), . . . ,X (`)] is multi-homogeneous of multi-degree (d1, . . . , d`) if
for all λ1, . . . , λ`,

f (λ1X
(1), . . . , λ`X

(`)) = λd11 . . . λ
d`
` f (X (1), . . . ,X (`)).

Example:

3x21 y1 + 4x1x2y1 − 3x22 y1 − x21 y2 + 8x1x2y2 − 5x22 y2 + 10x21 y3 − 2x1x2y3 − 3x22 y3

is a bi-homogeneous polynomial of bi-degree (2, 1) in F11[x1, x2, y1, y2, y3].

Bilinear system: multi-homogeneous of multi-degree (1, 1)

f1, . . . , fq ∈ K[X ,Y ]: bilinear forms.

fk =
∑

a
(k)
i ,j xiyj .
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Structure of bilinear systems

Euler relations

f1, . . . , fq ∈ K[X ,Y ]: bilinear forms.

fk =
∑

a
(k)
i,j xiyj .

fk =
∑
i

∂fk
∂xi

xi =
∑
j

∂fk
∂yj

yj .

jacx(F ) =


∂f1
∂x1

. . . ∂f1
∂xnx

...
...

...
∂fq
∂x1

. . .
∂fq
∂xnx

 jacy (F ) =


∂f1
∂y1

. . . ∂f1
∂yny

...
...

...
∂fq
∂y1

. . .
∂fq
∂yny

.

=⇒

f1
...

fq

 = jacx(F ) ·

 x1
...

xnx

 = jacy (F ) ·

 y1
...

yny

.
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Something special happens with minors...

f1
...
fq

 = jacx(F ) ·

 x1
...
xnx

.
If (x1, . . . , xnx , y1, . . . , yny ) is a non-trivial solution of F , then jacx(F ) is rank defective.

 (y1, . . . , yny ) is a zero of the maximal minors of jacx(F ).

Bernstein/Sturmfels/Zelevinski, Adv. in Math. 1993

M a p × q matrix whose entries are variables. For any monomial ordering, the
maximal minors of M are a Gröbner basis of the associated ideal.

Faugère/Safey El Din/S., J. of Symb. Comp. 2011

M a k-variate q × p linear matrix (with q > p). Generically, a grevlex GB of
〈Minors(M)〉: linear combination of the generators.

 dreg (MaxMinors(jacx(F ))) = nx .
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Complexity

A�ne bilinear polynomial

f ∈ K[x1, . . . , xnx , y1, . . . , yny ] is said to be a�ne bilinear if there exists a bilinear

polynomial f̃ in K[x0, . . . , xnx , y0, . . . , yny ] such that

f (x1, . . . , xnx , y1, . . . , yny ) = f̃ (1, x1, . . . , xnx , 1, y1, . . . , yny ).

Faugère/Safey El Din/S., J. of Symb. Comp. 2011

Degree of regularity

Let f1, . . . , fnx+ny be an a�ne bilinear system in K[x1, . . . , xnx , y1, . . . , yny ]. Then the
highest degree reached during the computation of a Gröbner basis for the grevlex
ordering is upper bounded by

min(nx, ny) + 1� nx + ny + 1.

Consequences

The complexity of computing a grevlex GB is polynomial in the number of
solutions !!

Bilinear systems with unbalanced sizes of blocks of variables are easy to solve !!
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Modeling of McEliece cryptosystem

Based on alternant codes:

secret key: a parity-check matrix of the form

H =


y0 y1 . . . yn−1
y0x0 y1x1 . . . yn−1xn−1
...

...
. . .

...
y0x

t−1
0 y1x

t−1
1 . . . ynx

t−1
n

 ,

where xi , yj ∈ F2m , with x0, . . . , xn pairwise distinct and yj 6= 0.

public key: a generator matrix G of the same code.

Problem

Given G , �nd H such that H · G t = 0 !

 ∀i , j , gi,0y0x
j
0 + · · ·+ gi,n−1yn−1x

j
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Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.

Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

⇒ add redundancy to the polynomial system
 linear equations  less variables.
Moreover, the system is still over-determined and one can extract a subsystem
containing only powers of two:

 ∀i , j a power of two !!, gi,0y0x
j
0 + · · ·+ gi,n−1yn−1x

j
n−1 = 0.

Decomposing the subsystem over the �eld F2

⇒ Bilinear system with nx � ny !!!

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

16/28 PJ Spaenlehauer



Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.

Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

⇒ add redundancy to the polynomial system
 linear equations  less variables.

Moreover, the system is still over-determined and one can extract a subsystem
containing only powers of two:

 ∀i , j a power of two !!, gi,0y0x
j
0 + · · ·+ gi,n−1yn−1x

j
n−1 = 0.

Decomposing the subsystem over the �eld F2

⇒ Bilinear system with nx � ny !!!

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

16/28 PJ Spaenlehauer



Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.

Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

⇒ add redundancy to the polynomial system
 linear equations  less variables.
Moreover, the system is still over-determined and one can extract a subsystem
containing only powers of two:

 ∀i , j a power of two !!, gi,0y0x
j
0 + · · ·+ gi,n−1yn−1x

j
n−1 = 0.

Decomposing the subsystem over the �eld F2

⇒ Bilinear system with nx � ny !!!

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

16/28 PJ Spaenlehauer



Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.

Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

⇒ add redundancy to the polynomial system
 linear equations  less variables.
Moreover, the system is still over-determined and one can extract a subsystem
containing only powers of two:

 ∀i , j a power of two !!, gi,0y0x
j
0 + · · ·+ gi,n−1yn−1x

j
n−1 = 0.

Decomposing the subsystem over the �eld F2

⇒ Bilinear system with nx � ny !!!

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

16/28 PJ Spaenlehauer



Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.

Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

⇒ add redundancy to the polynomial system
 linear equations  less variables.
Moreover, the system is still over-determined and one can extract a subsystem
containing only powers of two:

 ∀i , j a power of two !!, gi,0y0x
j
0 + · · ·+ gi,n−1yn−1x

j
n−1 = 0.

Decomposing the subsystem over the �eld F2

⇒ Bilinear system with nx � ny !!!

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

16/28 PJ Spaenlehauer



Plan

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

17/28 PJ Spaenlehauer



The MinRank problem

r ∈ N. M0, . . . ,Mk : k + 1 matrices of size m ×m.

MinRank

�nd λ1, . . . , λk such that

Rank

(
M0 −

k∑
i=1

λiMi

)
≤ r .

Multivariate generalization of the Eigenvalue problem.

Applications in cryptology, coding theory, ...
Kipnis/Shamir Crypto'99, Courtois Asiacrypt'01
Faugère/Levy-dit-Vehel/Perret Crypto'08,...

Fundamental NP-hard problem of linear algebra.

Buss, Frandsen, Shallit.
The computational complexity of some problems of linear algebra.

18/28 PJ Spaenlehauer



Two algebraic modelings

M = M0 −
k∑
i=1

λiMi .

The minors modeling

Rank(M) ≤ r

m
all minors of size (r + 1) of M vanish.

(
m

r+1

)2
equations of degree r + 1.

k variables.

Few variables, lots of equations, high
degree !!

The Kipnis-Shamir modeling

Rank(M) ≤ r ⇔ ∃x(1), . . . , x(m−r) ∈ Ker(M).

M ·



Im−r

x
(1)
1 . . . x

(m−r)
1

...
...

...

x
(1)
r . . . x

(m−r)
r


= 0.

m(m − r) bilinear equations.

k + r(m − r) variables.

Complexity of solving MinRank using Gröbner bases techniques ?

Comparison of the two modelings ?

Number of solutions ?
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Main results

System −→ grevlex GB −→ lex GB.
Algorithms grevlex GB Change of Ordering

Complexity O

((n+ dreg

dreg

)ω)
O (n ·#Solω)

m: size of the matrices, k: number of matrices, r: target rank. k = (m− r)2.

Modeling: Minors Kipnis-Shamir

Degree of regularity
when k = (m − r)2

r(m − r) + 1

# Sol

Complexity

O(mωk) O(mω(k+1))

Both modelings → polynomial complexity when k = (m− r)2 is �xed.

New Crypto challenge broken: 10 generic matrices of size 11× 11
target rank 8, K = GF(65521).
Courtois, Asiacrypt 2001.
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Minors modeling

Minors modeling:

Rank(M) ≤ r

m
all minors of size (r + 1) of M vanish.

 Determinantal ideal

Bilinear systems ↔ determinantal systems

f1, . . . , fq ∈ K[X ,Y ]: bilinear forms.


∂f1
∂x0

. . . ∂f1
∂xnx

...
. . .

...
∂fq
∂x0

. . .
∂fq
∂xnx

 ·
 x0

...
xnx

 =

f1
...
fq


f1 = . . . = fq = 0⇐⇒ MaxMinors (JacX (f1, . . . , fq)) = 0.
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Determinantal ideals

What is known

Determinantal ideals: Bernstein/Zelevinsky J. of Alg. Comb. 93, Bruns/Conca
98, Sturmfels/Zelevinsky Adv. Math. 98, Conca/Herzog AMS'94, Lascoux 78,
Abhyankar 88...

Geometry of determinantal varieties: Room 39, Fulton Duke Math. J. 91,
Giusti/Merle Int. Conf. on Alg. Geo. 82...

Polar varieties: Bank/Giusti/Heintz/Safey/Schost
AAECC'10,Bank/Giusti/Heintz/Pardo J. of Compl. 05, Safey/Schost ISSAC'03,
Teissier Pure and Appl. Math. 91...
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Properties of Determinantal Ideals

D = Minorsr+1

v1,1 . . . v1,m
...

. . .
...

vm,1 . . . vm,m


Thom, Porteous, Giambelli, Harris-Tu, ...
The degree of D is

m−r−1∏
i=0

i!(m + i)!

(m − 1− i)!(m − r + i)!
.

Conca/Herzog, Abhyankar
The Hilbert series of D is

HSD(t) =
det(A(t))

t

(
r
2

)
(1− t)(2m−r)r

.

I = Minorsr+1

 f1,1 . . . f1,m
...

. . .
...

fm,1 . . . fm,m



ISSAC'2010
The degree of I is

m−r−1∏
i=0

i!(m + i)!

(m − 1− i)!(m − r + i)!
.

ISSAC'2010
The Hilbert series of I is

HSI(t) =
det(A(t))

t

(
r
2

)
(1− t)k−(m−r)2

.

Ai,j (t) =
∑
`

(m − i

`

)(m − j

`

)
t`.

transfer of properties of D by adding 〈vi ,j − fi ,j〉
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Complexity of the minors formulation (ISSAC'2010)

Degree of regularity for a 0-dim ideal = 1+ degree of the Hilbert series.

Corollary

The degree of regularity of I is generically equal to

dreg = r(m − r) + 1.

Number of matrices and rank defect �xed. 0-dimensional case.

Corollary: asymptotic complexity

When k = (m − r)2 is �xed, then the complexity of the Gröbner basis computation of

the minors modeling is

O
(
m

ωk
)
.
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Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with k = (m − r)2 is

#Sol =
m−r−1∏
i=0

i !(m + i)!

(m − 1− i)!(m − r + i)!

∼
m→∞

mk

m−r−1∏
i=0

i !

(m − r + i)!
.

Complexity of the Change of Ordering (ISSAC 2010)

The complexity of FGLM is upper bounded by O (#Solω) .
If k = (m − r)2, then

O (#Solω) = O
(
mωk

)
.
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Experimental results

Courtois. Asiacrypt'01.

E�cient zero-knowledge authentication based on a linear algebra problem
MinRank.

K = GF(65521) (m, k, r): k matrices of size m ×m. Target rank: r .
Challenge A B C

(6, 9, 3) (7, 9, 4) (8, 9, 5) (9, 9, 6) (11, 9, 8)
degree 980 4116 14112 41580 259545

Minors modeling

dreg 10 13 16 19
F5 time 1.1s 28.4s 544s 9048s -
F5 mem 488 MB 587 MB 1213 MB 5048 MB -

log2(Nb op.) 21.5 25.9 29.2 32.7

FGLM time 0.5s 28.5s 1033s 22171s -
Kipnis-Shamir modeling

dreg 5 6 7
F5 time 30s 3795s 328233s ∞
F5 mem 407 MB 3113 MB 58587 MB

log2(Nb op.) 30.5 37.1 43.4

FGLM time 35s 2580s ∞

Computational bottleneck: computing the minors.
Computing e�ort needed for solving Challenge C:

238 days on 64 quadricore processors.
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Algebraic cryptanalysis of (multi-)HFE

Patarin, Eurocrypt'96
Billet/Patarin/Seurin, ICSCC'08
Ding/Schmitt/Werner, Information Security, 2008

P(x) =
∑

0≤i,j≤r

pi,jx
qi+qj ∈ Fqn , with r � n

 low-rank quadratic form (Fq)n → (Fq)n

masked by linear transforms !!

⇒ the secret polynomial can be recovered by solving a MinRank problem.

Bettale/Faugère/Perret, PKC 2011

The complexity of solving this MinRank problem is upper bounded by

O
(
n(r+1)ω

)
.

 algebraic attack with polynomial complexity in n !!

 attacks on odd-characteristic variants;

 generalizations to multi-HFE.
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Conclusion and Perspectives

Structures have an impact on the complexity of

the solving process in algebraic cryptanalysis !

Design, key size reduction,. . .
Structure←→ potential algebraic attacks.

Other possible applications in Crypto of structured systems

Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).

classical McEliece PKC (McEliece 1978).

Algorithmic problems

Dedicated F5 algorithm for multi-homogeneous systems.
 (Faugère, Safey, S., J. of Symb. Comp. 2011)

Dedicated algorithm for determinantal systems ?
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