Gröbner Bases of Structured Systems and their Applications in Cryptology

Jean-Charles Faugère, Mohab Safey El Din Pierre-Jean Spaenlehauer

UPMC – CNRS – INRIA Paris - Rocquencourt LIP6 – SALSA team

> SCPQ Webinar 2012, 03/06

Algebraic Cryptanalysis

Crypto primitive

$Algebraic\ Cryptanalysis$

$Algebraic\ Cryptanalysis$

$Algebraic \ Cryptanalysis$

Issues

- Which algebraic modeling ?
- Tradeoff between the degree of the equations/number of variables ?
- Solving tools: Gröbner bases ? SAT-solvers ? ...
- **Structure** ?

Where does the structure come from ?

Where does the structure come from ?

```
■ Non-linearity → Security
```

```
→ Sometimes bi(or multi)-linear
(e.g. AES S-boxes: x \cdot y - 1 = 0 for x \neq 0).
```

Where does the structure come from ?

- Non-linearity → Security
 - → Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y - 1 = 0$ for $x \neq 0$).
- Asymmetric encryption/signature:
 - → trapdoor (e.g. HFE, Multi-HFE, McEliece).
 - \rightsquigarrow Reducing the key sizes is a common issue
 - ightarrow potential weaknesses due to the structure.

Where does the structure come from ?

- Non-linearity → Security
 - → Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y - 1 = 0$ for $x \neq 0$).
- Asymmetric encryption/signature:
 - → trapdoor (e.g. HFE, Multi-HFE, McEliece).
 - \rightsquigarrow Reducing the key sizes is a common issue
 - ightarrow potential weaknesses due to the structure.
- Symmetries, invariants:

invariance of the solutions under some transformations (e.g. MinRank).

Where does the structure come from ?

- Non-linearity → Security
 - → Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y - 1 = 0$ for $x \neq 0$).
- Asymmetric encryption/signature:
 - → trapdoor (e.g. HFE, Multi-HFE, McEliece).
 - \rightsquigarrow Reducing the key sizes is a common issue
 - ightarrow potential weaknesses due to the structure.
- Symmetries, invariants:

invariance of the solutions under some transformations (e.g. MinRank).

. . . .

Impact on the solving process ?

Where does the structure come from ?

- Non-linearity → Security
 - → Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y - 1 = 0$ for $x \neq 0$).
- Asymmetric encryption/signature:
 - → trapdoor (e.g. HFE, Multi-HFE, McEliece).
 - \rightsquigarrow Reducing the key sizes is a common issue
 - ightarrow potential weaknesses due to the structure.
- Symmetries, invariants:

invariance of the solutions under some transformations (e.g. MinRank).

Impact on the solving process ? Complexity ? Dedicated algorithms ?

. . . .

Families of structured algebraic systems

${\it Multi-homogeneous\ systems}$

- McEliece PKC.
- MinRank authentication scheme.
-

Families of structured algebraic systems

$Multi-homogeneous\ systems$

- McEliece PKC.
- MinRank authentication scheme.
- •••

Determinantal systems

- MinRank authentication scheme.
- Cryptosystems based on rank metric codes.
- Hidden Field Equations and variants.
- **.**..

Families of structured algebraic systems

$Multi-homogeneous\ systems$

- McEliece PKC.
- MinRank authentication scheme.
- •••

Determinantal systems

- MinRank authentication scheme.
- Cryptosystems based on rank metric codes.
- Hidden Field Equations and variants.
- . . .

Systems invariant by symmetries

Discrete log on elliptic and hyperelliptic curves.

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

Gröbner bases (I)

Gr"obner bases

 \mathcal{I} a **polynomial ideal**. Gröbner basis (w.r.t. a monomial ordering): $G \subset \mathcal{I}$ a finite set of polynomials such that $LM(\mathcal{I}) = \langle LM(G) \rangle$.

- **Buchberger** [Buchberger Ph.D. 65].
- **F**₄ [*Faugère* J. of Pure and Appl. Alg. 99].
- F₅ [Faugère ISSAC'02].
- **FGLM** [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].

Gröbner bases (I)

Gröbner bases

 \mathcal{I} a **polynomial ideal**. Gröbner basis (w.r.t. a monomial ordering): $G \subset \mathcal{I}$ a finite set of polynomials such that $LM(\mathcal{I}) = \langle LM(G) \rangle$.

- **Buchberger** [Buchberger Ph.D. 65].
- **F**₄ [*Faugère* J. of Pure and Appl. Alg. 99].
- F₅ [Faugère ISSAC'02].
- **FGLM** [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].

0-dimensional system solving					
Polynomial system	$\xrightarrow{F_4/F_5}$	grevlex GB	FGL M	lex GB.	

Gröbner bases (I)

Gr"obner bases

 \mathcal{I} a **polynomial ideal**. Gröbner basis (w.r.t. a monomial ordering): $G \subset \mathcal{I}$ a finite set of polynomials such that $LM(\mathcal{I}) = \langle LM(G) \rangle$.

- **Buchberger** [Buchberger Ph.D. 65].
- **F**₄ [*Faugère* J. of Pure and Appl. Alg. 99].
- F₅ [Faugère ISSAC'02].
- **FGLM** [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].

0-dimensional system solving					
Polynomial system	$\xrightarrow{F_4/F_5}$	grevlex GB	FGL M	lex GB.	

XL/MXL

Most of the **complexity results** also valid for **XL/MXL** Buchman/Bulygin/Cabarcas/Ding/Mohamed/Mohamed PQCrypto 2008, Africacrypt 2010,... Ars/Faugère/Imai/Kawazoe/Sugita, Asiacrypt 2004 Albrecht/Cid/Faugère/Perret, eprint

Gröbner bases (II)

0-dimensional system solving				
Polynomial system	$\xrightarrow{F_4/F_5}$	grevlex GB	\xrightarrow{FGLM}	lex GB.

Lexicographical Gröbner basis of 0-dimensional systems

Equivalent system in triangular shape:

$$f_{1}(x_{1},...,x_{n}) = 0$$

$$\vdots$$

$$f_{\ell}(x_{1},...,x_{n}) = 0$$

$$f_{\ell+1}(x_{2},...,x_{n}) = 0$$

$$\vdots$$

$$f_{m-1}(x_{n-1},x_{n}) = 0$$

$$f_{m}(x_{n}) = 0$$

Gröbner bases (II)

0-dimensional system solving					
Polynomial system	$\xrightarrow{F_4/F_5}$	grevlex GB	\xrightarrow{FGLM}	lex GB.	

Lexicographical Gröbner basis of 0-dimensional systems

Equivalent system in triangular shape:

$$\begin{cases} f_1(x_1, \dots, x_n) &= 0 \\ \vdots \\ f_{\ell}(x_1, \dots, x_n) &= 0 \\ f_{\ell+1}(x_2, \dots, x_n) &= 0 \\ \vdots \\ f_{m-1}(x_{n-1}, x_n) &= 0 \\ f_m(x_n) &= 0 \end{cases} \implies \begin{array}{l} \text{Find the roots of univariate polynomials} \\ \rightarrow \text{ easy in finite fields.} \end{cases}$$

Macaulay matrix in degree d

 $\mathcal{I} = \langle f_1, \dots, f_p \rangle$ deg $(f_i) = d_i$ \succ a monomial ordering

Rows: all products tf_i where t is a monomial of degree at most $d - d_i$. **Columns**: monomials of degree at most d.

$$\begin{array}{cccc}
m_1 \succ \cdots \succ m_\ell \\
t_1 f_1 \\
\vdots \\
t_k f_p \end{array} \left(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \end{array} \right)$$

row echelon form of the Macaulay matrix with d sufficiently high

 \implies Gröbner basis.

Macaulay matrix in degree d

 $\mathcal{I} = \langle f_1, \dots, f_p \rangle$ deg $(f_i) = d_i$ \succ a monomial ordering

Rows: all products tf_i where t is a monomial of degree at most $d - d_i$. **Columns**: monomials of degree at most d.

row echelon form of the Macaulay matrix with d sufficiently high

 \implies Gröbner basis.

Problems ■ Degree falls. ■ Rank defect ~> useless computations. ~> Hilbert series: generating series of the rank defects of the Macaulay matrices. ■ Which d ? ~> degree of regularity. 28

Two main indicators of the complexity

- Degree of regularity d_{reg} → degree that has to be reached to compute the grevlex GB.
- **Degree of the ideal** $\mathcal{I} = \langle f_1, \dots f_m \rangle$

 \rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

Two main indicators of the complexity

- Degree of regularity d_{reg} → degree that has to be reached to compute the grevlex GB.
- **Degree of the ideal** $\mathcal{I} = \langle f_1, \dots f_m \rangle$

 \rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

	System \longrightarrow	grevlex GB \longrightarrow lex GB.
Algorithms	grevlex GB	Change of Ordering
Complexity	$O\left(\binom{n+d_{reg}}{d_{reg}}\right)^{\omega}$	$O\left(n\cdot\#Sol^\omega ight)$

Two main indicators of the complexity

■ Degree of regularity d_{reg} → degree that has to be reached to compute the grevlex GB.

Degree of the ideal $\mathcal{I} = \langle f_1, \dots f_m \rangle$

 \rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Change	of Ordering	
Complexity	0 ($\binom{n + d_{reg}}{d_{reg}}^{\omega}$) O (n	$\cdot \# Sol^\omega)$	_

Classical bounds (sharp for generic systems)

Let $f_1, \ldots, f_n \in \mathbb{K}[x_1, \ldots, x_n]$ be a "generic" system.

• Macaulay bound:
$$d_{reg} \leq 1 + \sum_{1 \leq i \leq n} (d_i - 1)$$
.

Bézout bound:
$$deg(\langle f_1, \ldots, f_n \rangle) \leq \prod_{1 \leq i \leq n} d_i$$
.

Two main indicators of the complexity

■ Degree of regularity d_{reg} → degree that has to be reached to compute the grevlex GB.

Degree of the ideal $\mathcal{I} = \langle f_1, \dots, f_m \rangle$

 \rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

	System	\longrightarrow	grevlex GB	\rightarrow le	ex GB.
Algorithms		grevlex GB	Change	of Ordering	
Complexity	o ($\left(\binom{n+d_{reg}}{d_{reg}}\right)^\omega$) O (n	$\cdot \# Sol^\omega)$	

Classical bounds (sharp for generic systems)

Let $f_1, \ldots, f_n \in \mathbb{K}[x_1, \ldots, x_n]$ be a "generic" system.

• Macaulay bound: $d_{reg} \leq 1 + \sum_{1 \leq i \leq n} (d_i - 1).$

• Bézout bound: $deg(\langle f_1, \ldots, f_n \rangle) \leq \prod_{1 \leq i \leq n} d_i$.

Are there sharper bounds for structured systems ?

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

$Multi-homogeneous\ polynomial$

 $f \in \mathbb{K}[\underline{X}^{(1)}, \dots, \underline{X}^{(\ell)}]$ is multi-homogeneous of multi-degree (d_1, \dots, d_ℓ) if for all $\lambda_1, \dots, \lambda_\ell$,

$$f(\lambda_1\underline{X}^{(1)},\ldots,\lambda_\ell\underline{X}^{(\ell)})=\lambda_1^{d_1}\ldots\lambda_\ell^{d_\ell}f(\underline{X}^{(1)},\ldots,\underline{X}^{(\ell)}).$$

$Multi-homogeneous\ polynomial$

 $f \in \mathbb{K}[\underline{X}^{(1)}, \dots, \underline{X}^{(\ell)}]$ is multi-homogeneous of multi-degree (d_1, \dots, d_ℓ) if for all $\lambda_1, \dots, \lambda_\ell$,

$$f(\lambda_1\underline{X}^{(1)},\ldots,\lambda_\ell\underline{X}^{(\ell)})=\lambda_1^{d_1}\ldots\lambda_\ell^{d_\ell}f(\underline{X}^{(1)},\ldots,\underline{X}^{(\ell)}).$$

Example:

 $3x_1^2y_1 + 4x_1x_2y_1 - 3x_2^2y_1 - x_1^2y_2 + 8x_1x_2y_2 - 5x_2^2y_2 + 10x_1^2y_3 - 2x_1x_2y_3 - 3x_2^2y_3$ is a *bi-homogeneous polynomial* of bi-degree (2, 1) in $\mathbb{F}_{11}[x_1, x_2, y_1, y_2, y_3]$.

$Multi-homogeneous\ polynomial$

 $f \in \mathbb{K}[\underline{X}^{(1)}, \dots, \underline{X}^{(\ell)}]$ is multi-homogeneous of multi-degree (d_1, \dots, d_ℓ) if for all $\lambda_1, \dots, \lambda_\ell$,

$$f(\lambda_1\underline{X}^{(1)},\ldots,\lambda_\ell\underline{X}^{(\ell)})=\lambda_1^{d_1}\ldots\lambda_\ell^{d_\ell}f(\underline{X}^{(1)},\ldots,\underline{X}^{(\ell)}).$$

Example:

 $3x_1^2y_1 + 4x_1x_2y_1 - 3x_2^2y_1 - x_1^2y_2 + 8x_1x_2y_2 - 5x_2^2y_2 + 10x_1^2y_3 - 2x_1x_2y_3 - 3x_2^2y_3$ is a *bi-homogeneous polynomial* of bi-degree (2,1) in $\mathbb{F}_{11}[x_1, x_2, y_1, y_2, y_3]$.

Bilinear system: multi-homogeneous of multi-degree (1,1)

 $f_1, \dots, f_q \in \mathbb{K}[\underline{X}, \underline{Y}]: \text{ bilinear forms.}$ $f_k = \sum a_{i,j}^{(k)} x_i y_j.$

Structure of bilinear systems

Euler relations

$$f_1, \dots, f_q \in \mathbb{K}[\underline{X}, \underline{Y}]: \text{ bilinear forms.}$$
$$f_k = \sum a_{i,j}^{(k)} x_i y_j.$$

Structure of bilinear systems

Euler relations

$$f_1, \dots, f_q \in \mathbb{K}[\underline{X}, \underline{Y}]$$
: bilinear forms.
 $f_k = \sum a_{i,j}^{(k)} x_i y_j.$

$$f_k = \sum_i \frac{\partial f_k}{\partial x_i} x_i = \sum_j \frac{\partial f_k}{\partial y_j} y_j.$$

12/28

Structure of bilinear systems

$Euler\ relations$

 $f_1, \dots, f_q \in \mathbb{K}[\underline{X}, \underline{Y}]: \text{ bilinear forms.}$ $f_k = \sum a_{i,j}^{(k)} x_i y_j.$

$$f_k = \sum_i \frac{\partial f_k}{\partial x_i} x_i = \sum_j \frac{\partial f_k}{\partial y_j} y_j.$$

$$\mathsf{jac}_{x}(F) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n_{x}}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{q}}{\partial x_{1}} & \cdots & \frac{\partial f_{q}}{\partial x_{n_{x}}} \end{pmatrix} \qquad \mathsf{jac}_{y}(F) = \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{n_{y}}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{q}}{\partial y_{1}} & \cdots & \frac{\partial f_{q}}{\partial y_{n_{y}}} \end{pmatrix}$$
$$\implies \begin{pmatrix} f_{1} \\ \vdots \\ f_{q} \end{pmatrix} = \mathsf{jac}_{x}(F) \cdot \begin{pmatrix} x_{1} \\ \vdots \\ x_{n_{x}} \end{pmatrix} = \mathsf{jac}_{y}(F) \cdot \begin{pmatrix} y_{1} \\ \vdots \\ y_{n_{y}} \end{pmatrix}.$$

Something special happens with minors...

$$\begin{pmatrix} f_1 \\ \vdots \\ f_q \end{pmatrix} = \mathsf{jac}_x(F) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_{n_x} \end{pmatrix}.$$

If $(x_1, \ldots, x_{n_x}, y_1, \ldots, y_{n_y})$ is a non-trivial solution of F, then $jac_x(F)$ is rank defective. $\rightsquigarrow (y_1, \ldots, y_{n_y})$ is a zero of the maximal minors of $jac_x(F)$.

Something special happens with minors...

$$\begin{pmatrix} f_1 \\ \vdots \\ f_q \end{pmatrix} = \mathsf{jac}_x(F) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_{n_x} \end{pmatrix}.$$

If $(x_1, \ldots, x_{n_x}, y_1, \ldots, y_{n_y})$ is a non-trivial solution of F, then $jac_x(F)$ is rank defective. $\rightsquigarrow (y_1, \ldots, y_{n_y})$ is a zero of the maximal minors of $jac_x(F)$.

Bernstein/Sturmfels/Zelevinski, Adv. in Math. 1993

M a $p \times q$ matrix whose entries are variables. For any monomial ordering, the maximal minors of *M* are a Gröbner basis of the associated ideal.

Something special happens with minors...

$$\begin{pmatrix} f_1 \\ \vdots \\ f_q \end{pmatrix} = \mathsf{jac}_x(F) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_{n_x} \end{pmatrix}.$$

If $(x_1, \ldots, x_{n_x}, y_1, \ldots, y_{n_y})$ is a non-trivial solution of F, then $jac_x(F)$ is rank defective. $\rightsquigarrow (y_1, \ldots, y_{n_y})$ is a zero of the maximal minors of $jac_x(F)$.

Bernstein/Sturmfels/Zelevinski, Adv. in Math. 1993

M a $p \times q$ matrix whose entries are variables. For any monomial ordering, the maximal minors of *M* are a Gröbner basis of the associated ideal.

Faugère/Safey El Din/S., J. of Symb. Comp. 2011

M a *k*-variate $q \times p$ linear matrix (with q > p). Generically, a grevlex GB of (Minors(*M*)): linear combination of the generators.

$$\rightsquigarrow \mathsf{d}_{\mathsf{reg}}\left(\mathsf{MaxMinors}(\mathsf{jac}_{\mathsf{X}}(\mathsf{F}))\right) = \mathbf{n}_{\mathsf{X}}.$$
Affine bilinear polynomial

 $f \in \mathbb{K}[x_1, \dots, x_{n_x}, y_1, \dots, y_{n_y}]$ is said to be affine bilinear if there exists a bilinear polynomial \tilde{f} in $\mathbb{K}[x_0, \dots, x_{n_x}, y_0, \dots, y_{n_y}]$ such that

$$f(x_1,\ldots,x_{n_x},y_1,\ldots,y_{n_y})=\tilde{f}(1,x_1,\ldots,x_{n_x},1,y_1,\ldots,y_{n_y}).$$

Faugère/Safey El Din/S., J. of Symb. Comp. 2011

$Degree \ of \ regularity$

Let $f_1, \ldots, f_{n_x+n_y}$ be an affine bilinear system in $\mathbb{K}[x_1, \ldots, x_{n_x}, y_1, \ldots, y_{n_y}]$. Then the highest degree reached during the computation of a Gröbner basis for the grevlex ordering is upper bounded by

 $\min(\mathbf{n}_{\mathbf{x}},\mathbf{n}_{\mathbf{y}})+1 \ll n_{\mathbf{x}}+n_{\mathbf{y}}+1.$

Affine bilinear polynomial

 $f \in \mathbb{K}[x_1, \dots, x_{n_x}, y_1, \dots, y_{n_y}]$ is said to be affine bilinear if there exists a bilinear polynomial \tilde{f} in $\mathbb{K}[x_0, \dots, x_{n_x}, y_0, \dots, y_{n_y}]$ such that

$$f(x_1,\ldots,x_{n_x},y_1,\ldots,y_{n_y})=\tilde{f}(1,x_1,\ldots,x_{n_x},1,y_1,\ldots,y_{n_y}).$$

Faugère/Safey El Din/S., J. of Symb. Comp. 2011

$Degree \ of \ regularity$

Let $f_1, \ldots, f_{n_x+n_y}$ be an affine bilinear system in $\mathbb{K}[x_1, \ldots, x_{n_x}, y_1, \ldots, y_{n_y}]$. Then the highest degree reached during the computation of a Gröbner basis for the grevlex ordering is upper bounded by

```
\min(\mathbf{n}_{\mathbf{x}},\mathbf{n}_{\mathbf{y}})+1 \ll n_{\mathbf{x}}+n_{\mathbf{y}}+1.
```

Consequences

- The complexity of computing a grevlex GB is polynomial in the number of solutions !!
- Bilinear systems with unbalanced sizes of blocks of variables are easy to solve !!

Modeling of McEliece cryptosystem

Based on alternant codes:

secret key: a parity-check matrix of the form

$$H = \begin{pmatrix} y_0 & y_1 & \cdots & y_{n-1} \\ y_0 x_0 & y_1 x_1 & \cdots & y_{n-1} x_{n-1} \\ \vdots & \vdots & \vdots \\ y_0 x_0^{t-1} & y_1 x_1^{t-1} & \cdots & y_n x_n^{t-1} \end{pmatrix},$$

where $x_i, y_j \in \mathbb{F}_{2^m}$, with x_0, \ldots, x_n pairwise distinct and $y_j \neq 0$. **public key: a generator matrix** G of the same code.

Modeling of McEliece cryptosystem

Based on alternant codes:

secret key: a parity-check matrix of the form

$$H = \begin{pmatrix} y_0 & y_1 & \cdots & y_{n-1} \\ y_0 x_0 & y_1 x_1 & \cdots & y_{n-1} x_{n-1} \\ \vdots & \vdots & \vdots \\ y_0 x_0^{t-1} & y_1 x_1^{t-1} & \cdots & y_n x_n^{t-1} \end{pmatrix},$$

where $x_i, y_j \in \mathbb{F}_{2^m}$, with x_0, \ldots, x_n pairwise distinct and $y_j \neq 0$.

public key: a generator matrix G of the same code.

Problem

Given G, find H such that $H \cdot G^t = \mathbf{0}$!

Modeling of McEliece cryptosystem

Based on alternant codes:

secret key: a parity-check matrix of the form

$$H = \begin{pmatrix} y_0 & y_1 & \cdots & y_{n-1} \\ y_0 x_0 & y_1 x_1 & \cdots & y_{n-1} x_{n-1} \\ \vdots & \vdots & \vdots \\ y_0 x_0^{t-1} & y_1 x_1^{t-1} & \cdots & y_n x_n^{t-1} \end{pmatrix},$$

where $x_i, y_j \in \mathbb{F}_{2^m}$, with x_0, \ldots, x_n pairwise distinct and $y_j \neq 0$.

public key: a generator matrix G of the same code.

Problem

Given G, find H such that $H \cdot G^t = \mathbf{0}$!

$$\rightsquigarrow \forall i, j, \quad g_{i,0} y_0 x_0^j + \cdots + g_{i,n-1} y_{n-1} x_{n-1}^j = 0.$$

 \Rightarrow Bi-homogeneous structure !!

Compact variants

Goal: reduce the size of the keys.

- **Quasi-cyclic** variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
- Dyadic variant: Misoczy/Barreto SAC'09.

Compact variants

Goal: reduce the size of the keys.

- **Quasi-cyclic** variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
- **Dyadic** variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

 \Rightarrow add **redundancy** to the polynomial system \rightsquigarrow linear equations \rightsquigarrow less variables.

Compact variants

Goal: reduce the size of the keys.

- **Quasi-cyclic** variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
- Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

 \Rightarrow add **redundancy** to the polynomial system \rightsquigarrow linear equations \rightsquigarrow less variables.

Moreover, the system is still over-determined and one can extract a subsystem containing only **powers of two**:

 $\rightsquigarrow \forall i, j \text{ a power of two } !!, \quad g_{i,0} y_0 x_0^j + \dots + g_{i,n-1} y_{n-1} x_{n-1}^j = 0.$

Compact variants

Goal: reduce the size of the keys.

- **Quasi-cyclic** variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
- Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

 \Rightarrow add **redundancy** to the polynomial system \rightsquigarrow linear equations \rightsquigarrow less variables.

Moreover, the system is still over-determined and one can extract a subsystem containing only **powers of two**:

 $\rightsquigarrow \forall i,j \text{ a power of two } !!, \quad g_{i,0}y_0x_0^j + \cdots + g_{i,n-1}y_{n-1}x_{n-1}^j = 0.$

Decomposing the subsystem over the field \mathbb{F}_2

\Rightarrow Bilinear system with $n_x \ll n_y$!!!

Compact variants

Goal: reduce the size of the keys.

- **Quasi-cyclic** variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
- **Dyadic** variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010

⇒ add redundancy to the polynomial system
 → linear equations → less variables.
 Moreover, the system is still over-determined and one can extract a subsystem containing only powers of two:

 $\rightsquigarrow \forall i,j \text{ a power of two } !!, \quad g_{i,0}y_0x_0^j + \cdots + g_{i,n-1}y_{n-1}x_{n-1}^j = 0.$

Decomposing the subsystem over the field \mathbb{F}_2

\Rightarrow Bilinear system with $n_x \ll n_y$!!!

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

The MinRank problem

 $r \in \mathbb{N}$. M_0, \ldots, M_k : k + 1 matrices of size $m \times m$.

MinRank

find $\lambda_1, \ldots, \lambda_k$ such that

$$\operatorname{Rank}\left(M_0-\sum_{i=1}^k\lambda_i\,M_i\right)\leq r.$$

- Multivariate generalization of the Eigenvalue problem.
- Applications in cryptology, coding theory, ...
 Kipnis/Shamir Crypto'99, Courtois Asiacrypt'01
 Faugère/Levy-dit-Vehel/Perret Crypto'08,...
- Fundamental NP-hard problem of linear algebra.

Buss, Frandsen, Shallit.

The computational complexity of some problems of linear algebra.

$$\mathsf{M}=M_0-\sum_{i=1}^k\lambda_i\,M_i.$$

$$\mathsf{M}=M_0-\sum_{i=1}^k\lambda_i\,M_i.$$

$$\mathsf{M}=M_0-\sum_{i=1}^k\lambda_i\,M_i.$$

$$\mathsf{M}=M_0-\sum_{i=1}^k\lambda_i\,M_i.$$

- Complexity of solving MinRank using Gröbner bases techniques ?
- Comparison of the two modelings ?
- Number of solutions ?

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Chang	e of Orderin	g
Complexity	0	$\left(\binom{n+d_{reg}}{d_{reg}}\right)^{\infty}$) 0($n \cdot \# Sol^\omega)$	

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Cha	nge of Orde	ring
Complexity	0	$\left(\binom{n+d_{reg}}{d_{reg}}\right)^{\omega}$) ($\mathcal{O}(\mathbf{n} \cdot \# \mathbf{Sol}^{\omega})$)

Modeling:	Minors	Kipnis-Shamir		
Degree of regularity		Macaulay bound:		
when $k=(m-r)^2$		$\leq m(m-r)+1$		
# Sol	MH. Bézout: $\leq {\binom{m}{r}}^{m-r}$			
Complexity				

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Chai	nge of Order	ring
Complexity	0	$\left(\binom{n + d_{reg}}{d_{reg}} \right)^{\omega} \right)$) c	$\mathcal{O}(n \cdot \# Sol^\omega)$	

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k = (m - r)^2$		$\leq (m-r)^2+1$
# Sol	MH. Bézou	t: $\leq \binom{m}{r}^{m-r}$
Complexity		

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Chai	nge of Order	ring
Complexity	0	$\left(\binom{n + d_{reg}}{d_{reg}} \right)^{\omega} \right)$) c	$\mathcal{O}(n \cdot \# Sol^\omega)$	

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k = (m - r)^2$	r(m-r)+1	$\leq (m-r)^2+1$
# Sol	MH. Bézout: $\leq \binom{m}{r}^{m-r}$	
Complexity		

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Chai	nge of Order	ring
Complexity	0	$\left(\binom{n + d_{reg}}{d_{reg}} \right)^{\omega} \right)$) c	$\mathcal{O}(n \cdot \# Sol^\omega)$	

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k = (m - r)^2$	r(m-r)+1	$\leq (m-r)^2+1$
# Sol	$\prod_{i=0}^{m-r-1} \frac{1}{(m-1)}$	$\frac{i!(m+i)!}{(m-i)!(m-r+i)!}$
Complexity		

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Chai	nge of Order	ring
Complexity	0	$\left(\binom{n + d_{reg}}{d_{reg}} \right)^{\omega} \right)$) c	$\mathcal{O}(n \cdot \# Sol^\omega)$	

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k = (m - r)^2$	r(m-r)+1	$\leq (m-r)^2+1$
# Sol	$\prod_{i=0}^{m-r-1} \frac{1}{(m-1)}$	$\frac{i!(m+i)!}{(m-i)!(m-r+i)!}$
Complexity	$O(m^{\omega k})$	$O(m^{\omega(k+1)})$

	System	\longrightarrow	grevlex GB	\longrightarrow	lex GB.
Algorithms		grevlex GB	Cha	nge of Orde	ring
Complexity	0	$\left(\binom{n + d_{reg}}{d_{reg}} \right)^{\omega} \right)$) ($\mathcal{O}(n \cdot \# Sol^\omega)$)

Modeling:	Minors	Kipnis-Shamir		
Degree of regularity when $k = (m - r)^2$	r(m-r)+1	$\leq (m-r)^2+1$		
# Sol	$\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}$			
Complexity	$O(m^{\omega k})$	$O(m^{\omega(k+1)})$		

Both modelings \rightarrow polynomial complexity when $\mathbf{k} = (\mathbf{m} - \mathbf{r})^2$ is fixed.

New Crypto challenge broken: 10 generic matrices of size 11×11 target rank 8, $\mathbb{K} = GF(65521)$. Courtois, Asiacrypt 2001.

Minors modeling:

$$\mathsf{Rank}(\mathsf{M}) \leq r$$
 $onumber for all minors of size $(r+1)$ of M vanish.$

→ Determinantal ideal

Minors modeling:

$$\mathsf{Rank}(\mathsf{M}) \leq r$$
 $eqtic{}$
all minors of size $(r+1)$ of M vanish.

→ Determinantal ideal

 $Bilinear \ systems \leftrightarrow \ determinantal \ systems$

 $f_1, \ldots, f_q \in \mathbb{K}[\underline{X}, \underline{Y}]$: bilinear forms.

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_0} & \cdots & \frac{\partial f_1}{\partial x_{n_x}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_q}{\partial x_0} & \cdots & \frac{\partial f_q}{\partial x_{n_x}} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ \vdots \\ x_{n_x} \end{pmatrix} = \begin{pmatrix} f_1 \\ \vdots \\ f_q \end{pmatrix}$$

 $f_1 = \ldots = f_q = 0 \iff \mathsf{MaxMinors}(\mathsf{Jac}_X(f_1, \ldots, f_q)) = 0.$

PJ Spaenlehauer

What is known

- Determinantal ideals: Bernstein/Zelevinsky J. of Alg. Comb. 93, Bruns/Conca 98, Sturmfels/Zelevinsky Adv. Math. 98, Conca/Herzog AMS'94, Lascoux 78, Abhyankar 88...
- Geometry of determinantal varieties: Room 39, Fulton Duke Math. J. 91, Giusti/Merle Int. Conf. on Alg. Geo. 82...
- Polar varieties: Bank/Giusti/Heintz/Safey/Schost
 AAECC'10,Bank/Giusti/Heintz/Pardo J. of Compl. 05, Safey/Schost ISSAC'03, Teissier Pure and Appl. Math. 91...

$$\mathcal{D} = \operatorname{Minors}_{r+1} \begin{pmatrix} v_{1,1} & \cdots & v_{1,m} \\ \vdots & \ddots & \vdots \\ v_{m,1} & \cdots & v_{m,m} \end{pmatrix}$$
Thom, Porteous, Giambelli, Harris-Tu, ...
The degree of \mathcal{D} is
$$\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}$$
Conca/Herzog, Abhyankar
The Hilbert series of \mathcal{D} is
$$\operatorname{HS}_{\mathcal{D}}(t) = \frac{\det(A(t))}{t^{\binom{r}{2}}(1-t)^{(2m-r)r}}.$$

$$A_{i,j}(t) = \sum_{\ell} {m-i \choose \ell} {m-j \choose \ell} t^{\ell}.$$

$$A_{i,j}(t) = \sum_{\ell} {\binom{m-i}{\ell} \binom{m-j}{\ell} t^{\ell}}.$$

$$A_{i,j}(t) = \sum_{\ell} {\binom{m-i}{\ell} \binom{m-j}{\ell} t^{\ell}}.$$

transfer of properties of \mathcal{D} by adding $\langle v_{i,j} - f_{i,j} \rangle$

$$\mathcal{D} = \operatorname{Minors}_{r+1} \begin{pmatrix} v_{1,1} & \dots & v_{1,m} \\ \vdots & \ddots & \vdots \\ v_{m,1} & \dots & v_{m,m} \end{pmatrix}$$

$$\mathcal{I} = \operatorname{Minors}_{r+1} \begin{pmatrix} f_{1,1} & \dots & f_{1,m} \\ \vdots & \ddots & \vdots \\ f_{m,1} & \dots & f_{m,m} \end{pmatrix}$$

$$\mathcal{I} = \operatorname{Minors}_{r+1} \begin{pmatrix} f_{1,1} & \dots & f_{1,m} \\ \vdots & \ddots & \vdots \\ f_{m,1} & \dots & f_{m,m} \end{pmatrix}$$

$$\operatorname{ISSAC'2010}_{\text{The degree of } \mathcal{I} \text{ is}}$$

$$\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}$$

$$\operatorname{Conca/Herzog, Abhyankar}_{\text{The Hilbert series of } \mathcal{D} \text{ is}}$$

$$\operatorname{HS}_{\mathcal{D}}(t) = \frac{\det(A(t))}{t^{\binom{r}{2}}(1-t)^{(2m-r)r}}.$$

$$\operatorname{ISSAC'2010}_{\text{The Hilbert series of } \mathcal{I} \text{ is}}$$

$$\operatorname{HS}_{\mathcal{I}}(t) = \frac{\det(A(t))}{t^{\binom{r}{2}}(1-t)^{(2m-r)r}}.$$

$$A_{i,j}(t) = \sum_{\ell} {\binom{m-i}{\ell} \binom{m-j}{\ell} t^{\ell}}.$$

transfer of properties of \mathcal{D} by adding $\langle v_{i,j} - f_{i,j} \rangle$

Complexity of the minors formulation (ISSAC'2010)

Degree of regularity for a 0-dim ideal = 1 + degree of the **Hilbert series**.

Corollary

The degree of regularity of \mathcal{I} is generically equal to

$$\mathbf{d}_{\mathsf{reg}} = r(m-r) + 1.$$

Complexity of the minors formulation (ISSAC'2010)

Degree of regularity for a 0-dim ideal = 1 + degree of the **Hilbert series**.

Corollary

The degree of regularity of $\mathcal I$ is generically equal to

$$\mathbf{d}_{\mathsf{reg}} = r(m-r) + 1.$$

Number of matrices and rank defect fixed. 0-dimensional case.

Corollary: asymptotic complexity

When $k = (m - r)^2$ is fixed, then the **complexity** of the **Gröbner basis** computation of the **minors** modeling is

 $O\left(m^{\omega k}\right)$.

Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with $k = (m - r)^2$ is

$$#Sol = \prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!} \\ \underset{m \to \infty}{\sim} m^k \prod_{i=0}^{m-r-1} \frac{i!}{(m-r+i)!}.$$

Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with $k = (m - r)^2$ is

$$\#Sol = \prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)} \\ \underset{m \to \infty}{\sim} m^k \prod_{i=0}^{m-r-1} \frac{i!}{(m-r+i)!}.$$

Complexity of the Change of Ordering (ISSAC 2010)

The complexity of FGLM is upper bounded by $O(\#Sol^{\omega})$. If $k = (m - r)^2$, then

$$O\left(\#Sol^{\omega}\right) = O\left(m^{\omega k}\right)$$

Courtois. Asiacrypt'01.

Efficient zero-knowledge authentication based on a linear algebra problem MinRank.

 $\mathbb{K} = \mathsf{GF}(\mathbf{65521})$ (m,k,r): k matrices of size $m \times m$. Target rank: r.

Challenge	А	В			С		
	(6,9,3)	(7,9,4)	(8,9,5)	(9,9,6)	(11,9,8)		
degree	980	4116	14112	41580	259545		
	Minors modeling						
d _{reg}	10	13	16	19			
F₅ time	1.1s	28.4s	544s	9048s	-		
F₅ mem	488 MB	587 MB	1213 MB	5048 MB	-		
log ₂ (Nb op.)	21.5	25.9	29.2	32.7			
FGLM time	0.5s	28.5s	1033s	22171s	-		
	Kipnis-Shamir modeling						
dreg	5	6	7				
F₅ time	30s	3795s	328233s	∞			
F₅ mem	407 MB	3113 MB	58587 MB				
log ₂ (Nb op.)	30.5	37.1	43.4				
FGLM time	35s	2580s	∞				

Courtois. Asiacrypt'01.

Efficient zero-knowledge authentication based on a linear algebra problem MinRank.

 $\mathbb{K} = \mathbf{GF(65521)}$ (m,k,r): k matrices of size $m \times m$. Target rank: r.

Challenge	А	В			С		
	(6,9,3)	(7,9,4)	(8,9,5)	(9,9,6)	(11,9,8)		
degree	980	4116	14112	41580	259545		
	Minors modeling						
d _{reg}	10	13	16	19			
F5 time	1.1s	28.4s	544s	9048s	-		
F₅ mem	488 MB	587 MB	1213 MB	5048 MB	-		
log ₂ (Nb op.)	21.5	25.9	29.2	32.7			
FGLM time	0.5s	28.5s	1033s	22171s	-		
	Kipnis-Shamir modeling						
dreg	5	6	7				
F₅ time	30s	3795s	328233s	∞			
F₅ mem	407 MB	3113 MB	58587 MB				
log ₂ (Nb op.)	30.5	37.1	43.4				
FGLM time	35s	2580s	∞				

Computational bottleneck: computing the minors. Computing effort needed for solving Challenge C: 238 days on 64 quadricore processors.
Algebraic cryptanalysis of (multi-)HFE

Patarin, Eurocrypt'96 Billet/Patarin/Seurin, ICSCC'08 Ding/Schmitt/Werner, Information Security, 2008

$$P(x) = \sum_{0 \leq i,j \leq r} p_{i,j} x^{q^i + q^j} \in \mathbb{F}_{q^n}, \text{ with } r \ll n$$

 \rightsquigarrow low-rank quadratic form $(\mathbb{F}_q)^n \rightarrow (\mathbb{F}_q)^n$

Algebraic cryptanalysis of (multi-)HFE

Patarin, Eurocrypt'96 Billet/Patarin/Seurin, ICSCC'08 Ding/Schmitt/Werner, Information Security, 2008

$$P(x) = \sum_{0 \leq i,j \leq r} p_{i,j} x^{q^i + q^j} \in \mathbb{F}_{q^n}, \text{ with } r \ll n$$

 \rightsquigarrow low-rank quadratic form $(\mathbb{F}_q)^n \rightarrow (\mathbb{F}_q)^n$ masked by linear transforms !!

Algebraic cryptanalysis of (multi-)HFE

Patarin, Eurocrypt'96 Billet/Patarin/Seurin, ICSCC'08 Ding/Schmitt/Werner, Information Security, 2008

$$P(x) = \sum_{0 \le i,j \le r} p_{i,j} x^{q^i + q^j} \in \mathbb{F}_{q^n}, \text{ with } r \ll n$$

 \rightsquigarrow low-rank quadratic form $(\mathbb{F}_q)^n \rightarrow (\mathbb{F}_q)^n$ masked by linear transforms !!

 \Rightarrow the secret polynomial can be recovered by solving a MinRank problem.

Bettale/Faugère/Perret, PKC 2011

The complexity of solving this MinRank problem is upper bounded by

$$O\left(n^{(r+1)\omega}\right)$$

- \rightsquigarrow algebraic attack with **polynomial complexity** in *n* !!
- → attacks on **odd-characteristic** variants;
- \rightsquigarrow generalizations to **multi-HFE**.

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis !

Design, key size reduction, $\overset{\text{Structure}}{\longleftrightarrow}$ potential algebraic attacks.

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis !

Design, key size reduction, $\stackrel{\text{Structure}}{\longleftrightarrow}$ potential algebraic attacks.

Other possible applications in Crypto of structured systems

Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).

■ classical McEliece PKC (*McEliece 1978*).

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis !

Design, key size reduction, \longrightarrow **Structure** potential algebraic attacks.

Other possible applications in Crypto of structured systems

Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).

■ classical McEliece PKC (*McEliece 1978*).

Algorithmic problems

■ Dedicated F₅ algorithm for multi-homogeneous systems.
~~> (Faugère, Safey, S., J. of Symb. Comp. 2011)

Dedicated algorithm for determinantal systems ?