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Algebraic Cryptanalysis

i Crypto primitive
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m Which algebraic modeling ?

~J

m Tradeoff between the degree of the equations/number of variables
m Solving tools: Grobner bases ? SAT-solvers 7 ...

m Structure ?

2/28




Motivations: Algebraic Structures in Cryptology
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Impact on the solving process 7
Complexity ? Dedicated algorithms 7
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Famalies of structured algebraic systems
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m MinRank authentication scheme.
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Famalies of structured algebraic systems

Multi-homogeneous systems

m McEliece PKC.

m MinRank authentication scheme.

Determinantal systems

m MinRank authentication scheme.
m Cryptosystems based on rank metric codes.
m Hidden Field Equations and variants.

Systems invariant by symmetries

Discrete log on elliptic and hyperelliptic curves.
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Polynomial System Solving using Grébner Bases
Bilinear Systems and Application to McEliece

Determinantal Systems and Applications to MinRank and HFE
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Grobner bases (1)

Grobner bases

7 a polynomial ideal. Grobner basis (w.r.t. a monomial ordering): G C T a finite set
of polynomials such that LM(Z) = (LM(G)).

m Buchberger [Buchberger Ph.D. 65].

m F4 [Faugére J. of Pure and Appl. Alg. 99].

m Fs [Faugére ISSAC'02].

m FGLM [Faugére/Gianni/Lazard/Mora JSC. 93, Faugére/Mou ISSAC'11].
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7 a polynomial ideal. Grobner basis (w.r.t. a monomial ordering): G C T a finite set
of polynomials such that LM(Z) = (LM(G)).

m Buchberger [Buchberger Ph.D. 65].

m F4 [Faugére J. of Pure and Appl. Alg. 99].

m Fs [Faugére ISSAC'02].

m FGLM [Faugére/Gianni/Lazard/Mora JSC. 93, Faugére/Mou ISSAC'11].

0-dimensional system solving

. Fa/F
Polynomial system g grevlex GB FGEM, lex GB.

| A\

XL/MXL

Most of the complexity results also valid for XL/MXL
Buchman/Bulygin/Cabarcas/Ding/Mohamed/Mohamed PQCrypto 2008, Africacrypt
2010,. ..

Ars/Faugére/Imai/Kawazoe/Sugita, Asiacrypt 2004

Albrecht/Cid/Faugére/Perret, eprint
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Grobner bases (11)

0-dimensional system solving

. Fa/Fi
Polynomial system —4—/—5—> grevlex GB FGEM, Jex GB.

Lezicographical Grébner basis of 0-dimensional systems

Equivalent system in triangular shape:

fl(Xl,...,X,-,) = 0
fo(xt,...,xa) = 0
fori(x2,...,xn) = 0
fm—l(Xn—ly Xn) = 0
fn(xa) = O
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Grobner bases (11)

0-dimensional system solving

. Fa/Fi
Polynomial system —4—/—5—> grevlex GB FGEM, Jex GB.

Lezicographical Grébner basis of 0-dimensional systems

Equivalent system in triangular shape:

fl(Xl,...,X,-,) = 0
fo(xt,...,xa) = 0 , - .
p _ 0 Find the roots of univariate polynomials
1l xm) = — easy in finite fields.
fm—l(Xn—lyxn) = 0
fm(xs) = 0
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Macaulay matriz in degree d

I=(f,...,f) deg(fi)=d; > a monomial ordering

Rows: all products tf; where t is a monomial of degree at most d — d;.
Columns: monomials of degree at most d.

mg > .-+ > nmg
t1fi
tkfp

row echelon form of the Macaulay matrix with d sufficiently high

=— Grobner basis.
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Macaulay matriz in degree d

I=(f,...,f) deg(fi)=d; > a monomial ordering

Rows: all products tf; where t is a monomial of degree at most d — d;.
Columns: monomials of degree at most d.

my > - >Ny
t1fi
tkfp
row echelon form of the Macaulay matrix with d sufficiently high

=— Grobner basis.

m Degree falls.

m Rank defect ~~ useless computations.
~Hilbert series: generating series of the rank defects of the Macaulay matrices.

m Which d ? ~~ degree of regularity.
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Complexity of Grobner bases computations

Two main indicators of the complexity

m Degree of regularity dreg
~~ degree that has to be reached to compute the grevlex GB.
m Degree of the ideal Z = (f,...fn)

~» Number of solutions of the system (counted with multiplicities). Gives the rank of
the Macaulay matrix.
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~» Number of solutions of the system (counted with multiplicities). Gives the rank of
the Macaulay matrix.

System — grevlex GB — lex GB.
Algorithms grevlex GB Change of Ordering
. n—+ dreg “
Complexity (0] ( ) O (n - #Solv)
dreg

Classical bounds (sharp for generic systems)

Let f1,...,fn € K[x1,..., %] be a "generic" system.
s Macaulay bound: d,.g <1+ Z (di —1).

1<i<n

= Bézout bound: deg((fi,....f)) < [] d:.
1<i<n

Are there sharper bounds for structured systems ?
9/28
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Bilinear Systems and Application to McEliece
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Multi-homogeneous systems

Multi-homogeneous polynomaial

f e KXW, ..., X9 is multi-homogeneous of multi-degree (di, ..., d) if
for all A1,..., Ae,

FOuXW, o A XEy = a8 AdeF(x® L x),
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for all A1,..., Ae,

FOuXW, o A XEy = a8 AdeF(x® L x),
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3x12y1 + 4x1x2y1 — 3x§y1 — x12y2 + 8xix2y2 — 5X§y2 + 10x12y3 — 2X1X2)3 — 3x22y3
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Multi-homogeneous systems

Multi-homogeneous polynomaial

f e KXW, ..., X9 is multi-homogeneous of multi-degree (di, ..., d) if
for all A1,..., Ae,

FOuXW, o A XEy = a8 AdeF(x® L x),

Example:

3x12y1 + 4x1x2y1 — 3x§y1 — x12y2 + 8xix2y2 — 5x§y2 + 10x12y3 — 2X1X2)3 — 3x22y3
is a bi-homogeneous polynomial of bi-degree (2,1) in F11[x1, x2, y1, y2, y3].

Bilinear system: multi-homogeneous of multi-degree (1,1)

fi,...,fq € K[X, Y]: bilinear forms.
k
fk=> a:(,j)xiyj'
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Structure of bilinear systems

fi,...,fq € K[X, Y]: bilinear forms.
k
fk=>" a&})qyy.
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Structure of bilinear systems

., fq € K[X, Y]: bilinear forms.
=3 a¥)xy;.

ofy ofy
fk_zdx’j —Za—y’;y,
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Structure of bilinear systems

., fq € K[X, Y]: bilinear forms.

k
= a§7j)Xi}/j.
Ofy Ofx
f. = Xj =
K Z B Z ay;
ofr of O of
Ox1 OXny Oy1 6}’ny
jac (F) =1 : : jac, (F) :
oty oty ofy ofy
Ox1 OXpy Oy1 6}’ny
fi X1 n
= | i | =jaci(F)- =Jac,(F)- | :
fq an )/ny
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Something special happens with minors...

fi X1
=Jjac,(F)-
fq Xn,
If (X1, Xng,Y1,---,Yn,) is @ non-trivial solution of F, then jac,(F) is rank defective.
~ (y1,...,Yn,) is a zero of the maximal minors of jac (F).
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Something special happens with minors...

fi X1
=Jjac,(F)-
fq Xn,
If (X1, Xng,Y1,---,Yn,) is @ non-trivial solution of F, then jac,(F) is rank defective.
~ (y1,...,Yn,) is a zero of the maximal minors of jac (F).

Bernstein/Sturmfels/Zelevinski, Adv. in Math. 1993

M a p x g matrix whose entries are variables. For any monomial ordering, the
maximal minors of M are a Grobner basis of the associated ideal.

Faugére/Safey El Din/S., J. of Symb. Comp. 2011

M a k-variate g x p linear matrix (with g > p). Generically, a grevlex GB of
(Minors(M)): linear combination of the generators.

~+ dreg (MaxMinors(jac,(F))) = nx.
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Complexity

Affine bilinear polynomial

f €K[xi,...,Xne, y1,-..,¥n,] is said to be affine bilinear if there exists a bilinear
polynomial 7 in K[xo, . .., Xng, Yo, .. , Ya,| such that

(X1, Xng, Y1, -5 Yny) = ?(l,xl,...,x,,x,l,yl,...,y,,y).

Faugeére/Safey El Din/S., J. of Symb. Comp. 2011

Degree of regularity

Let fi,..., fae1n, be an affine bilinear system in K[x1,...,Xn.,y1,..,¥n,]. Then the
highest degree reached during the computation of a Grébner basis for the grevlex
ordering is upper bounded by

min(ny, ny) +1 < nx + ny, + 1.
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f €K[xi,...,Xne, y1,-..,¥n,] is said to be affine bilinear if there exists a bilinear
polynomial 7 in K[xo, . .., Xng, Yo, .. , Ya,| such that

(X1, Xng, Y1, -5 Yny) = ?(l,xl,...,x,,x,l,yl,...,y,,y).

Faugeére/Safey El Din/S., J. of Symb. Comp. 2011

Degree of regularity

Let fi,..., fae1n, be an affine bilinear system in K[x1,...,Xn.,y1,..,¥n,]. Then the
highest degree reached during the computation of a Grébner basis for the grevlex
ordering is upper bounded by

min(ny, ny) +1 < nx + ny, + 1.

Consequences

m The complexity of computing a grevlex GB is polynomial in the number of
solutions !!

m Bilinear systems with unbalanced sizes of blocks of variables are easy to solve !!
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Modeling of McEliece cryptosystem

Based on alternant codes:

m secret key: a parity-check matrix of the form

Yo " e Yn—1
YoXo Yix1 PN Yn—1Xn—1
H= ) . . . )
yoxg toyixi oy
where x;, yj € Fam, with xo, ..., x, pairwise distinct and y; # 0.

m public key: a generator matrix G of the same code.
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Modeling of McEliece cryptosystem

Based on alternant codes:

m secret key: a parity-check matrix of the form

Yo )2 e Yn—1
YoXo yix1 . Yn—1Xn—1
H= . . ) _ ,
Yoxg t oyt yaxg
where x;, y; € Fam, with xo, ..., X, pairwise distinct and y; # 0.

m public key: a generator matrix G of the same code.

Given G, find H such that H- G* =0! l

~ Vi’j? gi,OyOX(j)' R gi,n—IYn—IX:;,l =0.

= Bi-homogeneous structure !!
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Cryptanalysis of compact variants of McFEliece

Goal: reduce the size of the keys.
= Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt’09;
m Dyadic variant: Misoczy/Barreto SAC'09.
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Goal: reduce the size of the keys.
= Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt’09;
m Dyadic variant: Misoczy/Barreto SAC'09.

Faugére/Otmani/Perret/Tilich, Eurocrypt’2010

=- add redundancy to the polynomial system

~> linear equations ~- less variables.

Moreover, the system is still over-determined and one can extract a subsystem
containing only powers of two:

~ Vi, j a power of two !!, g,-,oyox{; + ot g;,n71yn—1Xf;,1 =0
Decomposing the subsystem over the field F,
= Bilinear system with n, < n, !

Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!
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Determinantal Systems and Applications to MinRank and HFE
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The MinRank problem

reN. Mg,..., M: k+ 1 matrices of size m x m.

find A1,..., Ak such that

k
Rank (I\/Io - Z A,-I\/I,-) <r.

i=1

m Multivariate generalization of the Eigenvalue problem.

m Applications in cryptology, coding theory, ...
Kipnis/Shamir Crypto'99, Courtois Asiacrypt'01
Faugére/Levy-dit-Vehel/Perret Crypto’08,...

m Fundamental NP-hard problem of linear algebra.

@ Buss, Frandsen, Shallit.
The computational complexity of some problems of linear algebra.

18/28 PJ Spaenlehauer



Two algebraic modelings

k
M= M, —Z)\;M;.

i=1
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m k variables.

Few variables, lots of equations, high
degree !
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Two algebraic modelings

k
M= M, —Z)\;M;.

i=1

‘ The minors modeling ‘

Rank(M) <r

all minors of size (r + 1) of M vanish.

" (,Il)2 equations of degree r + 1.

m k variables.

Few variables, lots of equations, high
degree !

\ The Kipnis-Shamir modeling

Rank(M) < r & 3x(1) ... x(m=1) c Ker(M).

lmfr

m m(m

m k+r(m

— r) bilinear equations.

— r) variables.

m Complexity of solving MinRank using Grobner bases techniques 7

m Comparison of the two modelings ?

m Number of solutions ?

19/28
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Main results

System — grevlex GB — lex GB.
Algorithms grevlex GB Change of Ordering
. n+ dreg “
Complexity (0] ( ) O (n - #Solv)
dreg
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| Modeling: [ Minors [ Kipnis-Shamir |
Degree of regularity
when k = (m — r)?

m—r—1 II m+l |
# Sol 11 (m—l—(i)!(m)—r+f)!

Complexity \

rm=r)+1| <(m-rP+1
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Main results

System — grevlex GB — lex GB.
Algorithms grevlex GB Change of Ordering
. n+ dreg ©
Complexity o ( ) O (n - #Solv)
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m: size of the matrices, k: number of matrices, r: target rank. k = (m —r)2.

| Modeling: [ Minors T Kipnis-Shamir |
Degree of regularit
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Complexity (m“’k) ‘ O(mw(k+1))
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Main results

System — grevlex GB — lex GB.
Algorithms grevlex GB Change of Ordering
. n+ dreg ©
Complexity o ( ) O (n - #Solv)
dreg

m: size of the matrices, k: number of matrices, r: target rank. k = (m —r)2.

| Modeling: [ Minors T Kipnis-Shamir |
Degree of regularit
ernk:(,f_,)zy r(m—r)+1 S(mfr)2+1
m—r—1
i'(m+i)!
#SO| o (m—l—f)!(m_r+i)!
Complexity (m“’k) ‘ O(mw(k+1))

Both modelings — polynomial complexity when k = (m — r)? is fixed.

New Crypto challenge broken: 10 generic matrices of size 11 x 11
target rank 8, K = GF(65521).
Courtois, Asiacrypt 2001.
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Minors modeling

Minors modeling:

Rank(M) < r

all minors of size (r + 1) of M vanish.

~+ Determinantal ideal
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Minors modeling

Minors modeling:

Rank(M) < r

all minors of size (r + 1) of M vanish.

~+ Determinantal ideal

Bilinear systems <> determinantal systems

fi,...,fq € K[X, Y]: bilinear forms.
of of
S~ X0 f
R, X fq
fi =...=1fqg =0 <= MaxMinors (Jacx(f1,...,f)) =0.
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Determinantal ideals

What is known

m Determinantal ideals: Bernstein/Zelevinsky J. of Alg. Comb. 93, Bruns/Conca
98, Sturmfels/Zelevinsky Adv. Math. 98, Conca/Herzog AMS’94, Lascoux 78,
Abhyankar 88...

m Geometry of determinantal varieties: Room 39, Fulton Duke Math. J. 91,
Giusti/Merle Int. Conf. on Alg. Geo. 82...

m Polar varieties: Bank/Giusti/Heintz/Safey/Schost
AAECC'10,Bank/Giusti/Heintz/Pardo J. of Compl. 05, Safey/Schost ISSAC'03,
Teissier Pure and Appl. Math. 91...
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Properties of Determinantal Ideals

V11 P Vi,m
D = Minors,;+1

Vma1 -+ Vmm

Thom, Porteous, Giambelli, Harris-Tu, ...
The degree of D is

m_or-1 il(m+ i)!

H (m—=1—=N(m—-r+il

i=0

Conca/Herzog, Abhyankar
The Hilbert series of D is

det(A(t))

HSp(t) = .
P t(z) (1 _ t)(Zm—r)r

Aij(t)=>" (me_ I) (me—j) tt.

14
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Properties of Determinantal Ideals

Vil ... Vim fi1
D = Minors,;+1 : " : 7 = Minors,4+1
Vmi --- Vmm fn,1

Thom, Porteous, Giambelli, Harris-Tu, ...
The degree of D is

m_or-1 il(m+ i)!

H (m—=1—=N(m—-r+il

i=0

Conca/Herzog, Abhyankar
The Hilbert series of D is

det(A(t))

HSp(t) = .
P t(z) (1 _ t)(Zm—r)r

Aij(t) = ; (me_ I) (me—j) tt.

transfer of properties of D by adding (v;; — f; ;)
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Properties of Determinantal Ideals

V11 P Vi,m
D = Minors,;+1

Vma1 -+ Vmm

The degree of D is

Thom, Porteous, Giambelli, Harris-Tu, ...

7 = Minors,4+1

ISSAC’'2010
The degree of Z is

t(z) (1 _ t)(Zm—r)r .

ml—'Il il(m+i)! ml—'[ ! if(m+i)!
o (m—1-Di(m—r+ Dl be (m—1=Dim—r+0l
Conca/Herzog, Abhyankar ISSAC'2010
The Hilbert series of D is The Hilbert series of 7 is
det(A(t det(A(t
o () = det(A) (1) — — deHA(D)

t(;) (1- t)k*(m*f)2 .

Aij(t) = Z(
4
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Complexity of the minors formulation (ISSAC’2010)

Degree of regularity for a 0-dim ideal = 1+ degree of the Hilbert series.

The degree of regularity of Z is generically equal to

dieg =r(m—r)+1.
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Complexity of the minors formulation (ISSAC’2010)

Degree of regularity for a 0-dim ideal = 1+ degree of the Hilbert series.

The degree of regularity of Z is generically equal to

dieg =r(m—r)+1.

Number of matrices and rank defect fixed. 0-dimensional case.

Corollary: asymptotic complexity

When k = (m — r)? is fixed, then the complexity of the Grébner basis computation of

the minors modeling is

@) (m‘*’k) )
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Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with k = (m — r)? is

- mi
#Sol = 1} (m—l—:)'(m)—r+l)

—r—1

m—>oo ’1_[ _r+,)|

25/28



Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with k = (m — r)? is

mort itflm +i)!

Complezity of the Change of Ordering (ISSAC 2010)

The complexity of FGLM is upper bounded by O (#Sol*).
If k= (m — r)?, then

O (#S0l*) = O (mwk) .
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Ezxperimental results

@ Courtois. Asiacrypt'01.
Efficient zero-knowledge authentication based on a linear algebra problem

MinRank.
K = GF(65521)  (m, k,r): k matrices of size m x m. Target rank: r.
[ Challenge A B C
6,9,3) | (7,9,4) (8,9,5) (9,9,6) | (11,9,9)
[ degree 980 4116 14112 41580 259545
Minors modeling
dreg 10 13 16 19
Fs time 1.1s 28.4s 544s 9048s -
Fs mem 488 MB 587 MB 1213 MB 5048 MB -
log,(Nb op.) | 21.5 25.9 29.2 327
FGLM time 0.5s 28.5s 1033s 22171s -
Kipnis-Shamir modeling
dreg 5 6 7
Fs time 30s 3795s 328233s oo
Fs mem 407 MB | 3113 MB | 58587 MB
log,(Nb op.) 30.5 371 43.4
FGLM time 35s 2580s 00
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Ezxperimental results

@ Courtois. Asiacrypt'01.
Efficient zero-knowledge authentication based on a linear algebra problem

MinRank.
K = GF(65521)  (m, k,r): k matrices of size m x m. Target rank: r.
[ Challenge A B C
6,9,3) | (7,9,4) (8,9,5) (9,9,6) | (11,9,9)
[ degree 980 4116 14112 41580 259545
Minors modeling
dreg 10 13 16 19
Fs time 1.1s 28.4s 544s 9048s -
Fs mem 488 MB 587 MB 1213 MB 5048 MB -
log,(Nb op.) | 21.5 25.9 29.2 327
FGLM time 0.5s 28.5s 1033s 22171s -
Kipnis-Shamir modeling
dreg 5 6 7
Fs time 30s 3795s 328233s oo
Fs mem 407 MB | 3113 MB | 58587 MB
log,(Nb op.) 30.5 371 43.4
FGLM time 35s 2580s 00

Computational bottleneck: computing the minors.
Computing effort needed for solving Challenge C:
238 days on 64 quadricore processors.
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Algebraic cryptanalysis of (multi-) HFE

Patarin, Eurocrypt'96
Billet/Patarin/Seurin, ICSCC’08
Ding/Schmitt/Werner, Information Security, 2008

P(x) = Z p,-d-xq;*qj € Fgn, with r < n
0<ij<r

~ low-rank quadratic form (Fq)" — (Fq)"
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Algebraic cryptanalysis of (multi-) HFE

Patarin, Eurocrypt'96
Billet/Patarin/Seurin, ICSCC’08
Ding/Schmitt/Werner, Information Security, 2008

P(x) = Z p,-d-xq'”" € Fgn, with r < n
0<ij<r

~ low-rank quadratic form (Fq)" — (Fq)"
masked by linear transforms !l

= the secret polynomial can be recovered by solving a MinRank problem.

Bettale/Faugére/Perret, PKC 2011

The complexity of solving this MinRank problem is upper bounded by

(0] (n('ﬂ)“’) .

~ algebraic attack with polynomial complexity in n !l

~ attacks on odd-characteristic variants;

~» generalizations to multi-HFE.
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Conclusion and Perspectives

Structures have an impact on the complexity of
the solving process in algebraic cryptanalysis !

Design, key size reduction,. .. Stguctyre potential algebraic attacks. J
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Other possible applications in Crypto of structured systems

m Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).
m classical McEliece PKC (McEliece 1978).
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Conclusion and Perspectives

Structures have an impact on the complexity of
the solving process in algebraic cryptanalysis !

Design, key size reduction, ... >“%" potential algebraic attacks. J

Other possible applications in Crypto of structured systems

m Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).
m classical McEliece PKC (McEliece 1978).

v

Algorithmic problems

m Dedicated Fs algorithm for multi-homogeneous systems.
~ (Faugére, Safey, S., J. of Symb. Comp. 2011)

m Dedicated algorithm for determinantal systems ?
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