Gröbner Bases of Structured Systems and their Applications in Cryptology

Jean-Charles Faugère, Mohab Safey EI Din
Pierre-Jean Spaenlehauer
UPMC - CNRS - INRIA Paris - Rocquencourt LIP6 - SALSA team

SCPQ Webinar 2012, 03/06

Algebraic Cryptanalysis

Crypto primitive

Algebraic Cryptanalysis

Algebraic Cryptanalysis

Issues

- Which algebraic modeling ?
- Tradeoff between the degree of the equations/number of variables?

■ Solving tools: Gröbner bases ? SAT-solvers ? ...
■ Structure ?

Motivations: Algebraic Structures in Cryptology

Where does the structure come from?

Motivations: Algebraic Structures in Cryptology

Where does the structure come from?

- Non-linearity \rightarrow Security
\rightsquigarrow Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y-1=0$ for $x \neq 0$).

Motivations: Algebraic Structures in Cryptology

Where does the structure come from?

- Non-linearity \rightarrow Security
\rightsquigarrow Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y-1=0$ for $x \neq 0$).
- Asymmetric encryption/signature:
\rightsquigarrow trapdoor (e.g. HFE, Multi-HFE, McEliece).
\rightsquigarrow Reducing the key sizes is a common issue
\rightarrow potential weaknesses due to the structure.

Motivations: Algebraic Structures in Cryptology

Where does the structure come from?

- Non-linearity \rightarrow Security
\rightsquigarrow Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y-1=0$ for $x \neq 0$).
- Asymmetric encryption/signature:
\rightsquigarrow trapdoor (e.g. HFE, Multi-HFE, McEliece).
\rightsquigarrow Reducing the key sizes is a common issue
\rightarrow potential weaknesses due to the structure.
- Symmetries, invariants:
\rightsquigarrow invariance of the solutions under some transformations (e.g. MinRank).

Motivations: Algebraic Structures in Cryptology

Where does the structure come from?

- Non-linearity \rightarrow Security
\rightsquigarrow Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y-1=0$ for $x \neq 0$).
- Asymmetric encryption/signature:
\rightsquigarrow trapdoor (e.g. HFE, Multi-HFE, McEliece).
\rightsquigarrow Reducing the key sizes is a common issue
\rightarrow potential weaknesses due to the structure.
- Symmetries, invariants:
\rightsquigarrow invariance of the solutions under some transformations (e.g. MinRank).

Impact on the solving process ?

Motivations: Algebraic Structures in Cryptology

Where does the structure come from ?

- Non-linearity \rightarrow Security
\rightsquigarrow Sometimes bi(or multi)-linear (e.g. AES S-boxes: $x \cdot y-1=0$ for $x \neq 0$).
- Asymmetric encryption/signature:
\rightsquigarrow trapdoor (e.g. HFE, Multi-HFE, McEliece).
\rightsquigarrow Reducing the key sizes is a common issue
\rightarrow potential weaknesses due to the structure.
- Symmetries, invariants:
\rightsquigarrow invariance of the solutions under some transformations (e.g. MinRank).

> Impact on the solving process ?
> Complexity ? Dedicated algorithms ?

Families of structured algebraic systems

Multi-homogeneous systems

- McEliece PKC.
- MinRank authentication scheme.

Families of structured algebraic systems

Multi-homogeneous systems

- McEliece PKC.

■ MinRank authentication scheme.

Determinantal systems

- MinRank authentication scheme.
- Cryptosystems based on rank metric codes.

■ Hidden Field Equations and variants.

Families of structured algebraic systems

Multi-homogeneous systems

- McEliece PKC.

■ MinRank authentication scheme.

Determinantal systems

- MinRank authentication scheme.
- Cryptosystems based on rank metric codes.

■ Hidden Field Equations and variants.

Systems invariant by symmetries

Discrete log on elliptic and hyperelliptic curves.

Outline

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

Gröbner bases (I)

Gröbner bases

\mathcal{I} a polynomial ideal. Gröbner basis (w.r.t. a monomial ordering): $G \subset \mathcal{I}$ a finite set of polynomials such that $\operatorname{LM}(\mathcal{I})=\langle\mathrm{LM}(G)\rangle$.

■ Buchberger [Buchberger Ph.D. 65].

- \mathbf{F}_{4} [Faugère J. of Pure and Appl. Alg. 99].
- F_{5} [Faugère ISSAC'02].
- FGLM [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].

Gröbner bases (I)

Gröbner bases

\mathcal{I} a polynomial ideal. Gröbner basis (w.r.t. a monomial ordering): $G \subset \mathcal{I}$ a finite set of polynomials such that $\operatorname{LM}(\mathcal{I})=\langle\mathrm{LM}(G)\rangle$.

■ Buchberger [Buchberger Ph.D. 65].

- F_{4} [Faugère J. of Pure and Appl. Alg. 99].
- F_{5} [Faugère ISSAC'02].
- FGLM [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].

0-dimensional system solving

$$
\text { Polynomial system } \xrightarrow{F_{4} / F_{5}} \text { grevlex GB } \xrightarrow{F G L M} \text { lex GB. }
$$

Gröbner bases (I)

Gröbner bases

\mathcal{I} a polynomial ideal. Gröbner basis (w.r.t. a monomial ordering): $G \subset \mathcal{I}$ a finite set of polynomials such that $\operatorname{LM}(\mathcal{I})=\langle\mathrm{LM}(G)\rangle$.

■ Buchberger [Buchberger Ph.D. 65].
\mathbf{F}_{4} [Faugère J. of Pure and Appl. Alg. 99].
F_{5} [Faugère ISSAC'02].
. FGLM [Faugère/Gianni/Lazard/Mora JSC. 93, Faugère/Mou ISSAC'11].
0-dimensional system solving

$$
\text { Polynomial system } \xrightarrow{F_{4} / F_{5}} \text { grevlex GB } \xrightarrow{F G L M} \quad \text { lex } G B \text {. }
$$

$X L / M X L$

Most of the complexity results also valid for XL/MXL
Buchman/Bulygin/Cabarcas/Ding/Mohamed/Mohamed PQCrypto 2008, Africacrypt 2010,...
Ars/Faugère/Imai/Kawazoe/Sugita, Asiacrypt 2004 Albrecht/Cid/Faugère/Perret, eprint

Gröbner bases (II)

0 -dimensional system solving
Polynomial system $\xrightarrow{F_{\mathbf{4}} / F_{5}}$ grevlex GB $\xrightarrow{F G L M}$ lex GB.

Lexicographical Gröbner basis of 0-dimensional systems

Equivalent system in triangular shape:

$$
\left\{\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{\ell}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
f_{\ell+1}\left(x_{2}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{m-1}\left(x_{n-1}, x_{n}\right) & =0 \\
f_{m}\left(x_{n}\right) & =0
\end{aligned}\right.
$$

Gröbner bases (II)

```
0-dimensional system solving
```

Polynomial system $\xrightarrow{F_{\mathbf{4}} / F_{\mathbf{5}}}$ grevlex GB $\xrightarrow{F G L M}$ lex GB.

Lexicographical Gröbner basis of 0-dimensional systems

Equivalent system in triangular shape:

$$
\left\{\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{\ell}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
f_{\ell+1}\left(x_{2}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{m-1}\left(x_{n-1}, x_{n}\right) & =0 \\
f_{m}\left(x_{n}\right) & =0
\end{aligned}\right.
$$

Find the roots of univariate polynomials \rightarrow easy in finite fields.

Macaulay matrix in degree d

$$
\mathcal{I}=\left\langle f_{1}, \ldots, f_{p}\right\rangle \quad \operatorname{deg}\left(f_{i}\right)=d_{i} \quad \succ \text { a monomial ordering }
$$

Rows: all products $t f_{i}$ where t is a monomial of degree at most $d-d_{i}$.
Columns: monomials of degree at most d.

row echelon form of the Macaulay matrix with d sufficiently high
\Longrightarrow Gröbner basis.

Macaulay matrix in degree d

$$
\mathcal{I}=\left\langle f_{1}, \ldots, f_{p}\right\rangle \quad \operatorname{deg}\left(f_{i}\right)=d_{i} \quad \succ \text { a monomial ordering }
$$

Rows: all products $t f_{i}$ where t is a monomial of degree at most $d-d_{i}$.
Columns: monomials of degree at most d.

row echelon form of the Macaulay matrix with d sufficiently high
\Longrightarrow Gröbner basis.

Problems

- Degree falls.
- Rank defect \rightsquigarrow useless computations. \rightsquigarrow Hilbert series: generating series of the rank defects of the Macaulay matrices.
■ Which d ? \rightsquigarrow degree of regularity.

Complexity of Gröbner bases computations

Two main indicators of the complexity

- Degree of regularity $\mathrm{d}_{\mathrm{reg}}$
\rightsquigarrow degree that has to be reached to compute the grevlex GB.
- Degree of the ideal $\mathcal{I}=\left\langle f_{1}, \ldots f_{m}\right\rangle$
\rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

Complexity of Gröbner bases computations

Two main indicators of the complexity

- Degree of regularity $\mathrm{d}_{\mathrm{reg}}$
\rightsquigarrow degree that has to be reached to compute the grevlex GB.
- Degree of the ideal $\mathcal{I}=\left\langle f_{1}, \ldots f_{m}\right\rangle$
\rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

| Algorithms | System $\underset{\text { grevlex GB }}{\longrightarrow}$ | grevlex GB |
| :--- | :---: | :---: |$\underset{\text { Change of Ordering }}{\longrightarrow}$ lex GB.

Complexity of Gröbner bases computations

Two main indicators of the complexity

- Degree of regularity $\mathrm{d}_{\mathrm{reg}}$
\rightsquigarrow degree that has to be reached to compute the grevlex GB.
- Degree of the ideal $\mathcal{I}=\left\langle f_{1}, \ldots f_{m}\right\rangle$
\rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

| Algorithms | System $\underset{\text { grevlex GB }}{\longrightarrow}$ | grevlex GB |
| :---: | :---: | :---: |$\underset{\text { Change of Ordering }}{\longrightarrow}$ lex GB.

Classical bounds (sharp for generic systems)

Let $f_{1}, \ldots, f_{n} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a "generic" system.

- Macaulay bound: $\mathrm{d}_{\mathrm{reg}} \leq 1+\sum_{1 \leq i \leq n}\left(d_{i}-1\right)$.
- Bézout bound: $\operatorname{deg}\left(\left\langle f_{1}, \ldots, f_{n}\right\rangle\right) \leq \prod_{1 \leq i \leq n} d_{i}$.

Complexity of Gröbner bases computations

Two main indicators of the complexity

- Degree of regularity $\mathrm{d}_{\mathrm{reg}}$
\rightsquigarrow degree that has to be reached to compute the grevlex GB.
- Degree of the ideal $\mathcal{I}=\left\langle f_{1}, \ldots f_{m}\right\rangle$
\rightsquigarrow Number of solutions of the system (counted with multiplicities). Gives the rank of the Macaulay matrix.

| Algorithms | System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB | Change of Ordering |
| :---: | :---: | :---: |\quad lex GB.

Classical bounds (sharp for generic systems)

Let $f_{1}, \ldots, f_{n} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a "generic" system.

- Macaulay bound: $\mathrm{d}_{\mathrm{reg}} \leq 1+\sum_{1 \leq i \leq n}\left(d_{i}-1\right)$.
- Bézout bound: $\operatorname{deg}\left(\left\langle f_{1}, \ldots, f_{n}\right\rangle\right) \leq \prod_{1 \leq i \leq n} d_{i}$.

Are there sharper bounds for structured systems ?

Plan

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

Multi-homogeneous systems

Multi-homogeneous polynomial

$f \in \mathbb{K}\left[\underline{X}^{(1)}, \ldots, \underline{X}^{(\ell)}\right]$ is multi-homogeneous of multi-degree $\left(d_{1}, \ldots, d_{\ell}\right)$ if for all $\lambda_{\mathbf{1}}, \ldots, \lambda_{\ell}$,

$$
f\left(\lambda_{1} \underline{X}^{(1)}, \ldots, \lambda_{\ell} \underline{X}^{(\ell)}\right)=\lambda_{1}^{d_{1}} \ldots \lambda_{\ell}^{d_{\ell}} f\left(\underline{X}^{(1)}, \ldots, \underline{X}^{(\ell)}\right)
$$

Multi-homogeneous systems

Multi-homogeneous polynomial

$f \in \mathbb{K}\left[\underline{X}^{(1)}, \ldots, \underline{X}^{(\ell)}\right]$ is multi-homogeneous of multi-degree $\left(d_{1}, \ldots, d_{\ell}\right)$ if for all $\lambda_{1}, \ldots, \lambda_{\ell}$,

$$
f\left(\lambda_{1} \underline{X}^{(1)}, \ldots, \lambda_{\ell} \underline{X}^{(\ell)}\right)=\lambda_{1}^{d_{1}} \ldots \lambda_{\ell}^{d_{\ell}} f\left(\underline{X}^{(1)}, \ldots, \underline{X}^{(\ell)}\right)
$$

Example:

$3 x_{1}^{2} y_{1}+4 x_{1} x_{2} y_{1}-3 x_{2}^{2} y_{1}-x_{1}^{2} y_{2}+8 x_{1} x_{2} y_{2}-5 x_{2}^{2} y_{2}+10 x_{1}^{2} y_{3}-2 x_{1} x_{2} y_{3}-3 x_{2}^{2} y_{3}$ is a bi-homogeneous polynomial of bi-degree $(2,1)$ in $\mathbb{F}_{11}\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right]$.

Multi-homogeneous polynomial

$f \in \mathbb{K}\left[\underline{X}^{(1)}, \ldots, \underline{X}^{(\ell)}\right]$ is multi-homogeneous of multi-degree $\left(d_{1}, \ldots, d_{\ell}\right)$ if for all $\lambda_{1}, \ldots, \lambda_{\ell}$,

$$
f\left(\lambda_{1} \underline{X}^{(1)}, \ldots, \lambda_{\ell} \underline{X}^{(\ell)}\right)=\lambda_{1}^{d_{1}} \ldots \lambda_{\ell}^{d_{\ell}} f\left(\underline{X}^{(1)}, \ldots, \underline{X}^{(\ell)}\right)
$$

Example:

$3 x_{1}^{2} y_{1}+4 x_{1} x_{2} y_{1}-3 x_{2}^{2} y_{1}-x_{1}^{2} y_{2}+8 x_{1} x_{2} y_{2}-5 x_{2}^{2} y_{2}+10 x_{1}^{2} y_{3}-2 x_{1} x_{2} y_{3}-3 x_{2}^{2} y_{3}$ is a bi-homogeneous polynomial of bi-degree $(2,1)$ in $\mathbb{F}_{11}\left[x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right]$.

Bilinear system: multi-homogeneous of multi-degree $(1,1)$
$f_{1}, \ldots, f_{q} \in \mathbb{K}[\underline{X}, \underline{Y}]:$ bilinear forms.

$$
f_{k}=\sum a_{i, j}^{(k)} x_{i} y_{j}
$$

Structure of bilinear systems

Euler relations
$f_{1}, \ldots, f_{q} \in \mathbb{K}[\underline{X}, \underline{Y}]:$ bilinear forms.
$f_{k}=\sum a_{i, j}^{(k)} x_{i} y_{j}$.

Structure of bilinear systems

Euler relations
$f_{1}, \ldots, f_{q} \in \mathbb{K}[\underline{X}, \underline{Y}]$: bilinear forms.

$$
f_{k}=\sum a_{i, j}^{(k)} x_{i} y_{j}
$$

$$
f_{k}=\sum_{i} \frac{\partial f_{k}}{\partial x_{i}} x_{i}=\sum_{j} \frac{\partial f_{k}}{\partial y_{j}} y_{j} .
$$

Structure of bilinear systems

Euler relations
$f_{1}, \ldots, f_{q} \in \mathbb{K}[\underline{X}, \underline{Y}]$: bilinear forms.

$$
f_{k}=\sum a_{i, j}^{(k)} x_{i} y_{j} .
$$

$$
f_{k}=\sum_{i} \frac{\partial f_{k}}{\partial x_{i}} x_{i}=\sum_{j} \frac{\partial f_{k}}{\partial y_{j}} y_{j} .
$$

$$
\begin{aligned}
\operatorname{jac}_{x}(F) & =\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n_{x}}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{q}}{\partial x_{1}} & \cdots & \frac{\partial f_{q}}{\partial x_{n_{x}}}
\end{array}\right) \quad \operatorname{jac}_{y}(F)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{n_{y}}} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{q}}{\partial y_{1}} & \cdots & \frac{\partial f_{q}}{\partial y_{n_{y}}}
\end{array}\right) . \\
& \Longrightarrow\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{q}
\end{array}\right)=\operatorname{jac}_{x}(F) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n_{x}}
\end{array}\right)=\operatorname{jac}_{y}(F) \cdot\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n_{y}}
\end{array}\right) .
\end{aligned}
$$

Something special happens with minors...

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{q}
\end{array}\right)=\operatorname{jac}_{x}(F) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n_{x}}
\end{array}\right) .
$$

If $\left(x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right)$ is a non-trivial solution of F, then $\mathrm{jac}_{x}(F)$ is rank defective.
$\rightsquigarrow\left(y_{1}, \ldots, y_{n_{y}}\right)$ is a zero of the maximal minors of $\mathrm{jac}_{x}(F)$.

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{q}
\end{array}\right)=\operatorname{jac}_{x}(F) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n_{x}}
\end{array}\right)
$$

If $\left(x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right)$ is a non-trivial solution of F, then $\mathrm{jac}_{x}(F)$ is rank defective. $\rightsquigarrow\left(y_{1}, \ldots, y_{n_{y}}\right)$ is a zero of the maximal minors of $\mathrm{jac}_{x}(F)$.

Bernstein/Sturmfels/Zelevinski, Adv. in Math. 1993

M a $p \times q$ matrix whose entries are variables. For any monomial ordering, the maximal minors of M are a Gröbner basis of the associated ideal.

Something special happens with minors...

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{q}
\end{array}\right)=\operatorname{jac}_{x}(F) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n_{x}}
\end{array}\right)
$$

If $\left(x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right)$ is a non-trivial solution of F, then $\mathrm{jac}_{x}(F)$ is rank defective. $\rightsquigarrow\left(y_{1}, \ldots, y_{n_{y}}\right)$ is a zero of the maximal minors of $\mathrm{jac}_{x}(F)$.

Bernstein/Sturmfels/Zelevinski, Adv. in Math. 1993

M a $p \times q$ matrix whose entries are variables. For any monomial ordering, the maximal minors of M are a Gröbner basis of the associated ideal.

```
Faugère/Safey El Din/S., J. of Symb. Comp. 2011
```

M a k-variate $q \times p$ linear matrix (with $q>p$). Generically, a grevlex GB of $\langle\operatorname{Minors}(M)\rangle$: linear combination of the generators.

$$
\rightsquigarrow \mathrm{d}_{\mathrm{reg}}\left(\operatorname{MaxMinors}\left(\operatorname{jac}_{x}(F)\right)\right)=n_{x} .
$$

Complexity

Affine bilinear polynomial

$f \in \mathbb{K}\left[x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right]$ is said to be affine bilinear if there exists a bilinear polynomial \tilde{f} in $\mathbb{K}\left[x_{0}, \ldots, x_{n_{x}}, y_{0}, \ldots, y_{n_{y}}\right]$ such that

$$
f\left(x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right)=\tilde{f}\left(1, x_{1}, \ldots, x_{n_{x}}, 1, y_{1}, \ldots, y_{n_{y}}\right) .
$$

Faugère/Safey EI Din/S., J. of Symb. Comp. 2011

Degree of regularity

Let $f_{1}, \ldots, f_{n_{x}+n_{y}}$ be an affine bilinear system in $\mathbb{K}\left[x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right]$. Then the highest degree reached during the computation of a Gröbner basis for the grevlex ordering is upper bounded by

$$
\min \left(\mathbf{n}_{x}, \mathbf{n}_{y}\right)+1 \ll n_{x}+n_{y}+1
$$

Complexity

Affine bilinear polynomial

$f \in \mathbb{K}\left[x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right]$ is said to be affine bilinear if there exists a bilinear polynomial \tilde{f} in $\mathbb{K}\left[x_{0}, \ldots, x_{n_{x}}, y_{0}, \ldots, y_{n_{y}}\right]$ such that

$$
f\left(x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right)=\tilde{f}\left(1, x_{1}, \ldots, x_{n_{x}}, 1, y_{1}, \ldots, y_{n_{y}}\right) .
$$

Faugère/Safey EI Din/S., J. of Symb. Comp. 2011

Degree of regularity

Let $f_{1}, \ldots, f_{n_{x}+n_{y}}$ be an affine bilinear system in $\mathbb{K}\left[x_{1}, \ldots, x_{n_{x}}, y_{1}, \ldots, y_{n_{y}}\right]$. Then the highest degree reached during the computation of a Gröbner basis for the grevlex ordering is upper bounded by

$$
\min \left(\mathbf{n}_{x}, \mathbf{n}_{y}\right)+1 \ll n_{x}+n_{y}+1
$$

Consequences

- The complexity of computing a grevlex GB is polynomial in the number of solutions !!
- Bilinear systems with unbalanced sizes of blocks of variables are easy to solve !!

Modeling of McEliece cryptosystem

Based on alternant codes:

- secret key: a parity-check matrix of the form

$$
H=\left(\begin{array}{cccc}
y_{0} & y_{1} & \cdots & y_{n-1} \\
y_{0} x_{0} & y_{1} x_{1} & \cdots & y_{n-1} x_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
y_{0} x_{0}^{t-1} & y_{1} x_{1}^{t-1} & \cdots & y_{n} x_{n}^{t-1}
\end{array}\right)
$$

where $x_{i}, y_{j} \in \mathbb{F}_{2^{m}}$, with x_{0}, \ldots, x_{n} pairwise distinct and $y_{j} \neq 0$.

- public key: a generator matrix G of the same code.

Modeling of McEliece cryptosystem

Based on alternant codes:

- secret key: a parity-check matrix of the form

$$
H=\left(\begin{array}{cccc}
y_{0} & y_{1} & \cdots & y_{n-1} \\
y_{0} x_{0} & y_{1} x_{1} & \cdots & y_{n-1} x_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
y_{0} x_{0}^{t-1} & y_{1} x_{1}^{t-1} & \cdots & y_{n} x_{n}^{t-1}
\end{array}\right)
$$

where $x_{i}, y_{j} \in \mathbb{F}_{2^{m}}$, with x_{0}, \ldots, x_{n} pairwise distinct and $y_{j} \neq 0$.

- public key: a generator matrix G of the same code.

Problem

Given G, find H such that $H \cdot G^{t}=0$!

Modeling of McEliece cryptosystem

Based on alternant codes:

- secret key: a parity-check matrix of the form

$$
H=\left(\begin{array}{cccc}
y_{0} & y_{1} & \cdots & y_{n-1} \\
y_{0} x_{0} & y_{1} x_{1} & \cdots & y_{n-1} x_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
y_{0} x_{0}^{t-1} & y_{1} x_{1}^{t-1} & \cdots & y_{n} x_{n}^{t-1}
\end{array}\right)
$$

where $x_{i}, y_{j} \in \mathbb{F}_{2^{m}}$, with x_{0}, \ldots, x_{n} pairwise distinct and $y_{j} \neq 0$.

- public key: a generator matrix G of the same code.

Problem

Given G, find H such that $H \cdot G^{t}=0$!

$$
\begin{gathered}
\rightsquigarrow \forall i, j, \quad g_{i, 0} y_{0} x_{0}^{j}+\cdots+g_{i, n-1} y_{n-1} x_{n-1}^{j}=0 . \\
\Rightarrow \text { Bi-homogeneous structure !! }
\end{gathered}
$$

Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.
■ Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
■ Dyadic variant: Misoczy/Barreto SAC’09.

Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.
■ Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;
■ Dyadic variant: Misoczy/Barreto SAC’09.
Faugère/Otmani/Perret/Tilich, Eurocrypt'2010
\Rightarrow add redundancy to the polynomial system
\rightsquigarrow linear equations \rightsquigarrow less variables.

Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.
■ Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

- Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010
\Rightarrow add redundancy to the polynomial system
\rightsquigarrow linear equations \rightsquigarrow less variables.
Moreover, the system is still over-determined and one can extract a subsystem containing only powers of two:
$\rightsquigarrow \forall i, j$ a power of two !!, $\quad g_{i, 0} y_{0} x_{0}^{j}+\cdots+g_{i, n-1} y_{n-1} x_{n-1}^{j}=0$.

Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.
■ Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

- Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010
\Rightarrow add redundancy to the polynomial system
\rightsquigarrow linear equations \rightsquigarrow less variables.
Moreover, the system is still over-determined and one can extract a subsystem containing only powers of two:

$$
\rightsquigarrow \forall i, j \text { a power of two !!, } \quad g_{i, 0} y_{0} x_{0}^{j}+\cdots+g_{i, n-1} y_{n-1} x_{n-1}^{j}=0 .
$$

Decomposing the subsystem over the field \mathbb{F}_{2}
\Rightarrow Bilinear system with $n_{x} \ll n_{y}$!!!

Cryptanalysis of compact variants of McEliece

Compact variants

Goal: reduce the size of the keys.
■ Quasi-cyclic variant: Berger/Cayrel/Gaborit/Otmani Africacrypt'09;

- Dyadic variant: Misoczy/Barreto SAC'09.

Faugère/Otmani/Perret/Tilich, Eurocrypt'2010
\Rightarrow add redundancy to the polynomial system
\rightsquigarrow linear equations \rightsquigarrow less variables.
Moreover, the system is still over-determined and one can extract a subsystem containing only powers of two:

$$
\rightsquigarrow \forall i, j \text { a power of two !!, } \quad g_{i, 0} y_{0} x_{0}^{j}+\cdots+g_{i, n-1} y_{n-1} x_{n-1}^{j}=0 .
$$

Decomposing the subsystem over the field \mathbb{F}_{2}
\Rightarrow Bilinear system with $n_{x} \ll n_{y}$!!!
Theoretical and Practical attacks on the quasi-cyclic and dyadic variants of McEliece !!

Plan

1 Polynomial System Solving using Gröbner Bases

2 Bilinear Systems and Application to McEliece

3 Determinantal Systems and Applications to MinRank and HFE

The MinRank problem

$r \in \mathbb{N} . M_{0}, \ldots, M_{k}: k+1$ matrices of size $m \times m$.

MinRank

find $\lambda_{1}, \ldots, \lambda_{k}$ such that

$$
\operatorname{Rank}\left(M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}\right) \leq r
$$

- Multivariate generalization of the Eigenvalue problem.
- Applications in cryptology, coding theory, ... Kipnis/Shamir Crypto'99, Courtois Asiacrypt'01 Faugère/Levy-dit-Vehel/Perret Crypto'08,...
- Fundamental NP-hard problem of linear algebra.

國 Buss, Frandsen, Shallit.
The computational complexity of some problems of linear algebra.

Two algebraic modelings

$$
M=M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}
$$

Two algebraic modelings

$$
M=M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}
$$

The minors modeling

$\operatorname{Rank}(\mathrm{M}) \leq r$

all minors of size $(r+1)$ of M vanish.

- $\binom{m}{r+1}^{2}$ equations of degree $r+1$.
- k variables.

Few variables, lots of equations, high degree !!

Two algebraic modelings

$$
\mathrm{M}=M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}
$$

The minors modeling

$\operatorname{Rank}(\mathrm{M}) \leq r$
all minors of size $(r+1)$ of M vanish.

- $\binom{m}{r+1}^{2}$ equations of degree $r+1$.
- k variables.

Few variables, lots of equations, high degree !!

The Kipnis-Shamir modeling

$\boldsymbol{\operatorname { R a n k }}(\mathbf{M}) \leq r \Leftrightarrow \exists x^{(1)}, \ldots, x^{(m-r)} \in \operatorname{Ker}(\mathbf{M})$.

$$
\mathbf{M} \cdot\left(\right)=0 .
$$

- $m(m-r)$ bilinear equations.
- $k+r(m-r)$ variables.

Two algebraic modelings

$$
M=M_{0}-\sum_{i=1}^{k} \lambda_{i} M_{i}
$$

The minors modeling

$\operatorname{Rank}(\mathrm{M}) \leq r$
§
all minors of size $(r+1)$ of M vanish.

- $\binom{m}{r+1}^{2}$ equations of degree $r+1$.
- k variables.

Few variables, lots of equations, high degree !!

The Kipnis-Shamir modeling

$\boldsymbol{\operatorname { R a n k }}(\mathbf{M}) \leq r \Leftrightarrow \exists x^{(1)}, \ldots, x^{(m-r)} \in \operatorname{Ker}(\mathbf{M})$.

- $m(m-r)$ bilinear equations.
- $k+r(m-r)$ variables.

■ Complexity of solving MinRank using Gröbner bases techniques ?

- Comparison of the two modelings ?
- Number of solutions ?

Main results

| Algorithms | System | $\overrightarrow{\text { grevlex } G B}$ |
| :---: | :---: | :---: |\quad grevlex GB $\quad \underset{\text { Change of Ordering }}{\longrightarrow}$ lex GB.

Main results

Algorithms	System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB	Change of Ordering

\mathbf{m} : size of the matrices, \mathbf{k} : number of matrices, \mathbf{r} : target rank. $\mathbf{k}=(\mathbf{m}-\mathbf{r})^{2}$.

Modeling:	Minors	Kipnis-Shamir		
Degree of regularity when $k=(m-r)^{2}$	Macaulay bound: $\leq m(m-r)+1$			
\# Sol	MH. Bézout: $\leq\binom{ m}{r}^{m-r}$			
Complexity				

Main results

Algorithms	System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB	Change of Ordering

\mathbf{m} : size of the matrices, \mathbf{k} : number of matrices, \mathbf{r} : target rank. $\mathbf{k}=(\mathbf{m}-\mathbf{r})^{2}$.

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k=(m-r)^{2}$		
\# Sol	MH. Bézout: $\leq\binom{ m}{r}^{m-r}$	
Complexity		

Main results

Algorithms	System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB	Change of Ordering

\mathbf{m} : size of the matrices, \mathbf{k} : number of matrices, \mathbf{r} : target rank. $\mathbf{k}=(\mathbf{m}-\mathbf{r})^{2}$.

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k=(m-r)^{2}$	$r(m-r)+1$	$\leq(m-r)^{2}+1$
\# Sol	MH. Bézout: $\leq\binom{ m}{r}^{m-r}$	
Complexity		

Main results

Algorithms	System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB	Change of Ordering

\mathbf{m} : size of the matrices, \mathbf{k} : number of matrices, \mathbf{r} : target rank. $\mathbf{k}=(\mathbf{m}-\mathbf{r})^{2}$.

Modeling:	Minors	Kipnis-Shamir	
Degree of regularity when $k=(m-r)^{2}$	$r(m-r)+1$	$\leq(m-r)^{2}+1$	
\# Sol	$\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}$		
Complexity			

Main results

Algorithms	System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB	Change of Ordering

\mathbf{m} : size of the matrices, \mathbf{k} : number of matrices, \mathbf{r} : target rank. $\mathbf{k}=(\mathbf{m}-\mathbf{r})^{2}$.

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k=(m-r)^{2}$	$r(m-r)+1$	$\leq(m-r)^{2}+1$
\# Sol	$\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}$	
Complexity	$O\left(m^{\omega k}\right)$	
$O\left(m^{\omega(k+1)}\right)$		

Main results

Algorithms	System $\underset{\text { grevlex GB }}{\longrightarrow} \quad$ grevlex GB	Change of Ordering

\mathbf{m} : size of the matrices, \mathbf{k} : number of matrices, \mathbf{r} : target rank. $\mathbf{k}=(\mathbf{m}-\mathbf{r})^{2}$.

Modeling:	Minors	Kipnis-Shamir
Degree of regularity when $k=(m-r)^{2}$	$r(m-r)+1$	$\leq(m-r)^{2}+1$
\# Sol	$\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}$	
Complexity	$O\left(m^{\omega k}\right)$	$O\left(m^{\omega(k+1)}\right)$

Both modelings \rightarrow polynomial complexity when $\mathrm{k}=(\mathbf{m}-\mathbf{r})^{2}$ is fixed. New Crypto challenge broken: 10 generic matrices of size 11×11 target rank $8, \mathbb{K}=\mathrm{GF}(65521)$. Courtois, Asiacrypt 2001.

Minors modeling

Minors modeling:

\rightsquigarrow Determinantal ideal

Minors modeling:

\rightsquigarrow Determinantal ideal

Bilinear systems \leftrightarrow determinantal systems
$f_{1}, \ldots, f_{q} \in \mathbb{K}[\underline{X}, \underline{Y}]:$ bilinear forms.

$$
\begin{gathered}
\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{0}} & \cdots & \frac{\partial f_{1}}{\partial x_{n_{x}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{q}}{\partial x_{0}} & \cdots & \frac{\partial f_{q}}{\partial x_{n_{x}}}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{n_{x}}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{q}
\end{array}\right) \\
f_{1}=\ldots=f_{q}=0 \Longleftrightarrow \text { MaxMinors }\left(\operatorname{Jac}_{x}\left(f_{1}, \ldots, f_{q}\right)\right)=0 .
\end{gathered}
$$

Determinantal ideals

What is known

- Determinantal ideals: Bernstein/Zelevinsky J. of Alg. Comb. 93, Bruns/Conca 98, Sturmfels/Zelevinsky Adv. Math. 98, Conca/Herzog AMS'94, Lascoux 78, Abhyankar 88...
■ Geometry of determinantal varieties: Room 39, Fulton Duke Math. J. 91, Giusti/Merle Int. Conf. on Alg. Geo. 82...
■ Polar varieties: Bank/Giusti/Heintz/Safey/Schost AAECC'10,Bank/Giusti/Heintz/Pardo J. of Compl. 05, Safey/Schost ISSAC'03, Teissier Pure and Appl. Math. 91...

Properties of Determinantal Ideals

$$
\mathcal{D}=\text { Minors }_{r+1}\left(\begin{array}{ccc}
v_{1,1} & \ldots & v_{1, m} \\
\vdots & \ddots & \vdots \\
v_{m, 1} & \ldots & v_{m, m}
\end{array}\right)
$$

Thom, Porteous, Giambelli, Harris-Tu, ... The degree of \mathcal{D} is

$$
\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}
$$

Conca/Herzog, Abhyankar The Hilbert series of \mathcal{D} is

$$
\mathrm{HS}_{\mathcal{D}}(t)=\frac{\operatorname{det}(A(t))}{t^{\binom{r}{2}}(1-t)^{(2 m-r) r}} .
$$

$$
A_{i, j}(t)=\sum_{\ell}\binom{m-i}{\ell}\binom{m-j}{\ell} t^{\ell}
$$

$$
\mathcal{D}=\text { Minors }_{r+\mathbf{1}}\left(\begin{array}{ccc}
v_{\mathbf{1}, \mathbf{1}} & \cdots & v_{\mathbf{1}, \boldsymbol{m}} \\
\vdots & \ddots & \vdots \\
v_{m, \mathbf{1}} & \cdots & v_{m, m}
\end{array}\right)
$$

$$
\mathcal{I}=\text { Minors }_{r+1}\left(\begin{array}{ccc}
f_{1,1} & \ldots & f_{1, m} \\
\vdots & \ddots & \vdots \\
f_{m, 1} & \ldots & f_{m, m}
\end{array}\right)
$$

Thom, Porteous, Giambelli, Harris-Tu, ... The degree of \mathcal{D} is

$$
\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}
$$

Conca/Herzog, Abhyankar The Hilbert series of \mathcal{D} is

$$
\mathrm{HS}_{\mathcal{D}}(t)=\frac{\operatorname{det}(A(t))}{t^{\binom{r}{2}}(1-t)^{(2 m-r) r}}
$$

$$
A_{i, j}(t)=\sum_{\ell}\binom{m-i}{\ell}\binom{m-j}{\ell} t^{\ell}
$$

$$
\mathcal{D}=\text { Minors }_{r+1}\left(\begin{array}{ccc}
v_{1,1} & \ldots & v_{1, m} \\
\vdots & \ddots & \vdots \\
v_{m, 1} & \ldots & v_{m, m}
\end{array}\right)
$$

$$
\mathcal{I}=\text { Minors }_{r+1}\left(\begin{array}{ccc}
f_{1,1} & \ldots & f_{1, m} \\
\vdots & \ddots & \vdots \\
f_{m, 1} & \ldots & f_{m, m}
\end{array}\right)
$$

Thom, Porteous, Giambelli, Harris-Tu, ... The degree of \mathcal{D} is

$$
\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}
$$

Conca/Herzog, Abhyankar The Hilbert series of \mathcal{D} is

$$
\mathrm{HS}_{\mathcal{D}}(t)=\frac{\operatorname{det}(A(t))}{t^{\binom{r}{2}}(1-t)^{(2 m-r) r}}
$$

$$
A_{i, j}(t)=\sum_{\ell}\binom{m-i}{\ell}\binom{m-j}{\ell} t^{\ell}
$$

transfer of properties of \mathcal{D} by adding $\left\langle v_{i, j}-f_{i, j}\right\rangle$

$$
\mathcal{D}=\text { Minors }_{r+\mathbf{1}}\left(\begin{array}{ccc}
v_{\mathbf{1}, \mathbf{1}} & \cdots & v_{\mathbf{1}, \boldsymbol{m}} \\
\vdots & \ddots & \vdots \\
v_{m, \mathbf{1}} & \cdots & v_{m, \boldsymbol{m}}
\end{array}\right)
$$

$$
\mathcal{I}=\text { Minors }_{r+1}\left(\begin{array}{ccc}
f_{1,1} & \ldots & f_{1, m} \\
\vdots & \ddots & \vdots \\
f_{m, 1} & \ldots & f_{m, m}
\end{array}\right)
$$

ISSAC' 2010

The degree of \mathcal{I} is

$$
\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!}
$$

ISSAC' 2010
The Hilbert series of \mathcal{I} is

$$
\mathrm{HS}_{\mathcal{I}}(t)=\frac{\operatorname{det}(A(t))}{t^{\binom{r}{2}}(1-t)^{k-(m-r)^{2}}} .
$$

$$
A_{i, j}(t)=\sum_{\ell}\binom{m-i}{\ell}\binom{m-j}{\ell} t^{\ell}
$$

transfer of properties of \mathcal{D} by adding $\left\langle v_{i, j}-f_{i, j}\right\rangle$

Complexity of the minors formulation (ISSAC'2010)

Degree of regularity for a 0 -dim ideal $=1+$ degree of the Hilbert series.
Corollary
The degree of regularity of \mathcal{I} is generically equal to

$$
\mathbf{d}_{\mathrm{reg}}=r(m-r)+1
$$

Complexity of the minors formulation (ISSAC'2010)

Degree of regularity for a 0-dim ideal $=1+$ degree of the Hilbert series.

Corollary

The degree of regularity of \mathcal{I} is generically equal to

$$
\mathbf{d}_{\mathrm{reg}}=r(m-r)+1
$$

Number of matrices and rank defect fixed. 0-dimensional case.

Corollary: asymptotic complexity

When $k=(m-r)^{2}$ is fixed, then the complexity of the Gröbner basis computation of the minors modeling is

$$
O\left(m^{\omega k}\right) .
$$

Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with $k=(m-r)^{2}$ is

$$
\begin{aligned}
\# \text { Sol } & =\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!} \\
& \sim m^{k} \prod_{i=0}^{m-r-1} \frac{i!}{(m-r+i)!}
\end{aligned}
$$

Complexity of the Change of Ordering

Corollary: generic number of solutions

The number of solutions of a generic MinRank problem with $k=(m-r)^{2}$ is

$$
\begin{aligned}
\text { \#Sol } & =\prod_{i=0}^{m-r-1} \frac{i!(m+i)!}{(m-1-i)!(m-r+i)!} \\
& \sim m^{k} \prod_{i=0}^{m-r-1} \frac{i!}{(m-r+i)!}
\end{aligned}
$$

Complexity of the Change of Ordering (ISSAC 2010)

The complexity of FGLM is upper bounded by $O\left(\# S o l^{\omega}\right)$.
If $k=(m-r)^{2}$, then

$$
O\left(\# S o I^{\omega}\right)=O\left(m^{\omega k}\right)
$$

Experimental results

画 Courtois. Asiacrypt'01.
Efficient zero-knowledge authentication based on a linear algebra problem MinRank.

$\mathbb{K}=\mathrm{GF}(65521)$					
Challenge	A	B			C
	$(6,9,3)$	$(7,9,4)$	$(8,9,5)$	$(9,9,6)$	(11, 9, 8)
degree	980	4116	14112	41580	259545
	Minors modeling				
$\mathrm{d}_{\text {reg }}$	10	13	16	19	
F_{5} time	1.1s	28.4s	544s	9048s	-
$F_{5} \mathrm{mem}$	488 MB	587 MB	1213 MB	5048 MB	-
$\log _{2}$ (Nb op.)	21.5	25.9	29.2	32.7	
FGLM time	0.5 s	28.5s	1033s	22171s	-
	Kipnis-Shamir modeling				
$\mathrm{d}_{\text {reg }}$	5	6	7		
F_{5} time	30s	3795s	328233s	∞	
$F_{5} \mathrm{mem}$	407 MB	3113 MB	58587 MB		
$\log _{2}$ (Nb op.)	30.5	37.1	43.4		
FGLM time	35s	2580s	∞		

Experimental results

画 Courtois. Asiacrypt'01.
Efficient zero-knowledge authentication based on a linear algebra problem MinRank.

$\mathbb{K}=\mathrm{GF}(65521)$					
Challenge	A	B			C
	$(6,9,3)$	$(7,9,4)$	$(8,9,5)$	$(9,9,6)$	$(11,9,8)$
degree	980	4116	14112	41580	259545
	Minors modeling				
$\mathrm{d}_{\text {reg }}$	10	13	16	19	
F_{5} time	1.1s	28.4s	544s	9048s	-
$F_{5} \mathrm{mem}$	488 MB	587 MB	1213 MB	5048 MB	-
$\log _{2}$ (Nb op.)	21.5	25.9	29.2	32.7	
FGLM time	0.5 s	28.5s	1033s	22171s	-
	Kipnis-Shamir modeling				
$\mathrm{d}_{\text {reg }}$	5	6	7		
F_{5} time	30s	3795s	328233s	∞	
$F_{5} \mathrm{mem}$	407 MB	3113 MB	58587 MB		
$\log _{2}$ (Nb op.)	30.5	37.1	43.4		
FGLM time	35s	2580s	∞		

Computational bottleneck: computing the minors. Computing effort needed for solving Challenge C:

238 days on 64 quadricore processors.

Algebraic cryptanalysis of (multi-)HFE

Patarin, Eurocrypt'96
Billet/Patarin/Seurin, ICSCC'08
Ding/Schmitt/Werner, Information Security, 2008

$$
P(x)=\sum_{0 \leq i, j \leq r} p_{i, j} x^{q^{i}+q^{j}} \in \mathbb{F}_{q^{n}}, \text { with } r \ll n
$$

\rightsquigarrow low-rank quadratic form $\left(\mathbb{F}_{q}\right)^{n} \rightarrow\left(\mathbb{F}_{q}\right)^{n}$

Algebraic cryptanalysis of (multi-)HFE

Patarin, Eurocrypt'96
Billet/Patarin/Seurin, ICSCC'08
Ding/Schmitt/Werner, Information Security, 2008

$$
P(x)=\sum_{0 \leq i, j \leq r} p_{i, j} x^{q^{i}+q^{j}} \in \mathbb{F}_{q^{n}}, \text { with } r \ll n
$$

\rightsquigarrow low-rank quadratic form $\left(\mathbb{F}_{q}\right)^{n} \rightarrow\left(\mathbb{F}_{q}\right)^{n}$ masked by linear transforms !!

Algebraic cryptanalysis of (multi-) HFE

Patarin, Eurocrypt'96
Billet/Patarin/Seurin, ICSCC'08
Ding/Schmitt/Werner, Information Security, 2008

$$
P(x)=\sum_{0 \leq i, j \leq r} p_{i, j} x^{q^{i}+q^{j}} \in \mathbb{F}_{q^{n}}, \text { with } r \ll n
$$

\rightsquigarrow low-rank quadratic form $\left(\mathbb{F}_{q}\right)^{n} \rightarrow\left(\mathbb{F}_{q}\right)^{n}$
masked by linear transforms !!
\Rightarrow the secret polynomial can be recovered by solving a MinRank problem.

Bettale/Faugère/Perret, PKC 2011

The complexity of solving this MinRank problem is upper bounded by

$$
O\left(n^{(r+1) \omega}\right)
$$

\rightsquigarrow algebraic attack with polynomial complexity in n !!
\rightsquigarrow attacks on odd-characteristic variants;
\rightsquigarrow generalizations to multi-HFE.

Conclusion and Perspectives

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis !

Design, key size reduction,..$\xrightarrow{\text { Structure }}$ potential algebraic attacks.

Conclusion and Perspectives

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis !

Design, key size reduction,..$\xrightarrow{\text { Structure }}$ potential algebraic attacks.
Other possible applications in Crypto of structured systems

- Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).
- classical McEliece PKC (McEliece 1978).

Conclusion and Perspectives

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis !

Design, key size reduction,..$\xrightarrow{\text { Structure }}$ potential algebraic attacks.
Other possible applications in Crypto of structured systems

- Rank metric codes (Gabidulin/Ourivski/Honary/Ammar IEEE IT, 2003).
- classical McEliece PKC (McEliece 1978).

Algorithmic problems

- Dedicated F_{5} algorithm for multi-homogeneous systems.
\rightsquigarrow (Faugère, Safey, S., J. of Symb. Comp. 2011)
- Dedicated algorithm for determinantal systems?

