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> A family 7 = {F, : {0, 1}* — D} s.t. given adaptive query access,

Fy < F & random func U

T 1 T 1

Y Fy(xi) Yo U(x;)
2?

(The “seed” or “secret key” for F is s.)

» Countless applications in symmetric cryptography:

(efficient) encryption, identification, authentication, ...

(Images courtesy xkcd.org)
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How to Construct PRFs

© Heuristically: AES, Blowfish.
v Fast!

v/ Withstand known cryptanalytic techniques (linear, differential, .. .)
X PREF security is subtle: want provable (reductionist) guarantees

® Goldreich-Goldwasser-Micali [GGM'84]

v Based on any (doubling) PRG.  F(x;---x¢) = Gy (- - - Gy, (5) -+ +)
X Inherently sequential: > k iterations (circuit depth)

©® Naor-Reingold / Naor-Reingold-Rosen [NR'95,NR’97,NRR’00]
v/ Based on “synthesizers” or number theory (DDH, factoring)
v Low-depth: NC?, NC! or even TC? [O(1) depth w/ threshold gates]
X Huge circuits that need much preprocessing
X No “post-quantum” construction under standard assumptions

/13
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Why Not Try Lattices?
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Advantages of Lattice Crypto Schemes

» Simple & efficient: linear, highly parallel operations

> Resist quantum attacks (so far)

» Secure under worst-case hardness assumptions [Ajtai'96,...]

Disadvantages
X Only known PRF is generic GGM (not parallel or efficient)

| A\

XX We don’t even have practical PRGs from lattices: biased errors

4
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Our Results

© Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
* Synthesizer-based PRF in TC! € NC? a /a [NR'95]

* Direct construction in TG € NC' analogous to [NR'97,NRR’00]

® Main technique: “derandomization” of LWE: deterministic errors

Also gives more practical PRGs, GGM-type PRFs, encryption, ...
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Synthesizer

> A deterministic function S: D x D — D s.t. for any m = poly:
foral,...,am, bi,...,by < D,

{S(ai, b))} ~ Unif(D"™™).

by by
ap || S(ai,b1) S(ay,by) --- vs Ui Uip
ay || S(az,b1) S(az,by) --- Ui Usp

> Alternative view: an (almost) length-squaring PRG with locality:
maps D*" — D™, and each output depends on only 2 inputs.
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Synthesizers and PRFs [NaorReingold'95]
PRF from Synthesizer, Recursively
> Synthesizer S: D x D — D, where { S(a;, b))} ~ Unif(D™*™).
> Base case: “one-bit” PRF F  (x) := s, € D. v/

» Input doubling: given k-bit PRF family 7 = {F: {0,1}* — D},
define a {0, 1} — D function: choose Fy, F, <+ F and let

Fir, 5 (xe, x) = S(Felxe) , Fr(x,)).

51,05 51,1 —> Sx — s

s S — S

2707 2;1 27X2 \ S — F{S,‘b} (xl . x4)
53,0 5 $3,1 —> 53,13 _— :

i
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Synthesizers and PRFs [NaorReingold'95]

PRF from Synthesizer, Recursively

> Synthesizer S: D x D — D, where { S(a;, b))} ~ Unif(D™*™).
> Base case: “one-bit” PRF F  (x) := s, € D. v/

» Input doubling: given k-bit PRF family 7 = {F: {0,1}* — D},
define a {0, 1}* — D function: choose Fy, F, < F and let

F(Fz,Fr) (x¢, xp) = S(Fg(Xg) , Fr(xy) )

81,05 S1,1 — Sl.x,

i
i

82,05, 82,1 —> S2.x,

> S — F{Si,b}(xl )

53,0, 83,1 —> 53,
84,0, 4,1 —> S4x4

» Security: the queries Fy(xy) and F,(x,) define (pseudo)random
inputs a;,ay,... € D and by, by, ... € D for synthesizer S.
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» For (e.g.) n a power of 2, define “cyclotomic” polynomial rings

R:=7Z[/(+1) and R,:=R/qR = Z,[x]/(x" + 1).
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(Ring) Learning With Errors (RLWE) [Regev05,LPR10]

» For (e.g.) n a power of 2, define “cyclotomic” polynomial rings
R:=Zx]/(x"+1) and R, :=R/qR = Z4[x]/(x" +1).

» Hard to distinguish m pairs (a; , a; - s + e;) € R, x R, from uniform,
where q;, s < R, uniform and e; “short.”

» By hybrid argument, for s, 52, ... <= R, can’t distinguish m tuples
(ai , ai-S1+ei1, ai-s2+eo, .. ) from uniform.

An RLWE-Based Synthesizer?

v {a;-sj+e;;} ~ Uniform,
but. ..
X Where do ¢;; come from?

Synthesizer must be
deterministic. ..

51 52

ap || ar-s1+e1 ap-s2+teip
a || a2 -sy+te1 ax-s2+exn
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“Learning With Rounding” (LWR) [This work]

6
g 7 5

> IDEA: generate errors deterministically by 9 3
H 13 ” ]0
rounding Z, to a “sparse” subset (e.g. subgroup). 21
(Common in decryption to remove error.) 1123 203
14 22
15 21
16 |5 T 20

9/13



“Learning With Rounding” (LWR) [This work]
6
> IDEA: generate errors deterministically by . \8\7\ f 15 3

rounding Z, to a “sparse” subset (e.g. subgroup). ,, }* 1|

(Common in decryption to remove error.) .

Let p < ¢ and define |x], = [ (p/q) - x] mod p. s

1647 15 19



“Learning With Rounding” (LWR) [This work]
6 s
> IDEA: generate errors deterministically by . \8\7\ g 3

rounding Z, to a “sparse” subset (e.g. subgroup). ,, }* 1|

. . 12
(Common in decryption to remove error.) s

Let p < ¢ and define |x], = [ (p/q) - x] mod p. s

1647 15 19

» Ring-LWR problem: distinguish any m = poly pairs

(ai , lai-s]y) € Ry x R, from uniform



“Learning With Rounding” (LWR) [This work]

> IDEA: generate errors deterministically by . \8\\ =4
rounding Z, to a “sparse” subset (e.g. subgroup). ,, }* 1|

. . 12
(Common in decryption to remove error.) s

Let p < ¢ and define |x], = [ (p/q) - x] mod p. s

1647 15 19

» Ring-LWR problem: distinguish any m = poly pairs

(ai , lai-s]y) € Ry xR, from uniform

Interpretation: LWE conceals low-order bits by adding small
random error. LWR just discards those bits instead.




“Learning With Rounding” (LWR) [This work]

> IDEA: generate errors deterministically by . \8\\ g 3

rounding Z, to a “sparse” subset (e.g. subgroup). ,, }* 1|

. . 12
(Common in decryption to remove error.) s

14

Let p < ¢ and define |x], = [(p/q) - x] mod p. is

» Ring-LWR problem: distinguish any m = poly pairs

(ai , lai-s]y) € Ry xR, from uniform

Interpretation: LWE conceals low-order bits by adding small
random error. LWR just discards those bits instead.

» We prove LWE < LWR for g > p - n®()  [but seems 2"-hard for ¢ > p+/n]



“Learning With Rounding” (LWR) [This work]

> IDEA: generate errors deterministically by . \8\\ g 3
rounding Z, to a “sparse” subset (e.g. subgroup). ,, }* 1|

. . 12
(Common in decryption to remove error.) s

Let p < ¢ and define |x], = [ (p/q) - x] mod p. s

1647 15 19

» Ring-LWR problem: distinguish any m = poly pairs

(ai , lai-s]y) € Ry xR, from uniform

Interpretation: LWE conceals low-order bits by adding small
random error. LWR just discards those bits instead.

> We prove LWE < LWR for g > p - n“()  [but seems 2"-hard for ¢ > p+/n]
Main idea: w.h.p. (a, |a-s+¢],)=(a, |a-s]))
and (a, [Unif(Z,)],) = (a, Unif(Z,))
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LWR-Based Synthesizer & PRF

» Synthesizer S: R; x R, — R, is S(a,s) = |a - s]p.

Note: range R, slightly smaller than domain R,. (Limits composition.)

PRF on Domain {0, 1}+=2*

» Public modulig; > g4—1 > -+ > qo.
» Secret key is 2k ring elements s;, € R, for i € [k], b € {0, 1}.
> Depth d = 1gk tree of LWR synthesizers:

Fio (01 -xg) =

\\Uslm ’ 527X2-‘q2‘ 53,5, s4,x4~|q2—| ql' Usixs‘ s67x6~|q2' Ls7,5,- SS,Xsqu-‘ 41—‘

q0

v
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Shallower? More Efficient?
» Synth-based PRF is log k levels of NC! synthesizers = NC?2.

» [NR'97,NRR'00]: direct PRFs from DDH / factoring, in TC? C NC!.

Fg7slv~~~7sk (xl o 'xk) = gHS,-
(Computing this in TC® needs huge circuits, though. . .)

Direct LWE-Based Construction

» Public moduli g > p.
» Secret key is uniform a < R, and short sy, ..., s € R.
> “Rounded subset-product” function:

k
Fos,..s (x1 -+ x¢) = {a . Hsf" mod q“
i=1 7

Has small(ish) TCP circuit, via CRT and reduction to subset-sum.

v
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Proof Outline

» Seed is uniform a € R, and short sy, ..., st € R.

X1

Fa,sl,.“,sk (xl s 'xk) = La S8 'S}:k mod q]p

> Like the LWE < LWR proof, but “souped up” to handle queries.
Thought experiment: answer queries with

k k
F(x):==[(a-s) +x1-ey) sy -s),ﬂp = aHsf" + x1-ey, -Hsf"
i=1 i=2 |,

W.h.p., F(x) = F(x) on all queries due to “small” error & rounding.
» Replace (a,a - 51 + ey,) with uniform (ag, a;) [ring-LWE].
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Proof Outline

» Seed is uniform a € R, and short sy, ..., st € R.

X1

Fa,sl,‘..,sk (xl s 'xk) = La S8 'S}\;k mod q]p

> Like the LWE < LWR proof, but “souped up” to handle queries.
Thought experiment: answer queries with

k k
F(x):==[(a-s) +x1-ey) sy -s),ﬂp = aHsf" + x1-ey, -Hsf"
i=1 i=2 |,

W.h.p., F(x) = F(x) on all queries due to “small” error & rounding.
» Replace (a,a - 51 + ey,) with uniform (ag, a;) [ring-LWE].

= New function F'(x) = |ay, - 55> - 5" -
> Repeat for s, 53, ... until " (x) = |a,], = Uniform func. O

12/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n+(1).)

13/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n(1).)

® Synth-based PRF relies on approx factor and modulus = n°(02%),
Direct construction relies on approx factor and modulus = n°%),

13/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n(1).)

® Synth-based PRF relies on approx factor and modulus = n®00g4),
Direct construction relies on approx factor and modulus = n®®),

Are such strong assumptions necessary (even for these constructions)?

13/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n(1).)

® Synth-based PRF relies on approx factor and modulus = n®00g4),
Direct construction relies on approx factor and modulus = n®®),

Are such strong assumptions necessary (even for these constructions)?

Conjecture (?): direct PRF is secure for integral g/p = poly(n).

13/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n(1).)

® Synth-based PRF relies on approx factor and modulus = n®00g4),
Direct construction relies on approx factor and modulus = n®®),

Are such strong assumptions necessary (even for these constructions)?

Conjecture (?): direct PRF is secure for integral ¢/p = poly(n).

@ Efficient PRF from parity with noise (LPN)?

13/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n(1).)

® Synth-based PRF relies on approx factor and modulus = n®00g4),
Direct construction relies on approx factor and modulus = n®®),

Are such strong assumptions necessary (even for these constructions)?

Conjecture (?): direct PRF is secure for integral ¢/p = poly(n).
© Efficient PRF from parity with noise (LPN)?

O Efficient PRF from subset sum?

13/13



Open Questions
© Better (worst-case) hardness for LWR, e.g. for ¢/p = \/n?

(The proof from LWE relies on approx factor and modulus = n(1).)

® Synth-based PRF relies on approx factor and modulus = n®00g4),
Direct construction relies on approx factor and modulus = n®®),

Are such strong assumptions necessary (even for these constructions)?

Conjecture (?): direct PRF is secure for integral g/p = poly(n).
© Efficient PRF from parity with noise (LPN)?
O Efficient PRF from subset sum?

Thanks!
Full paper: ePrint report #2011/401
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