Pseudorandom Functions and Lattices

Abhishek Banerjee¹

Chris Peikert¹

Alon Rosen²

¹Georgia Tech

²IDC Herzliya

Symbolic Computations and Post-Quantum Crypto 8 December 2011

Pseudorandom Functions [GGM'84]

▶ A family $\mathcal{F} = \{F_s : \{0,1\}^k \to D\}$ s.t. given adaptive query access,

(The "seed" or "secret key" for F_s is s.)

Pseudorandom Functions [GGM'84]

▶ A family $\mathcal{F} = \{F_s : \{0,1\}^k \to D\}$ s.t. given adaptive query access,

(The "seed" or "secret key" for F_s is s.)

Countless applications in symmetric cryptography: (efficient) encryption, identification, authentication, ...

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want provable (reductionist) guarantees

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want <u>provable</u> (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want <u>provable</u> (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ▶ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - \checkmark Inherently sequential: $\geq k$ iterations (circuit depth)

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want <u>provable</u> (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - x Inherently sequential: $\geq k$ iterations (circuit depth)
- 3 Naor-Reingold / Naor-Reingold-Rosen [NR'95,NR'97,NRR'00]
 - ✔ Based on "synthesizers" or number theory (DDH, factoring)
 - ✓ Low-depth: NC^2 , NC^1 or even TC^0 [O(1) depth w/ threshold gates]

- 1 Heuristically: AES, Blowfish.
 - ✓ Fast!
 - ✓ Withstand known cryptanalytic techniques (linear, differential, ...)
 - PRF security is subtle: want <u>provable</u> (reductionist) guarantees
- 2 Goldreich-Goldwasser-Micali [GGM'84]
 - ✓ Based on any (doubling) PRG. $F_s(x_1 \cdots x_k) = G_{x_k}(\cdots G_{x_1}(s) \cdots)$
 - x Inherently sequential: $\geq k$ iterations (circuit depth)
- 3 Naor-Reingold / Naor-Reingold-Rosen [NR'95,NR'97,NRR'00]
 - ✔ Based on "synthesizers" or number theory (DDH, factoring)
 - ✓ Low-depth: NC^2 , NC^1 or even TC^0 [O(1) depth w/ threshold gates]
 - Huge circuits that need much preprocessing
 - No "post-quantum" construction under standard assumptions

Advantages of Lattice Crypto Schemes

- Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajtai'96,...]

Advantages of Lattice Crypto Schemes

- ► Simple & efficient: linear, highly parallel operations
- ► Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajtai'96,...]

Disadvantages

Only known PRF is generic GGM (not parallel or efficient)

Advantages of Lattice Crypto Schemes

- ► Simple & efficient: linear, highly parallel operations
- ► Resist quantum attacks (so far)
- ► Secure under worst-case hardness assumptions [Ajtai'96,...]

Disadvantages

- Only known PRF is generic GGM (not parallel or efficient)
- We don't even have practical PRGs from lattices: biased errors

1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE

- 1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
 - ★ Synthesizer-based PRF in $TC^1 \subseteq NC^2$ a la [NR'95]
 - **Direct construction** in TC⁰ ⊆ NC¹ analogous to [NR'97,NRR'00]

- 1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
 - ★ Synthesizer-based PRF in TC¹ ⊆ NC² a la [NR'95]
 - ★ Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]
- 2 Main technique: "derandomization" of LWE: deterministic errors

- 1 Low-depth, relatively small-circuit PRFs from lattices / (ring-)LWE
 - ★ Synthesizer-based PRF in TC¹ ⊆ NC² a la [NR'95]
 - ★ Direct construction in $TC^0 \subseteq NC^1$ analogous to [NR'97,NRR'00]
- 2 Main technique: "derandomization" of LWE: deterministic errors Also gives more practical PRGs, GGM-type PRFs, encryption, ...

Synthesizer

A deterministic function $S: D \times D \to D$ s.t. for <u>any</u> m = poly: for $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

$$\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$$

Synthesizer

A deterministic function $S: D \times D \to D$ s.t. for <u>any</u> m = poly: for $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

$$\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$$

Synthesizer

A deterministic function $S: D \times D \to D$ s.t. for <u>any</u> m = poly: for $a_1, \ldots, a_m, b_1, \ldots, b_m \leftarrow D$,

$$\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m}).$$

► <u>Alternative view</u>: an (almost) <u>length-squaring PRG</u> with <u>locality</u>: maps $D^{2m} \rightarrow D^{m^2}$, and each output depends on only 2 inputs.

PRF from Synthesizer, Recursively

▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✔
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0,1\}^k \to D\}$, define a $\{0,1\}^{2k} \to D$ function: choose $F_\ell, F_r \leftarrow \mathcal{F}$ and let

$$F_{(F_{\ell},F_r)}(x_{\ell}, x_r) = S(F_{\ell}(x_{\ell}), F_r(x_r)).$$

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0,1\}^k \to D\}$, define a $\{0,1\}^{2k} \to D$ function: choose $F_\ell, F_r \leftarrow \mathcal{F}$ and let

$$F_{(F_{\ell},F_r)}(x_{\ell},x_r) = S(F_{\ell}(x_{\ell}),F_r(x_r)).$$

$$s_{1,0}, s_{1,1} \longrightarrow s_{1,x_1}$$
 $s_{2,0}, s_{2,1} \longrightarrow s_{2,x_2}$
 $s_{3,0}, s_{3,1} \longrightarrow s_{3,x_3}$
 $s_{4,0}, s_{4,1} \longrightarrow s_{4,x_4}$
 $s_{4,0}, s_{4,1} \longrightarrow s_{4,x_4}$

PRF from Synthesizer, Recursively

- ▶ Synthesizer $S: D \times D \to D$, where $\{S(a_i, b_j)\} \stackrel{c}{\approx} \mathsf{Unif}(D^{m \times m})$.
- ▶ Base case: "one-bit" PRF $F_{s_0,s_1}(x) := s_x \in D$. ✓
- ▶ Input doubling: given k-bit PRF family $\mathcal{F} = \{F : \{0,1\}^k \to D\}$, define a $\{0,1\}^{2k} \to D$ function: choose $F_{\ell}, F_{r} \leftarrow \mathcal{F}$ and let

$$F_{(F_{\ell},F_r)}(x_{\ell},x_r) = S(F_{\ell}(x_{\ell}),F_r(x_r)).$$

$$s_{1,0}, s_{1,1} \longrightarrow s_{1,x_1}$$
 $s_{2,0}, s_{2,1} \longrightarrow s_{2,x_2}$
 $s_{3,0}, s_{3,1} \longrightarrow s_{3,x_3}$
 $s_{4,0}, s_{4,1} \longrightarrow s_{4,x_4}$
 $s_{5,0} \longrightarrow F_{\{s_{i,b}\}}(x_1 \cdots x_4)$

▶ Security: the queries $F_{\ell}(x_{\ell})$ and $F_{r}(x_{r})$ define (pseudo)random inputs $a_{1}, a_{2}, \ldots \in D$ and $b_{1}, b_{2}, \ldots \in D$ for synthesizer S.

► For (e.g.) *n* a power of 2, define "cyclotomic" polynomial rings

$$R := \mathbb{Z}[x]/(x^n + 1)$$
 and $R_q := R/qR = \mathbb{Z}_q[x]/(x^n + 1)$.

► For (e.g.) *n* a power of 2, define "cyclotomic" polynomial rings

$$R := \mathbb{Z}[x]/(x^n + 1)$$
 and $R_q := R/qR = \mathbb{Z}_q[x]/(x^n + 1)$.

▶ <u>Hard</u> to distinguish m pairs $(a_i, a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."

► For (e.g.) *n* a power of 2, define "cyclotomic" polynomial rings

$$R:=\mathbb{Z}[x]/(x^n+1)$$
 and $R_q:=R/qR=\mathbb{Z}_q[x]/(x^n+1).$

- ▶ <u>Hard</u> to distinguish m pairs $(a_i, a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."
- ▶ By hybrid argument, for $s_1, s_2, ... \leftarrow R_q$ can't distinguish m tuples $(a_i, a_i \cdot s_1 + e_{i,1}, a_i \cdot s_2 + e_{i,2}, ...)$ from uniform.

ightharpoonup For (e.g.) n a power of 2, define "cyclotomic" polynomial rings

$$R := \mathbb{Z}[x]/(x^n + 1)$$
 and $R_q := R/qR = \mathbb{Z}_q[x]/(x^n + 1)$.

- ▶ <u>Hard</u> to distinguish m pairs $(a_i, a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."
- ▶ By hybrid argument, for $s_1, s_2, \ldots \leftarrow R_q$ can't distinguish m tuples $(a_i, a_i \cdot s_1 + e_{i,1}, a_i \cdot s_2 + e_{i,2}, \ldots)$ from uniform.

An RLWE-Based Synthesizer?

	s_1	s_2	• • •
a_1	$a_1 \cdot s_1 + e_{1,1}$	$a_1 \cdot s_2 + e_{1,2}$	
a_2	$\begin{vmatrix} a_1 \cdot s_1 + e_{1,1} \\ a_2 \cdot s_1 + e_{2,1} \end{vmatrix}$	$a_2 \cdot s_2 + e_{2,2}$	• • •
:		٠.	

For (e.g.) n a power of 2, define "cyclotomic" polynomial rings

$$R := \mathbb{Z}[x]/(x^n + 1)$$
 and $R_q := R/qR = \mathbb{Z}_q[x]/(x^n + 1)$.

- ▶ <u>Hard</u> to distinguish m pairs $(a_i, a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."
- ▶ By hybrid argument, for $s_1, s_2, \ldots \leftarrow R_q$ can't distinguish m tuples $(a_i, a_i \cdot s_1 + e_{i,1}, a_i \cdot s_2 + e_{i,2}, \ldots)$ from uniform.

An RLWE-Based Synthesizer?

	s_1	s_2	• • •
a_1	$\begin{vmatrix} a_1 \cdot s_1 + e_{1,1} \\ a_2 \cdot s_1 + e_{2,1} \end{vmatrix}$	$a_1 \cdot s_2 + e_{1,2}$	• • •
a_2	$a_2 \cdot s_1 + e_{2,1}$	$a_2 \cdot s_2 + e_{2,2}$	• • •
:		٠	

✓ $\{a_i \cdot s_j + e_{i,j}\} \stackrel{c}{\approx} \mathsf{Uniform},$ but. . .

For (e.g.) n a power of 2, define "cyclotomic" polynomial rings

$$R := \mathbb{Z}[x]/(x^n+1)$$
 and $R_q := R/qR = \mathbb{Z}_q[x]/(x^n+1)$.

- ▶ <u>Hard</u> to distinguish m pairs $(a_i, a_i \cdot s + e_i) \in R_q \times R_q$ from uniform, where $a_i, s \leftarrow R_q$ uniform and e_i "short."
- ▶ By hybrid argument, for $s_1, s_2, \ldots \leftarrow R_q$ can't distinguish m tuples $(a_i, a_i \cdot s_1 + e_{i,1}, a_i \cdot s_2 + e_{i,2}, \ldots)$ from uniform.

An RLWE-Based Synthesizer?

	s_1	<i>s</i> ₂	
a_1	$a_1 \cdot s_1 + e_{1,1}$	$a_1 \cdot s_2 + e_{1,2}$	
a_2	$\begin{vmatrix} a_1 \cdot s_1 + e_{1,1} \\ a_2 \cdot s_1 + e_{2,1} \end{vmatrix}$	$a_2 \cdot s_2 + e_{2,2}$	
:		٠	

- ✓ $\{a_i \cdot s_j + e_{i,j}\} \stackrel{c}{\approx} \mathsf{Uniform},$ but...
- ✗ Where do e_{i,j} come from? Synthesizer must be deterministic...

▶ IDEA: generate errors deterministically by rounding \mathbb{Z}_q to a "sparse" subset (e.g. subgroup). (Common in decryption to remove error.)

DEA: generate errors deterministically by rounding \mathbb{Z}_q to a "sparse" subset (e.g. subgroup). (Common in decryption to remove error.)

IDEA: generate errors deterministically by rounding Z_q to a "sparse" subset (e.g. subgroup).
 (Common in decryption to remove error.)
 Let p < q and define |x|_p = |(p/q) ⋅ x| mod p.

Ring-LWR problem: distinguish any m = poly pairs

$$(a_i, \lfloor a_i \cdot s \rceil_p) \in R_q \times R_p$$
 from uniform

▶ <u>IDEA</u>: generate errors deterministically by rounding \mathbb{Z}_q to a "sparse" subset (e.g. subgroup). (Common in decryption to remove error.)

Let p < q and define $\lfloor x \rceil_p = \lfloor (p/q) \cdot x \rceil \mod p$.

▶ Ring-LWR problem: distinguish any m = poly pairs

$$(a_i, \lfloor a_i \cdot s \rceil_p) \in R_q \times R_p$$
 from uniform

<u>Interpretation</u>: LWE conceals low-order bits by adding small random error. LWR just <u>discards</u> those bits instead.

IDEA: generate errors deterministically by rounding Z_q to a "sparse" subset (e.g. subgroup).
 (Common in decryption to remove error.)
 Let p < q and define [x]_p = [(p/q) ⋅ x] mod p.

▶ Ring-LWR problem: distinguish any m = poly pairs

$$(a_i \ , \ \lfloor a_i \cdot s \rceil_p) \in R_q \times R_p$$
 from uniform

<u>Interpretation</u>: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

▶ We prove LWE ≤ LWR for $q \ge p \cdot n^{\omega(1)}$ [but seems 2^n -hard for $q \ge p\sqrt{n}$]

"Learning With Rounding" (LWR) [This work]

IDEA: generate errors deterministically by rounding Z_q to a "sparse" subset (e.g. subgroup).
 (Common in decryption to remove error.)
 Let p < q and define |x|_p = |(p/q) ⋅ x| mod p.

▶ Ring-LWR problem: distinguish any m = poly pairs

$$\left(a_i\;,\; \lfloor a_i\cdot s \rceil_p \right) \in R_q imes R_p \quad ext{from uniform}$$

<u>Interpretation</u>: LWE conceals low-order bits by adding small random error. LWR just discards those bits instead.

• We prove LWE \leq LWR for $q \geq p \cdot n^{\omega(1)}$ [but seems 2^n -hard for $q \geq p \sqrt{n}$]

Main idea: w.h.p. $(a, \lfloor a \cdot s + e \rceil_p) = (a, \lfloor a \cdot s \rceil_p)$ and $(a, \lfloor \operatorname{Unif}(\mathbb{Z}_q) \rceil_p) = (a, \operatorname{Unif}(\mathbb{Z}_p))$

LWR-Based Synthesizer & PRF

▶ Synthesizer $S: R_q \times R_q \to R_p$ is $S(a,s) = \lfloor a \cdot s \rceil_p$.

<u>Note</u>: range R_p slightly smaller than domain R_q . (Limits composition.)

LWR-Based Synthesizer & PRF

Synthesizer $S: R_q \times R_q \to R_p$ is $S(a, s) = \lfloor a \cdot s \rceil_p$.

<u>Note</u>: range R_p slightly smaller than domain R_q . (Limits composition.)

PRF on Domain $\{0,1\}^{k=2^d}$

- Public moduli $q_d > q_{d-1} > \cdots > q_0$.
- ▶ Secret key is 2k ring elements $s_{i,b} \in R_{q_d}$ for $i \in [k], b \in \{0,1\}$.

LWR-Based Synthesizer & PRF

▶ Synthesizer $S: R_q \times R_q \to R_p$ is $S(a,s) = \lfloor a \cdot s \rceil_p$.

<u>Note</u>: range R_p slightly smaller than domain R_q . (Limits composition.)

PRF on Domain $\{0,1\}^{k=2^d}$

- Public moduli $q_d > q_{d-1} > \cdots > q_0$.
- ▶ Secret key is 2k ring elements $s_{i,b} \in R_{q_d}$ for $i \in [k], b \in \{0,1\}$.
- ▶ Depth $d = \lg k$ tree of LWR synthesizers:

$$F_{\{s_{i,b}\}}(x_1 \cdots x_8) = \left[\left[\left[\left[s_{1,x_1} \cdot s_{2,x_2} \right]_{q_2} \cdot \left[s_{3,x_3} \cdot s_{4,x_4} \right]_{q_2} \right]_{q_1} \cdot \left[\left[\left[s_{5,x_5} \cdot s_{6,x_6} \right]_{q_2} \cdot \left[s_{7,x_7} \cdot s_{8,x_8} \right]_{q_2} \right]_{q_1} \right]_{q_0} \right]$$

▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ► [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k)=g^{\prod s_i^{x_i}}$$

(Computing this in TC⁰ needs huge circuits, though...)

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k)=g^{\prod s_i^{x_i}}$$

(Computing this in TC⁰ needs huge circuits, though...)

Direct LWE-Based Construction

- Public moduli q > p.
- ▶ Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$.

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k)=g^{\prod s_i^{x_i}}$$

(Computing this in TC⁰ needs huge circuits, though...)

Direct LWE-Based Construction

- Public moduli q > p.
- ▶ Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$.
- "Rounded subset-product" function:

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left[a\cdot\prod_{i=1}^k s_i^{x_i} \bmod q\right]_p$$

- ▶ Synth-based PRF is $\log k$ levels of NC¹ synthesizers \Rightarrow NC².
- ▶ [NR'97,NRR'00]: direct PRFs from DDH / factoring, in $TC^0 \subseteq NC^1$.

$$F_{g,s_1,\ldots,s_k}(x_1\cdots x_k)=g^{\prod s_i^{x_i}}$$

(Computing this in TC⁰ needs huge circuits, though...)

Direct LWE-Based Construction

- Public moduli q > p.
- ▶ Secret key is uniform $a \leftarrow R_q$ and short $s_1, \ldots, s_k \in R$.
- "Rounded subset-product" function:

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \left[a\cdot\prod_{i=1}^k s_i^{x_i} \bmod q\right]_p$$

Has small(ish) TC⁰ circuit, via CRT and reduction to subset-sum.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \mod q \rceil_p$$

► Like the LWE ≤ LWR proof, but "souped up" to handle queries.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \bmod q \rceil_p$$

▶ Like the LWE ≤ LWR proof, but "souped up" to handle queries. Thought experiment: answer queries with

$$\tilde{F}(x) := \left[(a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right]_p = \left[a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right]_p$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \mod q \rceil_p$$

▶ Like the LWE ≤ LWR proof, but "souped up" to handle queries. Thought experiment: answer queries with

$$\tilde{F}(x) := \left[(a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right]_p = \left[a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right]_p$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

▶ Replace $(a, a \cdot s_1 + e_{x_1})$ with uniform (a_0, a_1) [ring-LWE].

$$\Rightarrow$$
 New function $F'(x) = \lfloor a_{x_1} \cdot s_2^{x_2} \cdots s_k^{x_k} \rceil_p$.

▶ Seed is uniform $a \in R_q$ and short $s_1, \ldots, s_k \in R$.

$$F_{a,s_1,\ldots,s_k}(x_1\cdots x_k) = \lfloor a\cdot s_1^{x_1}\cdots s_k^{x_k} \mod q \rceil_p$$

▶ Like the LWE ≤ LWR proof, but "souped up" to handle queries. Thought experiment: answer queries with

$$\tilde{F}(x) := \left[(a \cdot s_1^{x_1} + x_1 \cdot e_{x_1}) \cdot s_2^{x_2} \cdots s_k^{x_k} \right]_p = \left[a \prod_{i=1}^k s_i^{x_i} + x_1 \cdot e_{x_1} \cdot \prod_{i=2}^k s_i^{x_i} \right]_p$$

W.h.p., $\tilde{F}(x) = F(x)$ on all queries due to "small" error & rounding.

- ▶ Replace $(a, a \cdot s_1 + e_{x_1})$ with uniform (a_0, a_1) [ring-LWE]. ⇒ New function $F'(x) = [a_{x_1} \cdot s_2^{x_2} \cdots s_k^{x_k}]_p$.
- ▶ Repeat for s_2, s_3, \ldots until $F''''''(x) = \lfloor a_x \rceil_p = \text{Uniform func.} \ \Box$

1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$?

(The proof from LWE relies on approx factor and modulus $= n^{\omega(1)}$.)

- 1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus = $n^{\omega(1)}$.)
- 2 Synth-based PRF relies on approx factor and modulus = $n^{\Theta(\log k)}$. Direct construction relies on approx factor and modulus = $n^{\Theta(k)}$.

- 1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus = $n^{\omega(1)}$.)
- 2 Synth-based PRF relies on approx factor and modulus $= n^{\Theta(\log k)}$. Direct construction relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)?

- 1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus = $n^{\omega(1)}$.)
- 2 Synth-based PRF relies on approx factor and modulus $= n^{\Theta(\log k)}$. Direct construction relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? Conjecture (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.

- 1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus = $n^{\omega(1)}$.)
- 2 Synth-based PRF relies on approx factor and modulus = $n^{\Theta(\log k)}$. Direct construction relies on approx factor and modulus = $n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? <u>Conjecture</u> (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.
- 3 Efficient PRF from parity with noise (LPN)?

- 1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus = $n^{\omega(1)}$.)
- 2 Synth-based PRF relies on approx factor and modulus $= n^{\Theta(\log k)}$. Direct construction relies on approx factor and modulus $= n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? <u>Conjecture</u> (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.
- 3 Efficient PRF from parity with noise (LPN)?
- 4 Efficient PRF from subset sum?

- 1 Better (worst-case) hardness for LWR, e.g. for $q/p = \sqrt{n}$? (The proof from LWE relies on approx factor and modulus = $n^{\omega(1)}$.)
- 2 Synth-based PRF relies on approx factor and modulus = $n^{\Theta(\log k)}$. Direct construction relies on approx factor and modulus = $n^{\Theta(k)}$. Are such strong assumptions necessary (even for these constructions)? <u>Conjecture</u> (?): direct PRF is secure for integral $q/p = \operatorname{poly}(n)$.
- 3 Efficient PRF from parity with noise (LPN)?
- 4 Efficient PRF from subset sum?

Thanks! Full paper: ePrint report #2011/401