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What if I'm sending my medical records? 

It's everywhere! 
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homomorphic evaluation 
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nothing of x. 
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Function 
f 

x 
Enc(x) 

sk , pk evk 
evaluation 

key 

y = Evalevk(f, Enc(x)) 

Decsk(y)=f(x) 
Privacy guarantee (semantic security [GM82]): 

Enc(x) ≅ Enc(0) 

Correctness guarantee: 

“Fully” = Evaluate all (efficient) f 
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If we had: 

• Eval(+, Enc(x1), Enc(x2)) ⇒ Enc(x1+x2) 

• Eval(×, Enc(x1), Enc(x2)) ⇒ Enc(x1∙x2) 

then we are done. 

Enc(x2) 

Enc(x3) 

Enc(x1+x2) 

Enc((x1+x2)∙x3) 

f(x1,x2,x3)=(x1+x2)∙x3 

Partial solutions: 

- Only add [GM82,P99,R05,…]. 

- Only mult [G84,…]. 

- Add + single mult [BGN05,GHV10]. 

- Add + mult (w/ ciphertext blowup) 
[SYY99,GHV10,MGH10]. 

(+,×) over GF(2) ≡ Boolean (XOR,AND)  
               = Universal set 
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Since Gentry 

• Additional candidate FHE schemes: 
– [vDGHV10]: Approx. GCD + sparse subset sum 

(via squashing). 
– [BV11a]:  

• Ring-LWE + sparse subset sum (via squashing) / 
“sparse-ring-LWE”.  

• Circular secure d-HE (not bootstrappable). 
 

• Efficiency improvements of Gentry's 
scheme [SV10, SS10, GH11]. 
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[LLL82,K86,A97,M98,AKS03,MR04,MV10] 

Short-vectors in lattice: 

Mostly studied in  
cryptographic context. 
[M04,PR07,LM07,LPR10] 

Short-vectors in ideal lattice: 
Algebraic structure: Point ≡ Polynomial. 

3x+2 2x+3 

Useful but risky assumption… 

Vs. 

Base FHE on standard lattice assumptions? 
(Are ideal assumptions inherent to FHE?) 
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Q: No Squashing? 

Sparse subset-sum assumption and the 
squashing method: 

• Average case assumption, fairly untested. 

• Forcing solution (that works!) to “short blanket”. 

Do without squashing and additional assumption? 

Concurrently [GH11]: Remove squashing under ideal 
lattice assumption (using arith. representation of dec. 
circuit). 
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Two roads to bootstrapping: 

Short eval. key without additional assumption? 

I. No circular assumption 

evk grows with depth. 

⇒ “leveled” FHE 

II. Assume “circular security” 

Encryption of sk itself is secure. 

⇒ evk remains short. 

Two roads to bootstrapping: 
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Our Results: 
Fully Homomorphic Encryption 

Short-vector is hard to approx in worst-case 
arbitrary lattice. 
LWE (“learning with errors”) assumption. 

No squashing. 
Direct d-HE with decryption depth  << d. 

Efficiency improvement. 
• Short ciphertext ⇒ efficient decryption 
     (as efficient as non-hom. schemes). 

• Trivial key generation: no structure required. 

Leveled FHE without bootstrapping. 
• Conceptual contribution, although less efficient and worse 
parameters. 



Our Results: 
Private Information Retrieval (PIR) 

• PIR = Oblivious retrieval from “huge” DB 
of size N. [CGKS95,KO97,CMS99] 
– Quality measure: Communication complexity. 

 
• Our protocol: Õ(log(N))-communication. 

– Trivial LB = log(N). We are nearly optimal! 
– Previous best schemes [CMS99,L05,GR05,G09] 

~log3(N). 



New Ideas 



New Ideas 

• Re-linearization. 
 

⇒ “Shallow” multiplicative homomorphism. 
 

• (Dimension-)Modulus reduction. 
 

⇒ Noise management for “deep” circuits. 
⇒ Short ciphertexts as by-product. 
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Talk Outline 

• The LWE assumption. 
 

• Re-linearization and modulus reduction. 
 

• FHE using bootstrapping. 
 

• (Leveled) FHE without bootstrapping. 
 

 PIR protocol. 
 

• Conclusion and open problems. 
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× 
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e'' : |e''| ≈ |e|2 ≤ T2 
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What's the Ciphertext? 

• Ciphertext = Coefficients {hi}, {hi,j} ? 
 

– Decrypt with secret key s: 
 

 h0+∑ hi s[ i ] + ∑ hi,j s[ i ]s[ j ]   (mod 2) 
 

      = mm'+2e'' (mod 2)  
      = mm'  (mod 2). 

 
• Problem: Ciphertext contains ~n2 elements. 

– Size blows up with number of multiplications. 
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∀i.       (Ai , Bi = 〈Ai , s'〉 + 2Ei + s[ i ]) 
 

• We get:     s[ i ]s[ j ]      ≈      Bi,j - 〈Ai,j , s'〉 

Plug back into quadratic equation: 
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Re-Linearization 

Regrouping, we can now define (amult, bmult): 
 

amult = ∑ hi Ai+ ∑ hi,j Ai,j  ∈ Zq
n 

 

bmult = h0+∑ hi Bi+ ∑ hi,j Bi,j ∈ Zq 
 
 

Correctness: 
 

Decs' (amult, bmult) = (bmult - 〈amult, s'〉) (mod 2) 
 = (h0+∑ hi Bi+ ∑ hi,j Bi,j ) - 〈 ( ∑ hi Ai+ ∑ hi,j Ai,j ), s' 〉 (mod 2) 
 = h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) (mod 2) 
 = m⋅m' (mod 2) 
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Re-Linearization 
h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) = mm'+2e''' 

Problem: Noise amplitude grows from T to ≈T2. 
(Actually, from nT to (nT)2.) 

Single multiplication accomplished! 
 

For greater depth, repeat using new secrets s’’, s’’’… 



Modulus Reduction: 
Reducing Noise Amplitude 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 
Can you believe that this actually works? 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 
Can you believe that this actually works? 

(a, b) ∈ Zq
n  x Zq (a*, b*) ∈ Z(q/nT) 

n  x Z(q/nT) 
a*[i] = a[i] / (nT) ; b*=b / (nT) 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 
Can you believe that this actually works? 

(a, b) ∈ Zq
n  x Zq (a*, b*) ∈ Z(q/nT) 

n  x Z(q/nT) 

Special rounding: Round so that LSB doesn’t change. 

a*[i] = a[i] / (nT) ; b*=b / (nT) 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 
Can you believe that this actually works? 

(a, b) ∈ Zq
n  x Zq (a*, b*) ∈ Z(q/nT) 

n  x Z(q/nT) 

Special rounding: Round so that LSB doesn’t change. Why? 

a*[i] = a[i] / (nT) ; b*=b / (nT) 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 
Can you believe that this actually works? 

(a, b) ∈ Zq
n  x Zq (a*, b*) ∈ Z(q/nT) 

n  x Z(q/nT) 

Special rounding: Round so that LSB doesn’t change. Why? 

b* - ∑a*[ i ]∙s[ i ] (mod 2)  =  b - ∑a[ i ]∙s[ i ] (mod 2)  =  m 

a*[i] = a[i] / (nT) ; b*=b / (nT) 

Rounding guarantees correct decryption: 



Modulus Reduction: 
Reducing Noise Amplitude 

Naïve approach: Divide everything by nT. 
Can you believe that this actually works? 

(a, b) ∈ Zq
n  x Zq (a*, b*) ∈ Z(q/nT) 

n  x Z(q/nT) 

Special rounding: Round so that LSB doesn’t change. Why? 

b* - ∑a*[ i ]∙s[ i ] (mod 2)  =  b - ∑a[ i ]∙s[ i ] (mod 2)  =  m 

a*[i] = a[i] / (nT) ; b*=b / (nT) 

Rounding guarantees correct decryption: 

Noise amplitude after modulus reduction: 

(nT)2/(nT)   +   nT   =   O(nT) 
scaled down 

“original” noise 
rounding  

error 
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• Eval for mult. depth = 1. 
• Modulus reduced: q ⇒ q/(nT). 
• Noise amplitude at most nT. 
 
 

Deeper Circuit? Just repeat! 
 
 
 

• Mult. depth = d. 
• Modulus reduced: q ⇒ q/(nT)d. 
• Noise amplitude at most nT. 

Ciphertext decryptable if: 
 

nT < (q/(nT)d)/4 
 

⇒ q > 4(nT)d+1 = nO(d) 
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• No “squashing” whatsoever. 
 

• Ciphertext size: n log (nT) . 
– Post-bootstrapping size “survives”. 

 

• Decryption depth: O(log(n)). 
 

• Security: LWEn,q=nO(log n)  
⇒ quasy-poly apx. to short-vectors. 

Assumption is “too good”… 
 

Can we get more features from a (somewhat) stronger assumption? 

Yes… 
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(Leveled) FHE without Bootstrapping 
Recall: 
 

q = nO(d) 

Bigger q ⇒ deeper circuits. 
 

So how big can q get (securely)? 

Let’s look at it backwards: 

No bootstrapping whatsoever! 

Post-processing can 
reduce ciphertext length. 



Talk Outline 

• The LWE assumption. 
 

• Re-linearization and modulus reduction. 
 

• FHE using bootstrapping. 
 

• (Leveled) FHE without bootstrapping. 
 

 PIR protocol. 
 

• Conclusion and open problems. 
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Correctness guarantee: 
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FHE ⇒ PIR 
Use our FHE naïvely:  

cc = n·log(nT)·log(N)≈Õ(log2N) 
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Single-Server PIR [CGKS95,KO97,CMS99] 

Database 
DB 

|DB|=N ≈2n 

Index 
x∈[N] 

sk evk 

Reducing comm. complexity:  
• Enc(x) using different, more efficient, scheme. 

• Hom. decrypt efficient ciphertext and use as before. 

• Using known efficient schemes: cc = Õ(log N). 

, sym Enc(sym), 

Encsym(x) 

Encsym(x)+Enc(sym) ⇒ Enc(x) 

y = Eval(DB, Enc(x)) 

y 



Conclusion 
• FHE is not so complicated anymore… 

– No ideals. 
– No squashing or sparse subset sum assumption. 
– Efficiency! Short ciphertexts, keys are easy to 

generate and are fairly unstructured. 
– Can't lose: Don't care about homomorpism? Use our 

scheme anyway – same efficiency and security. 
 
 
• Private Information Retrieval. 

– Don't pay more than Õ(log(N)). 



Open Problems 

• Remove circular security assumption. 
 

• Go from quasi-polynomial to strictly 
polynomial LWE modulus. 
 

• Improve efficiency, possibly using ideals 
[BGV11, LNV11, GHS11]. 
 

• New notions of security [BSW11]. 



Questions? 
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