
Fully Homomorphic Encryption
from LWE

Zvika Brakerski
(Stanford)

Vinod Vaikuntanathan
(University of Toronto)

Post-Quantum Webinar,
November 2011

Based on joint works with:

Craig Gentry
(IBM)

Outsourcing Computation

Outsourcing Computation

Function
f

x
f(x)

Outsourcing Computation

Function
f

x
f(x)

It's everywhere!

Outsourcing Computation

Function
f

x
search
query Google

search Search results

f(x)

It's everywhere!

Outsourcing Computation

Function
f

x
search
query Google

search Search results

x

f(x)

It's everywhere!

Outsourcing Computation

Function
f

x
search
query Google

search Search results

x

f(x)

What if my query is embarrassing?
What if I'm sending my medical records?

It's everywhere!

Outsourcing Computation

Function
f

x
medical
records analysis

risk factors

x

f(x)

What if my query is embarrassing?

What if I'm sending my medical records?

It's everywhere!

Outsourcing Computation

Function
f

x
medical
records analysis

risk factors

x

f(x)

What if my query is embarrassing?

What if I'm sending my medical records?

It's everywhere!

Want Privacy!

Outsourcing Computation – Privately

Function
f

x

Outsourcing Computation – Privately

Function
f

x
Enc(x)

Outsourcing Computation – Privately

Function
f

x
Enc(x)

Knows
nothing of x.

Outsourcing Computation – Privately

Function
f

x
Enc(x)

y

Dec(y)=f(x)

Knows
nothing of x.

Outsourcing Computation – Privately

Function
f

x
Enc(x)

y

Dec(y)=f(x)

Eval: f, Enc(x) → Enc(f(x))
homomorphic evaluation

Knows
nothing of x.

Fully Homomorphic Encryption (FHE)
[RAD78]

Function
f

x
Enc(x)

y

Dec(y)=f(x)

Fully Homomorphic Encryption (FHE)
[RAD78]

Function
f

x
Enc(x)

y

Dec(y)=f(x)

sk , pk evk
evaluation

key

Fully Homomorphic Encryption (FHE)
[RAD78]

Function
f

x
Enc(x)

y

Dec(y)=f(x)

sk , pk evk
evaluation

key

Fully Homomorphic Encryption (FHE)
[RAD78]

Function
f

x
Enc(x)

sk , pk evk
evaluation

key

y = Evalevk(f, Enc(x))

Decsk(y)=f(x)
Correctness guarantee:

Fully Homomorphic Encryption (FHE)
[RAD78]

Function
f

x
Enc(x)

sk , pk evk
evaluation

key

y = Evalevk(f, Enc(x))

Decsk(y)=f(x)
Privacy guarantee (semantic security [GM82]):

Enc(x) ≅ Enc(0)

Correctness guarantee:

Fully Homomorphic Encryption (FHE)
[RAD78]

Function
f

x
Enc(x)

sk , pk evk
evaluation

key

y = Evalevk(f, Enc(x))

Decsk(y)=f(x)
Privacy guarantee (semantic security [GM82]):

Enc(x) ≅ Enc(0)

Correctness guarantee:

“Fully” = Evaluate all (efficient) f

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

x1 x2

x3

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

f(x1,x2,x3)=(x1+x2)∙x3

x1 x2

x3

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

f(x1,x2,x3)=(x1+x2)∙x3

x1 x2

x3

(+,×) over GF(2) ≡ Boolean (XOR,AND)
 = Universal set

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

If we had:

• Eval(+, Enc(x1), Enc(x2)) ⇒ Enc(x1+x2)

• Eval(×, Enc(x1), Enc(x2)) ⇒ Enc(x1∙x2)

then we are done.

f(x1,x2,x3)=(x1+x2)∙x3

x1 x2

x3

(+,×) over GF(2) ≡ Boolean (XOR,AND)
 = Universal set

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

Enc(x1)

If we had:

• Eval(+, Enc(x1), Enc(x2)) ⇒ Enc(x1+x2)

• Eval(×, Enc(x1), Enc(x2)) ⇒ Enc(x1∙x2)

then we are done.

Enc(x2)

Enc(x3)

f(x1,x2,x3)=(x1+x2)∙x3

(+,×) over GF(2) ≡ Boolean (XOR,AND)
 = Universal set

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

Enc(x1)

If we had:

• Eval(+, Enc(x1), Enc(x2)) ⇒ Enc(x1+x2)

• Eval(×, Enc(x1), Enc(x2)) ⇒ Enc(x1∙x2)

then we are done.

Enc(x2)

Enc(x3)

Enc(x1+x2)

Enc((x1+x2)∙x3)

f(x1,x2,x3)=(x1+x2)∙x3

(+,×) over GF(2) ≡ Boolean (XOR,AND)
 = Universal set

Add & Mult Are Universal
(a la [BGW88])

Arith. Circuit (+, ×) over GF(2).

+

×

Enc(x1)

If we had:

• Eval(+, Enc(x1), Enc(x2)) ⇒ Enc(x1+x2)

• Eval(×, Enc(x1), Enc(x2)) ⇒ Enc(x1∙x2)

then we are done.

Enc(x2)

Enc(x3)

Enc(x1+x2)

Enc((x1+x2)∙x3)

f(x1,x2,x3)=(x1+x2)∙x3

Partial solutions:

- Only add [GM82,P99,R05,…].

- Only mult [G84,…].

- Add + single mult [BGN05,GHV10].

- Add + mult (w/ ciphertext blowup)
[SYY99,GHV10,MGH10].

(+,×) over GF(2) ≡ Boolean (XOR,AND)
 = Universal set

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]: (Qualitative)

“Deep enough” HE ⇒ FHE

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Deep enough = Deeper than decryption circuit

Bootstrapping Theorem [G09]: (Qualitative)

“Deep enough” HE ⇒ FHE

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

evk grows with
eval. depth

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

Eval for any depth d circuit
(aka “somewhat” HE)

evk grows with
eval. depth

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

+ circular security ⇒ FHE

evk grows with
eval. depth

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

Gentry's construction:

+ circular security ⇒ FHE

evk grows with
eval. depth

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

Gentry's construction:

d-HE with dec.
depth > d

Ideal lattice
assumption.

+ circular security ⇒ FHE

evk grows with
eval. depth

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

Gentry's construction:

d-HE with dec.
depth > d

Ideal lattice
assumption.

“Squash” to dec.
depth < d

Sparse Subset-Sum
assumption.

+

+ circular security ⇒ FHE

evk grows with
eval. depth

Gentry's Breakthrough [G09,G10]
First Candidate FHE

Bootstrapping Theorem [G09]:
d-HE + dec. depth < d ⇒ “leveled” FHE

Gentry's construction:

d-HE with dec.
depth > d

Ideal lattice
assumption.

“Squash” to dec.
depth < d

Sparse Subset-Sum
assumption.

+

Circular security
assumption

+

+ circular security ⇒ FHE

evk grows with
eval. depth

Since Gentry

• Additional candidate FHE schemes:
– [vDGHV10]: Approx. GCD + sparse subset sum

(via squashing).
– [BV11a]:

• Ring-LWE + sparse subset sum (via squashing) /
“sparse-ring-LWE”.

• Circular secure d-HE (not bootstrappable).

• Efficiency improvements of Gentry's
scheme [SV10, SS10, GH11].

Q: Arbitrary Lattice?

Q: Arbitrary Lattice?

Fundamental algorithmic problem –
extensively studied.

[LLL82,K86,A97,M98,AKS03,MR04,MV10]

Short-vectors in lattice:

Q: Arbitrary Lattice?

Fundamental algorithmic problem –
extensively studied.

[LLL82,K86,A97,M98,AKS03,MR04,MV10]

Short-vectors in lattice:

Mostly studied in
cryptographic context.
[M04,PR07,LM07,LPR10]

Short-vectors in ideal lattice:
Algebraic structure: Point ≡ Polynomial.

3x+2 2x+3
Vs.

Q: Arbitrary Lattice?

Fundamental algorithmic problem –
extensively studied.

[LLL82,K86,A97,M98,AKS03,MR04,MV10]

Short-vectors in lattice:

Mostly studied in
cryptographic context.
[M04,PR07,LM07,LPR10]

Short-vectors in ideal lattice:
Algebraic structure: Point ≡ Polynomial.

3x+2 2x+3

Useful but risky assumption…

Vs.

Q: Arbitrary Lattice?

Fundamental algorithmic problem –
extensively studied.

[LLL82,K86,A97,M98,AKS03,MR04,MV10]

Short-vectors in lattice:

Mostly studied in
cryptographic context.
[M04,PR07,LM07,LPR10]

Short-vectors in ideal lattice:
Algebraic structure: Point ≡ Polynomial.

3x+2 2x+3

Useful but risky assumption…

Vs.

Base FHE on standard lattice assumptions?

Q: Arbitrary Lattice?

Fundamental algorithmic problem –
extensively studied.

[LLL82,K86,A97,M98,AKS03,MR04,MV10]

Short-vectors in lattice:

Mostly studied in
cryptographic context.
[M04,PR07,LM07,LPR10]

Short-vectors in ideal lattice:
Algebraic structure: Point ≡ Polynomial.

3x+2 2x+3

Useful but risky assumption…

Vs.

Base FHE on standard lattice assumptions?
(Are ideal assumptions inherent to FHE?)

Q: No Squashing?

Q: No Squashing?

Sparse subset-sum assumption and the
squashing method:

• Average case assumption, fairly untested.

• Forcing solution (that works!) to “short blanket”.

Q: No Squashing?

Sparse subset-sum assumption and the
squashing method:

• Average case assumption, fairly untested.

• Forcing solution (that works!) to “short blanket”.

Do without squashing and additional assumption?

Q: No Squashing?

Sparse subset-sum assumption and the
squashing method:

• Average case assumption, fairly untested.

• Forcing solution (that works!) to “short blanket”.

Do without squashing and additional assumption?

Concurrently [GH11]: Remove squashing under ideal
lattice assumption (using arith. representation of dec.
circuit).

The Real World

The Real World

People actually want to use these schemes…

The Real World

People actually want to use these schemes…

In known schemes: Key generation and
Eval are exhausting.

The Real World

People actually want to use these schemes…

In known schemes: Key generation and
Eval are exhausting.

Q: Implement FHE efficiently?

Q: Circular Security?

Q: Circular Security?

Two roads to bootstrapping: Two roads to bootstrapping:

Q: Circular Security?

Two roads to bootstrapping:

I. No circular assumption

evk grows with depth.

⇒ “leveled” FHE

Two roads to bootstrapping:

Q: Circular Security?

Two roads to bootstrapping:

I. No circular assumption

evk grows with depth.

⇒ “leveled” FHE

II. Assume “circular security”

Encryption of sk itself is secure.

⇒ evk remains short.

Two roads to bootstrapping:

Q: Circular Security?

Two roads to bootstrapping:

Short eval. key without additional assumption?

I. No circular assumption

evk grows with depth.

⇒ “leveled” FHE

II. Assume “circular security”

Encryption of sk itself is secure.

⇒ evk remains short.

Two roads to bootstrapping:

Our Results:
Fully Homomorphic Encryption

Our Results:
Fully Homomorphic Encryption

Short-vector is hard to approx in worst-case
arbitrary lattice.
LWE (“learning with errors”) assumption.

Our Results:
Fully Homomorphic Encryption

Short-vector is hard to approx in worst-case
arbitrary lattice.
LWE (“learning with errors”) assumption.

No squashing.
Direct d-HE with decryption depth << d.

Our Results:
Fully Homomorphic Encryption

Short-vector is hard to approx in worst-case
arbitrary lattice.
LWE (“learning with errors”) assumption.

No squashing.
Direct d-HE with decryption depth << d.

Efficiency improvement.
• Short ciphertext ⇒ efficient decryption
 (as efficient as non-hom. schemes).

• Trivial key generation: no structure required.

Our Results:
Fully Homomorphic Encryption

Short-vector is hard to approx in worst-case
arbitrary lattice.
LWE (“learning with errors”) assumption.

No squashing.
Direct d-HE with decryption depth << d.

Efficiency improvement.
• Short ciphertext ⇒ efficient decryption
 (as efficient as non-hom. schemes).

• Trivial key generation: no structure required.

Leveled FHE without bootstrapping.
• Conceptual contribution, although less efficient and worse
parameters.

Our Results:
Private Information Retrieval (PIR)

• PIR = Oblivious retrieval from “huge” DB
of size N. [CGKS95,KO97,CMS99]
– Quality measure: Communication complexity.

• Our protocol: Õ(log(N))-communication.

– Trivial LB = log(N). We are nearly optimal!
– Previous best schemes [CMS99,L05,GR05,G09]

~log3(N).

New Ideas

New Ideas

• Re-linearization.

⇒ “Shallow” multiplicative homomorphism.

• (Dimension-)Modulus reduction.

⇒ Noise management for “deep” circuits.
⇒ Short ciphertexts as by-product.

Talk Outline

Talk Outline

• The LWE assumption.

• Re-linearization and modulus reduction.

• FHE using bootstrapping.

• (Leveled) FHE without bootstrapping.

 PIR protocol.

• Conclusion and open problems.

Learning With Errors (LWE) [R05]

Learning With Errors (LWE) [R05]

LWEn,q : For random secret s ∈ Zq
n, for any m=poly(n):

 sample random a1,…,am ∈ Zq
n;

 “small” noise e1,…,em ∈ ℰ (|ei| ≤ T << q).

 (a1 , b1 = 〈a1 , s〉 + e1) (a1 , u1)
 (a2 , b2 = 〈a2 , s〉 + e2) (a2 , u2)
 … …
 (am , bm = 〈am , s〉 + em) (am , um)

≅

Learning With Errors (LWE) [R05]

LWEn,q : For random secret s ∈ Zq
n, for any m=poly(n):

 sample random a1,…,am ∈ Zq
n;

 “small” noise e1,…,em ∈ ℰ (|ei| ≤ T << q).

 (a1 , b1 = 〈a1 , s〉 + e1) (a1 , u1)
 (a2 , b2 = 〈a2 , s〉 + e2) (a2 , u2)
 … …
 (am , bm = 〈am , s〉 + em) (am , um)

“noisy” random linear equation uniform in Zq

≅

Learning With Errors (LWE) [R05]

LWEn,q : For random secret s ∈ Zq
n, for any m=poly(n):

 sample random a1,…,am ∈ Zq
n;

 “small” noise e1,…,em ∈ ℰ (|ei| ≤ T << q).

 (a1 , b1 = 〈a1 , s〉 + e1) (a1 , u1)
 (a2 , b2 = 〈a2 , s〉 + e2) (a2 , u2)
 … …
 (am , bm = 〈am , s〉 + em) (am , um)

“noisy” random linear equation uniform in Zq

≅

Learning With Errors (LWE) [R05]

LWEn,q : For random secret s ∈ Zq
n, for any m=poly(n):

 sample random a1,…,am ∈ Zq
n;

 “small” noise e1,…,em ∈ ℰ (|ei| ≤ T << q).

 (a1 , b1 = 〈a1 , s〉 + e1) (a1 , u1)
 (a2 , b2 = 〈a2 , s〉 + e2) (a2 , u2)
 … …
 (am , bm = 〈am , s〉 + em) (am , um)

“noisy” random linear equation uniform in Zq

≅

X
ℰ n

“Hermite normal form”

Learning With Errors (LWE) [R05]

LWEn,q : For random secret s ∈ Zq
n, for any m=poly(n):

 sample random a1,…,am ∈ Zq
n;

 “small” noise e1,…,em ∈ ℰ (|ei| ≤ T << q).

 (a1 , b1 = 〈a1 , s〉 + e1) (a1 , u1)
 (a2 , b2 = 〈a2 , s〉 + e2) (a2 , u2)
 … …
 (am , bm = 〈am , s〉 + em) (am , um)

“noisy” random linear equation uniform in Zq

≅

X
ℰ n

“Hermite normal form”

Symmetric Encryption with LWE

Symmetric Encryption with LWE
(omitting public-key part)

Symmetric Encryption with LWE
• KeyGen:

– Sample random s∈ℰ n and set sk=s.

• Bit encryption Encs(m) :
– Sample random a∈Zq

n and noise e, output (a, b) ∈Zq
n ×Zq,

 where b = 〈a, s〉 + 2e + m ∈Zq.

– Semantic security by LWE: (a,b) ≅ (a, u)

 (odd modulus q ⇒ 2 is invertible in Zq)

• Decryption: Decs(a,b) = (b - 〈a, s〉) (mod 2).

– Correctness: b - 〈a, s〉 = b - ∑a[i]∙s[i] = m + 2e (over Zq).

 ⇒ decryption succeeds if e < q/4.

(omitting public-key part)

Symmetric Encryption with LWE
• KeyGen:

– Sample random s∈ℰ n and set sk=s.

• Bit encryption Encs(m) :
– Sample random a∈Zq

n and noise e, output (a, b) ∈Zq
n ×Zq,

 where b = 〈a, s〉 + 2e + m ∈Zq.

– Semantic security by LWE: (a,b) ≅ (a, u)

 (odd modulus q ⇒ 2 is invertible in Zq)

• Decryption: Decs(a,b) = (b - 〈a, s〉) (mod 2).

– Correctness: b - 〈a, s〉 = b - ∑a[i]∙s[i] = m + 2e (over Zq).

 ⇒ decryption succeeds if e < q/4.

(omitting public-key part)

Symmetric Encryption with LWE
• KeyGen:

– Sample random s∈ℰ n and set sk=s.

• Bit encryption Encs(m) :
– Sample random a∈Zq

n and noise e, output (a, b) ∈Zq
n ×Zq,

 where b = 〈a, s〉 + 2e + m ∈Zq.

– Semantic security by LWE: (a,b) ≅ (a, u)

 (odd modulus q ⇒ 2 is invertible in Zq)

• Decryption: Decs(a,b) = (b - 〈a, s〉) (mod 2).

– Correctness: b - 〈a, s〉 = b - ∑a[i]∙s[i] = m + 2e (over Zq).

 ⇒ decryption succeeds if e < q/4.

(omitting public-key part)

Additive Homomorphism

Additive Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Additive Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Add the ciphertexts: (aadd, badd) = (a + a', b+b')

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

 (b+b') - ∑(a[i] + a'[i]) ∙s[i] = (m+m') + 2(e+e')

⇒ Decs(aadd, badd) = (m+m')+2e'' (mod 2) = (m+m') (mod 2)

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Additive Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Add the ciphertexts: (aadd, badd) = (a + a', b+b')

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

 (b+b') - ∑(a[i] + a'[i]) ∙s[i] = (m+m') + 2(e+e')

⇒ Decs(aadd, badd) = (m+m')+2e'' (mod 2) = (m+m') (mod 2)

+

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Additive Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Add the ciphertexts: (aadd, badd) = (a + a', b+b')

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

 (b+b') - ∑(a[i] + a'[i]) ∙s[i] = (m+m') + 2(e+e')

⇒ Decs(aadd, badd) = (m+m')+2e'' (mod 2) = (m+m') (mod 2)

+

e''

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Multiplicative Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Multiplicative Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Multiply ciphertexts?

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

(b- ∑a[i] ∙s[i])∙(b' - ∑a'[i] ∙s[i]) = (m+2e)∙(m'+2e')

 h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm' + 2(2ee'+me'+m'e)

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Multiplicative Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Multiply ciphertexts?

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

(b- ∑a[i] ∙s[i])∙(b' - ∑a'[i] ∙s[i]) = (m+2e)∙(m'+2e')

 h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm' + 2(2ee'+me'+m'e)

×

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

Multiplicative Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Multiply ciphertexts?

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

(b- ∑a[i] ∙s[i])∙(b' - ∑a'[i] ∙s[i]) = (m+2e)∙(m'+2e')

 h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm' + 2(2ee'+me'+m'e)

×

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

e'' : |e''| ≈ |e|2 ≤ T2

Multiplicative Homomorphism
(a, b)

b - ∑a[i]∙s[i] = m + 2e

Multiply ciphertexts?

 b - ∑a[i]∙s[i] = m + 2e

 b' - ∑a'[i]∙s[i] = m' + 2e'

(b- ∑a[i] ∙s[i])∙(b' - ∑a'[i] ∙s[i]) = (m+2e)∙(m'+2e')

 h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm' + 2(2ee'+me'+m'e)

×

(a', b')

b' - ∑a'[i]∙s[i] = m' + 2e'

e'' : |e''| ≈ |e|2 ≤ T2

The coefficients hi, hi,j are computable from input
ciphertexts (a,b), (a',b').

What's the output ciphertext?

Multiplicative Homomorphism
What's the Ciphertext?

• Ciphertext = Coefficients {hi}, {hi,j} ?

– Decrypt with secret key s:

 h0+∑ hi s[i] + ∑ hi,j s[i]s[j] (mod 2)

 = mm'+2e'' (mod 2)
 = mm' (mod 2).

• Problem: Ciphertext contains ~n2 elements.

– Size blows up with number of multiplications.

Find a more compact representation?

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

Re-Linearization
h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

Re-Linearization

Find linear function of s that represents this quadratic func.

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

Re-Linearization

Find linear function of s that represents this quadratic func.
of new secret s'

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

Re-Linearization

Find linear function of s that represents this quadratic func.
of new secret s'

New KeyGen:

• Sample s,s'∈Zq
n and set sk = (s,s').

• Evaluation key evk : sample Ai,j , Ei,j

∀i,j. (Ai,j , Bi,j = 〈Ai,j , s'〉 + 2Ei,j + s[i]s[j])

∀i. (Ai , Bi = 〈Ai , s'〉 + 2Ei + s[i])

• We get: s[i]s[j] ≈ Bi,j - 〈Ai,j , s'〉

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

Re-Linearization

Find linear function of s that represents this quadratic func.
of new secret s'

New KeyGen:

• Sample s,s'∈Zq
n and set sk = (s,s').

• Evaluation key evk : sample Ai,j , Ei,j

∀i,j. (Ai,j , Bi,j = 〈Ai,j , s'〉 + 2Ei,j + s[i]s[j])

∀i. (Ai , Bi = 〈Ai , s'〉 + 2Ei + s[i])

• We get: s[i]s[j] ≈ Bi,j - 〈Ai,j , s'〉

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

LWE ⇒
Security still

holds.

Re-Linearization

Find linear function of s that represents this quadratic func.
of new secret s'

New KeyGen:

• Sample s,s'∈Zq
n and set sk = (s,s').

• Evaluation key evk : sample Ai,j , Ei,j

∀i,j. (Ai,j , Bi,j = 〈Ai,j , s'〉 + 2Ei,j + s[i]s[j])

∀i. (Ai , Bi = 〈Ai , s'〉 + 2Ei + s[i])

• We get: s[i]s[j] ≈ Bi,j - 〈Ai,j , s'〉

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

LWE ⇒
Security still

holds.

Quadratic function
(in s)

Linear function
(in s')

Re-Linearization

Find linear function of s that represents this quadratic func.
of new secret s'

New KeyGen:

• Sample s,s'∈Zq
n and set sk = (s,s').

• Evaluation key evk : sample Ai,j , Ei,j

∀i,j. (Ai,j , Bi,j = 〈Ai,j , s'〉 + 2Ei,j + s[i]s[j])

∀i. (Ai , Bi = 〈Ai , s'〉 + 2Ei + s[i])

• We get: s[i]s[j] ≈ Bi,j - 〈Ai,j , s'〉

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

LWE ⇒
Security still

holds.

Quadratic function
(in s)

Linear function
(in s')

Re-Linearization

Find linear function of s that represents this quadratic func.
of new secret s'

New KeyGen:

• Sample s,s'∈Zq
n and set sk = (s,s').

• Evaluation key evk : sample Ai,j , Ei,j

∀i,j. (Ai,j , Bi,j = 〈Ai,j , s'〉 + 2Ei,j + s[i]s[j])

∀i. (Ai , Bi = 〈Ai , s'〉 + 2Ei + s[i])

• We get: s[i]s[j] ≈ Bi,j - 〈Ai,j , s'〉

Plug back into quadratic equation:

h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) = mm'+2e'''

 Linear in s'.

h0+∑ hi s[i]+ ∑ hi,j s[i]s[j] = mm'+2e''

LWE ⇒
Security still

holds.

Quadratic function
(in s)

Linear function
(in s')

Re-Linearization
h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) = mm'+2e'''

Re-Linearization

Regrouping, we can now define (amult, bmult):

amult = ∑ hi Ai+ ∑ hi,j Ai,j ∈ Zq
n

bmult = h0+∑ hi Bi+ ∑ hi,j Bi,j ∈ Zq

Correctness:

Decs' (amult, bmult) = (bmult - 〈amult, s'〉) (mod 2)
 = (h0+∑ hi Bi+ ∑ hi,j Bi,j) - 〈 (∑ hi Ai+ ∑ hi,j Ai,j), s' 〉 (mod 2)
 = h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) (mod 2)
 = m⋅m' (mod 2)

h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) = mm'+2e'''

Re-Linearization
h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) = mm'+2e'''

Single multiplication accomplished!

For greater depth, repeat using new secrets s’’, s’’’…

Re-Linearization
h0+∑ hi (Bi - 〈Ai , s'〉) + ∑ hi,j (Bi,j - 〈Ai,j , s'〉) = mm'+2e'''

Problem: Noise amplitude grows from T to ≈T2.
(Actually, from nT to (nT)2.)

Single multiplication accomplished!

For greater depth, repeat using new secrets s’’, s’’’…

Modulus Reduction:
Reducing Noise Amplitude

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.
Can you believe that this actually works?

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.
Can you believe that this actually works?

(a, b) ∈ Zq
n x Zq (a*, b*) ∈ Z(q/nT)

n x Z(q/nT)
a*[i] = a[i] / (nT) ; b*=b / (nT)

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.
Can you believe that this actually works?

(a, b) ∈ Zq
n x Zq (a*, b*) ∈ Z(q/nT)

n x Z(q/nT)

Special rounding: Round so that LSB doesn’t change.

a*[i] = a[i] / (nT) ; b*=b / (nT)

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.
Can you believe that this actually works?

(a, b) ∈ Zq
n x Zq (a*, b*) ∈ Z(q/nT)

n x Z(q/nT)

Special rounding: Round so that LSB doesn’t change. Why?

a*[i] = a[i] / (nT) ; b*=b / (nT)

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.
Can you believe that this actually works?

(a, b) ∈ Zq
n x Zq (a*, b*) ∈ Z(q/nT)

n x Z(q/nT)

Special rounding: Round so that LSB doesn’t change. Why?

b* - ∑a*[i]∙s[i] (mod 2) = b - ∑a[i]∙s[i] (mod 2) = m

a*[i] = a[i] / (nT) ; b*=b / (nT)

Rounding guarantees correct decryption:

Modulus Reduction:
Reducing Noise Amplitude

Naïve approach: Divide everything by nT.
Can you believe that this actually works?

(a, b) ∈ Zq
n x Zq (a*, b*) ∈ Z(q/nT)

n x Z(q/nT)

Special rounding: Round so that LSB doesn’t change. Why?

b* - ∑a*[i]∙s[i] (mod 2) = b - ∑a[i]∙s[i] (mod 2) = m

a*[i] = a[i] / (nT) ; b*=b / (nT)

Rounding guarantees correct decryption:

Noise amplitude after modulus reduction:

(nT)2/(nT) + nT = O(nT)
scaled down

“original” noise
rounding

error

Re-linearization and Modulus
Reduction – Recap

Re-linearization and Modulus
Reduction – Recap

• Eval for mult. depth = 1.
• Modulus reduced: q ⇒ q/(nT).
• Noise amplitude at most nT.

Deeper Circuit? Just repeat!

• Mult. depth = d.
• Modulus reduced: q ⇒ q/(nT)d.
• Noise amplitude at most nT.

Re-linearization and Modulus
Reduction – Recap

• Eval for mult. depth = 1.
• Modulus reduced: q ⇒ q/(nT).
• Noise amplitude at most nT.

Deeper Circuit? Just repeat!

• Mult. depth = d.
• Modulus reduced: q ⇒ q/(nT)d.
• Noise amplitude at most nT.

Ciphertext decryptable if:

nT < (q/(nT)d)/4

⇒ q > 4(nT)d+1 = nO(d)

Can We Bootstrap?

Can We Bootstrap?
Need d-HE scheme with decryption depth < d.

Can We Bootstrap?
Need d-HE scheme with decryption depth < d.

Our decryption depth:

d = log(n)+ loglog(nT) = O(log(n))

Independent of q !

Can We Bootstrap?
Need d-HE scheme with decryption depth < d.

Our decryption depth:

d = log(n)+ loglog(nT) = O(log(n))

Independent of q !

We decrypt after the hom. eval., so q is
already reduced all the way down to O(nT).

Can We Bootstrap?
Need d-HE scheme with decryption depth < d.

Our decryption depth:

d = log(n)+ loglog(nT) = O(log(n))

Independent of q !

We decrypt after the hom. eval., so q is
already reduced all the way down to O(nT).

To bootstrap:

q = nO(d) = nO(log n)

Can We Bootstrap?
Need d-HE scheme with decryption depth < d.

Our decryption depth:

d = log(n)+ loglog(nT) = O(log(n))

Independent of q !

We decrypt after the hom. eval., so q is
already reduced all the way down to O(nT).

To bootstrap:

q = nO(d) = nO(log n)
Is this secure?

Can We Bootstrap?
Need d-HE scheme with decryption depth < d.

Our decryption depth:

d = log(n)+ loglog(nT) = O(log(n))

Independent of q !

We decrypt after the hom. eval., so q is
already reduced all the way down to O(nT).

To bootstrap:

q = nO(d) = nO(log n)
Is this secure?

FHE with Bootstrapping

• No “squashing” whatsoever.

• Ciphertext size: n log (nT) .
– Post-bootstrapping size “survives”.

• Decryption depth: O(log(n)).

• Security: LWEn,q=nO(log n)
⇒ quasy-poly apx. to short-vectors.

FHE with Bootstrapping

• No “squashing” whatsoever.

• Ciphertext size: n log (nT) .
– Post-bootstrapping size “survives”.

• Decryption depth: O(log(n)).

• Security: LWEn,q=nO(log n)
⇒ quasy-poly apx. to short-vectors.

Assumption is “too good”…

Can we get more features from a (somewhat) stronger assumption?

FHE with Bootstrapping

• No “squashing” whatsoever.

• Ciphertext size: n log (nT) .
– Post-bootstrapping size “survives”.

• Decryption depth: O(log(n)).

• Security: LWEn,q=nO(log n)
⇒ quasy-poly apx. to short-vectors.

Assumption is “too good”…

Can we get more features from a (somewhat) stronger assumption?

Yes…

(Leveled) FHE without Bootstrapping

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

Bigger q ⇒ deeper circuits.

So how big can q get (securely)?

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

Bigger q ⇒ deeper circuits.

So how big can q get (securely)?

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

Bigger q ⇒ deeper circuits.

So how big can q get (securely)?

Let’s look at it backwards:

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

Bigger q ⇒ deeper circuits.

So how big can q get (securely)?

Let’s look at it backwards:

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

Bigger q ⇒ deeper circuits.

So how big can q get (securely)?

Let’s look at it backwards:
Post-processing can

reduce ciphertext length.

(Leveled) FHE without Bootstrapping
Recall:

q = nO(d)

Bigger q ⇒ deeper circuits.

So how big can q get (securely)?

Let’s look at it backwards:

No bootstrapping whatsoever!

Post-processing can
reduce ciphertext length.

Talk Outline

• The LWE assumption.

• Re-linearization and modulus reduction.

• FHE using bootstrapping.

• (Leveled) FHE without bootstrapping.

 PIR protocol.

• Conclusion and open problems.

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

sk evk
eval. key

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

sk evk
eval. key

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

sk evk
eval. key

y = “Eval”(DB, “Enc”(x))

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

Dec(y)=DB[x]

sk evk
eval. key

y = “Eval”(DB, “Enc”(x))

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

Dec(y)=DB[x]

sk evk
eval. key

y = “Eval”(DB, “Enc”(x))
Correctness guarantee:

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

Dec(y)=DB[x]

sk evk
eval. key

y = “Eval”(DB, “Enc”(x))

Privacy guarantee:

”Enc”(x) ≅ “Enc”(0)

Correctness guarantee:

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

Dec(y)=DB[x]

sk evk
eval. key

y = “Eval”(DB, “Enc”(x))

Privacy guarantee:

”Enc”(x) ≅ “Enc”(0)

Correctness guarantee:

Communication complexity:
cc=|”Enc”(x)|+|y|

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

Dec(y)=DB[x]

sk evk
eval. key

y = “Eval”(DB, “Enc”(x))

Privacy guarantee:

”Enc”(x) ≅ “Enc”(0)

Correctness guarantee:

Communication complexity:
cc=|”Enc”(x)|+|y|

FHE ⇒ PIR
Use our FHE naïvely:

cc = n·log(nT)·log(N)≈Õ(log2N)

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

sk evk

y = “Eval”(DB, “Enc”(x))

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

“Enc”(x)

sk evk

y = “Eval”(DB, “Enc”(x))

Reducing comm. complexity:
• Enc(x) using different, more efficient, scheme.

• Hom. decrypt efficient ciphertext and use as before.

• Using known efficient schemes: cc = Õ(log N).

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

sk evk

y = “Eval”(DB, “Enc”(x))

Reducing comm. complexity:
• Enc(x) using different, more efficient, scheme.

• Hom. decrypt efficient ciphertext and use as before.

• Using known efficient schemes: cc = Õ(log N).

, sym Enc(sym),

Encsym(x)

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

sk evk

Reducing comm. complexity:
• Enc(x) using different, more efficient, scheme.

• Hom. decrypt efficient ciphertext and use as before.

• Using known efficient schemes: cc = Õ(log N).

, sym Enc(sym),

Encsym(x)

y

Single-Server PIR [CGKS95,KO97,CMS99]

Database
DB

|DB|=N ≈2n

Index
x∈[N]

sk evk

Reducing comm. complexity:
• Enc(x) using different, more efficient, scheme.

• Hom. decrypt efficient ciphertext and use as before.

• Using known efficient schemes: cc = Õ(log N).

, sym Enc(sym),

Encsym(x)

Encsym(x)+Enc(sym) ⇒ Enc(x)

y = Eval(DB, Enc(x))

y

Conclusion
• FHE is not so complicated anymore…

– No ideals.
– No squashing or sparse subset sum assumption.
– Efficiency! Short ciphertexts, keys are easy to

generate and are fairly unstructured.
– Can't lose: Don't care about homomorpism? Use our

scheme anyway – same efficiency and security.

• Private Information Retrieval.

– Don't pay more than Õ(log(N)).

Open Problems

• Remove circular security assumption.

• Go from quasi-polynomial to strictly
polynomial LWE modulus.

• Improve efficiency, possibly using ideals
[BGV11, LNV11, GHS11].

• New notions of security [BSW11].

Questions?

	Fully Homomorphic Encryption from LWE
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation
	Outsourcing Computation – Privately
	Outsourcing Computation – Privately
	Outsourcing Computation – Privately
	Outsourcing Computation – Privately
	Outsourcing Computation – Privately
	Fully Homomorphic Encryption (FHE)�[RAD78]
	Fully Homomorphic Encryption (FHE)�[RAD78]
	Fully Homomorphic Encryption (FHE)�[RAD78]
	Fully Homomorphic Encryption (FHE)�[RAD78]
	Fully Homomorphic Encryption (FHE)�[RAD78]
	Fully Homomorphic Encryption (FHE)�[RAD78]
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Add & Mult Are Universal�(a la [BGW88])
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Gentry's Breakthrough [G09,G10]�First Candidate FHE
	Since Gentry
	Q: Arbitrary Lattice?
	Q: Arbitrary Lattice?
	Q: Arbitrary Lattice?
	Q: Arbitrary Lattice?
	Q: Arbitrary Lattice?
	Q: Arbitrary Lattice?
	Q: No Squashing?
	Q: No Squashing?
	Q: No Squashing?
	Q: No Squashing?
	Slide Number 91
	The Real World
	The Real World
	The Real World
	The Real World
	Q: Circular Security?
	Q: Circular Security?
	Q: Circular Security?
	Q: Circular Security?
	Q: Circular Security?
	Our Results:�Fully Homomorphic Encryption
	Our Results:�Fully Homomorphic Encryption
	Our Results:�Fully Homomorphic Encryption
	Our Results:�Fully Homomorphic Encryption
	Our Results:�Fully Homomorphic Encryption
	Our Results:�Private Information Retrieval (PIR)
	New Ideas
	New Ideas
	New Ideas
	Talk Outline
	Talk Outline
	Talk Outline
	Talk Outline
	Talk Outline
	Talk Outline
	Talk Outline
	Learning With Errors (LWE) [R05]
	Learning With Errors (LWE) [R05]
	Learning With Errors (LWE) [R05]
	Learning With Errors (LWE) [R05]
	Learning With Errors (LWE) [R05]
	Learning With Errors (LWE) [R05]
	Symmetric Encryption with LWE
	Symmetric Encryption with LWE
	Symmetric Encryption with LWE
	Symmetric Encryption with LWE
	Symmetric Encryption with LWE
	Symmetric Encryption with LWE
	Symmetric Encryption with LWE
	Additive Homomorphism
	Additive Homomorphism
	Additive Homomorphism
	Additive Homomorphism
	Additive Homomorphism
	Additive Homomorphism
	Additive Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism
	Multiplicative Homomorphism�What's the Ciphertext?
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Re-Linearization
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Modulus Reduction:�Reducing Noise Amplitude
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Re-linearization and Modulus Reduction – Recap
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	Can We Bootstrap?
	FHE with Bootstrapping
	FHE with Bootstrapping
	FHE with Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	(Leveled) FHE without Bootstrapping
	Talk Outline
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Single-Server PIR [CGKS95,KO97,CMS99]
	Conclusion
	Open Problems
	Questions?

