Fully Homomorphic Encryption from LWE

Zvika Brakerski

(Stanford)

Based on joint works with:

Vinod Vaikuntanathan

(University of Toronto)

Craig Gentry (IBM)

Post-Quantum Webinar, November 2011

Outsourcing Computation

Outsourcing Computation

f(x)

Search results

What if my query is embarrassing?

What if I'm sending my medical records?

What if I'm sending my medical records?

Want Privacy!

Outsourcing Computation – Privately

Outsourcing Computation – Privately

Outsourcing Computation – Privately Knows nothing of x.

Outsourcing Computation – Privately Knows nothing of *x*. Enc(x)Function X У Dec(y) = f(x)

 $\operatorname{Enc}(x) \cong \operatorname{Enc}(0)$

"Fully" = Evaluate all (efficient) f

(a la [BGW88])

(a la [BGW88])

(a la [BGW88])

(+,x) over $GF(2) \equiv$ Boolean (XOR,AND) = Universal set

Arith. Circuit $(+, \times)$ over GF(2). $f(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3$ **X**₁ X_2 X_3 +X

(a la [BGW88])

 $(+,\times)$ over GF(2) = Boolean (XOR,AND) = Universal set

If we had:

- Eval(+, $\operatorname{Enc}(x_1)$, $\operatorname{Enc}(x_2)$) \Rightarrow $\operatorname{Enc}(x_1+x_2)$
- Eval(×, Enc(x_1), Enc(x_2)) \Rightarrow Enc($x_1 \cdot x_2$)

then we are done.

(a la [BGW88])

 $(+,\times)$ over GF(2) = Boolean (XOR,AND) = Universal set

If we had:

- Eval(+, $Enc(x_1)$, $Enc(x_2)$) \Rightarrow $Enc(x_1+x_2)$
- Eval(×, Enc(x_1), Enc(x_2)) \Rightarrow Enc($x_1 \cdot x_2$)

then we are done.

(a la [BGW88])

 $(+,\times)$ over GF(2) = Boolean (XOR,AND) = Universal set

If we had:

- Eval(+, $Enc(x_1)$, $Enc(x_2)$) \Rightarrow $Enc(x_1+x_2)$
- Eval(×, Enc(x_1), Enc(x_2)) \Rightarrow Enc($x_1 \cdot x_2$)

then we are done.

(a la [BGW88])

(+,×) over GF(2) ≡ Boolean (XOR,AND) = Universal set

If we had:

- Eval(+, $\operatorname{Enc}(x_1)$, $\operatorname{Enc}(x_2)$) \Rightarrow $\operatorname{Enc}(x_1+x_2)$
- Eval(×, Enc(x_1), Enc(x_2)) \Rightarrow Enc($x_1 \cdot x_2$)

then we are done.

Partial solutions:

- Only add [GM82,P99,R05,...].
- Only mult [G84,...].
- Add + single mult [BGN05,GHV10].
- Add + mult (w/ ciphertext blowup) [SYY99,GHV10,MGH10].

Bootstrapping Theorem [G09]: (Qualitative)

"Deep enough" HE \Rightarrow FHE

Bootstrapping Theorem [G09]: (Qualitative)

"Deep enough" HE \Rightarrow FHE

Deep enough = Deeper than decryption circuit

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

 \Rightarrow "leveled" FHE

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

evk grows with eval. depth ⇒ "leveled" FHE

evk grows with

eval. depth

 \Rightarrow "leveled" FHE

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

Eval for any depth *d* circuit (aka "somewhat" HE)

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

evk grows with eval. depth ⇒ "leveled" FHE

+ circular security \Rightarrow **FHE**

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

+ circular security \Rightarrow **FHE**

Gentry's construction:
Gentry's Breakthrough [G09,G10] First Candidate FHE

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

+ circular security \Rightarrow **FHE**

Gentry's construction:

Gentry's Breakthrough [G09,G10] First Candidate FHE

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

+ circular security \Rightarrow **FHE**

Gentry's construction:

Gentry's Breakthrough [G09,G10] First Candidate FHE

Bootstrapping Theorem [G09]:

d-HE + dec. depth < *d*

evk grows with eval. depth ⇒ "leveled" FHE

+ circular security \Rightarrow **FHE**

Gentry's construction:

Since Gentry

- Additional candidate FHE schemes:
 - [vDGHV10]: Approx. GCD + sparse subset sum (via squashing).
 - [BV11a]:
 - Ring-LWE + sparse subset sum (via squashing) / "sparse-ring-LWE".
 - Circular secure *d*-HE (not bootstrappable).
- Efficiency improvements of Gentry's scheme [SV10, SS10, GH11].

Useful but risky assumption...

Useful but risky assumption...

Base FHE on standard lattice assumptions?

Useful but risky assumption...

Base FHE on standard lattice assumptions?

(Are ideal assumptions inherent to FHE?)

Sparse subset-sum assumption and the squashing method:

- Average case assumption, fairly untested.
- Forcing solution (that works!) to "short blanket".

Sparse subset-sum assumption and the squashing method:

- Average case assumption, fairly untested.
- Forcing solution (that works!) to "short blanket".

Do without squashing and additional assumption?

Sparse subset-sum assumption and the squashing method:

- Average case assumption, fairly untested.
- Forcing solution (that works!) to "short blanket".

Do without squashing and additional assumption?

Concurrently [GH11]: Remove squashing under ideal lattice assumption (using arith. representation of dec. circuit).

People actually want to use these schemes...

People actually want to use these schemes...

In known schemes: Key generation and Eval are exhausting.

People actually want to use these schemes...

In known schemes: Key generation and Eval are exhausting.

Q: Implement FHE efficiently?

Q: Circular Security?

Q: Circular Security?

Two roads to bootstrapping:

Q: Circular Security?

Two roads to bootstrapping:

I. No circular assumption

evk grows with depth.

 \Rightarrow "leveled" FHE

Two roads to bootstrapping:

I. No circular assumption

evk grows with depth.

 \Rightarrow "leveled" FHE

II. Assume "circular security" Encryption of *sk* itself is secure. \Rightarrow *evk* remains short.

Short eval. key without additional assumption?

Short-vector is hard to approx in worst-case arbitrary lattice.

LWE ("learning with errors") assumption.

Short-vector is hard to approx in worst-case arbitrary lattice.

LWE ("learning with errors") assumption.

No squashing.

Direct *d*-HE with decryption depth << *d*.

Short-vector is hard to approx in worst-case arbitrary lattice.

LWE ("learning with errors") assumption.

No squashing.

Direct *d*-HE with decryption depth << *d*.

Efficiency improvement.

- Short ciphertext \Rightarrow efficient decryption (as efficient as non-hom. schemes).
- Trivial key generation: no structure required.

Short-vector is hard to approx in worst-case arbitrary lattice.

LWE ("learning with errors") assumption.

No squashing.

Direct *d*-HE with decryption depth << *d*.

Efficiency improvement.

- Short ciphertext \Rightarrow efficient decryption (as efficient as non-hom. schemes).
- Trivial key generation: no structure required.

Leveled FHE without bootstrapping.

• Conceptual contribution, although less efficient and worse parameters.

Our Results: Private Information Retrieval (PIR)

- PIR = Oblivious retrieval from "huge" DB of size N. [CGKS95,KO97,CMS99]
 Quality measure: Communication complexity.
- **Our protocol:** Õ(log(N))-communication.
 - Trivial LB = log(N). We are nearly optimal!
 - Previous best schemes [CMS99,L05,GR05,G09]
 ~log³(N).

New Ideas

• Re-linearization.

 \Rightarrow "Shallow" multiplicative homomorphism.

- (Dimension-)Modulus reduction.
 - \Rightarrow Noise management for "deep" circuits.
 - \Rightarrow Short ciphertexts as by-product.

Talk Outline

Talk Outline

- The LWE assumption.
- Re-linearization and modulus reduction.
- FHE using bootstrapping.
- (Leveled) FHE without bootstrapping.
- PIR protocol.
- Conclusion and open problems.

Learning With Errors (LWE) [R05]

Learning With Errors (LWE) [R05]

$$\begin{aligned} \mathsf{LWE}_{n,q}: & \text{For random secret } \mathbf{s} \in \mathbf{Z}_q^n, \text{ for any } m = \text{poly}(n): \\ & \text{sample random } \mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbf{Z}_q^n; \\ & \text{``small'' noise } \mathbf{e}_1, \dots, \mathbf{e}_m \in \mathcal{E}(|\mathbf{e}_i| \leq T << q). \end{aligned}$$

$$\begin{cases} \left(\begin{array}{c} \mathbf{a}_1, \ \mathbf{b}_1 = \langle \mathbf{a}_1, \ \mathbf{s} \rangle + \mathbf{e}_1 \\ \left(\begin{array}{c} \mathbf{a}_2, \ \mathbf{b}_2 = \langle \mathbf{a}_2, \ \mathbf{s} \rangle + \mathbf{e}_2 \\ \end{array} \right) \\ & \dots \\ & \left(\begin{array}{c} \mathbf{a}_m, \ \mathbf{b}_m = \langle \mathbf{a}_m, \ \mathbf{s} \rangle + \mathbf{e}_m \end{array} \right) \end{cases} \cong \begin{cases} \left(\begin{array}{c} \mathbf{a}_1, \ \mathbf{u}_1 \\ \left(\begin{array}{c} \mathbf{a}_2, \ \mathbf{u}_2 \\ \end{array} \right) \\ & \dots \\ & \left(\begin{array}{c} \mathbf{a}_m, \ \mathbf{u}_m \end{array} \right) \end{cases} \end{aligned}$$
Learning With Errors (LWE) [R05]

$$\begin{aligned} \mathsf{LWE}_{n,q} : & \text{For random secret } \mathbf{s} \in \mathbf{Z}_q^n, \text{ for any } m = \text{poly}(n): \\ & \text{sample random } \mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbf{Z}_q^n; \\ & \text{``small'' noise } e_1, \dots, e_m \in \mathcal{E}(|e_i| \leq T << q). \end{aligned}$$

$$\begin{cases} (\mathbf{a}_1, \mathbf{b}_1 = \langle \mathbf{a}_1, \mathbf{s} \rangle + e_1) \\ (\mathbf{a}_2, \mathbf{b}_2 = \langle \mathbf{a}_2, \mathbf{s} \rangle + e_2) \\ \dots \\ (\mathbf{a}_m, \mathbf{b}_m = \langle \mathbf{a}_m, \mathbf{s} \rangle + e_m) \end{cases} \cong \begin{cases} (\mathbf{a}_1, \mathbf{u}_1) \\ (\mathbf{a}_2, \mathbf{u}_2) \\ \dots \\ (\mathbf{a}_m, \mathbf{u}_m) \end{cases}$$

$$\cong \begin{cases} (\mathbf{a}_m, \mathbf{u}_m) \\ (\mathbf{a}_m, \mathbf{u}_m) \\ (\mathbf{a}_m, \mathbf{u}_m) \end{cases}$$

Learning With Errors (LWE) [R05]

$$\begin{aligned} \mathsf{LWE}_{n,q}: & \text{For random secret } \mathbf{s} \in \mathbf{Z}_q^n, \text{ for any } m = \text{poly}(n): \\ & \text{sample random } \mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbf{Z}_q^n; \\ & \text{``small'' noise } e_1, \dots, e_m \in \mathcal{E}(|e_i| \leq T << q). \end{aligned}$$

Learning With Errors (LWE) [R05]
"Hermite normal form"

$$\mathcal{E}^n$$

 \mathcal{E}^n
 \mathcal{E}^n

Worst-Case Hardness (quantum [R05] / classical [P09]): Solve LWE \Rightarrow (q/T)-apx. for short-vector problems in *worst-case* lattices. (Best known apx. factor: 2ⁿ in poly time; or 2^{\sqrt{n}} in 2^{\sqrt{n}} time.)

Symmetric Encryption with LWE

Symmetric Encryption with LWE (omitting public-key part)

Symmetric Encryption with LWE (omitting public-key part)

- KeyGen:
 - Sample random $\mathbf{s} \in \mathcal{E}^n$ and set $sk = \mathbf{s}$.
- **Bit encryption** Enc_s(*m*) :
 - Sample random $\mathbf{a} \in \mathbf{Z}_q^n$ and noise e, output $(\mathbf{a}, b) \in \mathbf{Z}_q^n \times \mathbf{Z}_q$,

where $b = \langle \boldsymbol{a}, \boldsymbol{s} \rangle + 2\boldsymbol{e} + \boldsymbol{m} \in \boldsymbol{Z}_q$.

- Semantic security by LWE: $(a, b) \cong (a, u)$

(odd modulus $q \Rightarrow 2$ is invertible in Z_q)

• **Decryption:** $Dec_s(a, b) = (b - \langle a, s \rangle) \pmod{2}$.

- **Correctness:** $b - \langle a, s \rangle = b - \sum a[i] \cdot s[i] = m + 2e$ (over Z_q). \Rightarrow decryption succeeds if e < q/4.

Symmetric Encryption with LWE (omitting public-key part)

- KeyGen:
 - Sample random $\mathbf{s} \in \mathcal{E}^n$ and set $sk = \mathbf{s}$.
- Bit encryption Enc_s(*m*) :
 - Sample random $\mathbf{a} \in \mathbf{Z}_q^n$ and noise e, output $(\mathbf{a}, b) \in \mathbf{Z}_q^n \times \mathbf{Z}_q$,

where $b = \langle \boldsymbol{a}, \boldsymbol{s} \rangle + 2\boldsymbol{e} + \boldsymbol{m} \in \boldsymbol{Z}_q$.

- Semantic security by LWE: $(a, b) \cong (a, u)$ (odd modulus $q \Rightarrow 2$ is invertible in Z_q)

• **Decryption:** $Dec_s(a, b) = (b - \langle a, s \rangle) \pmod{2}$.

- **Correctness:** $b - \langle a, s \rangle = b - \sum a[i] \cdot s[i] = m + 2e$ (over Z_q). \Rightarrow decryption succeeds if e < q/4.

Symmetric Encryption with LWE (omitting public-key part)

- KeyGen:
 - Sample random $\mathbf{s} \in \mathcal{E}^n$ and set $sk = \mathbf{s}$.
- Bit encryption Enc_s(m) :
 - Sample random $\mathbf{a} \in \mathbf{Z}_q^n$ and noise e, output $(\mathbf{a}, b) \in \mathbf{Z}_q^n \times \mathbf{Z}_q$,

where $b = \langle \boldsymbol{a}, \boldsymbol{s} \rangle + 2\boldsymbol{e} + \boldsymbol{m} \in \boldsymbol{Z}_q$.

- Semantic security by LWE: $(a, b) \cong (a, u)$ (odd modulus $q \Rightarrow 2$ is invertible in Z_q)

• **Decryption:** $Dec_s(a, b) = (b - \langle a, s \rangle) \pmod{2}$.

- **Correctness:** $b - \langle a, s \rangle = b - \sum a[i] \cdot s[i] = m + 2e$ (over Z_q). \Rightarrow decryption succeeds if e < q/4.

Additive Homomorphism

Add the ciphertexts: $(a_{add}, b_{add}) = (a + a', b + b')$

$$b - \sum a[i] \cdot s[i] = m + 2e$$

$$b' - \sum a'[i] \cdot s[i] = m' + 2e'$$

$$(b+b') - \sum (a[i] + a'[i]) \cdot s[i] = (m+m') + 2(e+e')$$

 $\Rightarrow \text{Dec}_{s}(\boldsymbol{a}_{\text{add}}, b_{\text{add}}) = (m+m')+2e'' \pmod{2} = (m+m') \pmod{2}$

Add the ciphertexts: $(a_{add}, b_{add}) = (a + a', b + b')$

$$b - \sum a[i] \cdot s[i] = m + 2e$$

$$b' - \sum a'[i] \cdot s[i] = m' + 2e'$$

$$(b+b') - \sum (a[i] + a'[i]) \cdot s[i] = (m+m') + 2(e+e')$$

 $\Rightarrow \text{Dec}_{s}(\boldsymbol{a}_{\text{add}}, b_{\text{add}}) = (m+m')+2e'' \pmod{2} = (m+m') \pmod{2}$

Add the ciphertexts: $(a_{add}, b_{add}) = (a + a', b + b')$

$$b - \sum a[i] \cdot s[i] = m + 2e$$

$$b' - \sum a'[i] \cdot s[i] = m' + 2e'$$

$$(b+b') - \sum (a[i] + a'[i]) \cdot s[i] = (m+m') + 2(e+e')$$

$$e''$$

 $\Rightarrow \mathsf{Dec}_{s}(\mathbf{a}_{\mathrm{add}}, b_{\mathrm{add}}) = (m+m')+2e'' \pmod{2} = (m+m') \pmod{2}$

Multiply ciphertexts?

 $b - \sum a[i] \cdot s[i] = m + 2e$ $b' - \sum a'[i] \cdot s[i] = m' + 2e'$ $(b - \sum a[i] \cdot s[i]) \cdot (b' - \sum a'[i] \cdot s[i]) = (m + 2e) \cdot (m' + 2e')$ $h_0 + \sum h_i \, s[i] + \sum h_{i,j} \, s[i] s[j] = mm' + 2(2ee' + me' + m'e)$

Multiply ciphertexts?

$$b - \sum a[i] \cdot s[i] = m + 2e$$

$$\times \qquad b' - \sum a'[i] \cdot s[i] = m' + 2e'$$

$$(b - \sum a[i] \cdot s[i]) \cdot (b' - \sum a'[i] \cdot s[i]) = (m + 2e) \cdot (m' + 2e')$$

$$h_0 + \sum h_i \cdot s[i] + \sum h_{i,j} \cdot s[i] \cdot s[j] = mm' + 2(2ee' + me' + m'e)$$

Multiply ciphertexts?

$$b - \sum a[i] \cdot s[i] = m + 2e$$

$$\times b' - \sum a'[i] \cdot s[i] = m' + 2e'$$

$$(b - \sum a[i] \cdot s[i]) \cdot (b' - \sum a'[i] \cdot s[i]) = (m + 2e) \cdot (m' + 2e')$$

$$h_0 + \sum h_i s[i] + \sum h_{i,j} s[i] s[j] = mm' + 2(2ee' + me' + m'e)$$

$$e'' : |e''| \approx |e|^2 \le T^2$$

Multiply ciphertexts?

What's the output ciphertext?

Multiplicative Homomorphism What's the Ciphertext? $h_0+\sum h_i s[i]+\sum h_{i,i} s[i]s[j] = mm'+2e''$

- Ciphertext = Coefficients {h_i}, {h_{i,i}} ?
 - Decrypt with secret key s:

 $h_0 + \sum h_i \, s[i] + \sum h_{i,i} \, s[i] s[j] \pmod{2}$

- $= mm'+2e'' \pmod{2}$
- = *mm*′ (mod 2).
- **Problem:** Ciphertext contains $\sim n^2$ elements.
 - Size blows up with number of multiplications.

Find a more compact representation?

 $h_0 + \sum h_i \operatorname{s[i]} + \sum h_{i,j} \operatorname{s[i]} \operatorname{s[j]} = mm' + 2e''$

 $h_0 + \sum h_i \, s[i] + \sum h_{i,j} \, s[i] s[j] = mm' + 2e''$

Find linear function of **s** that represents this quadratic func.

 $h_0 + \sum h_i \, s[i] + \sum h_{i,j} \, s[i] s[j] = mm' + 2e''$

<u>of new secret s'</u> Find linear function of s that represents this quadratic func.

 $h_0 + \sum h_i \operatorname{s[i]} + \sum h_{i,j} \operatorname{s[i]} = mm' + 2e''$

of new secret s'

Find linear function -of s that represents this quadratic func.

New KeyGen:

- Sample $s, s' \in \mathbb{Z}_q^n$ and set sk = (s, s').
- Evaluation key evk : sample $A_{i,j}$, $E_{i,j}$

 $\forall i,j. \quad (\mathbf{A}_{i,j}, B_{i,j} = \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle + 2E_{i,j} + s[i]s[j])$ $\forall i. \quad (\mathbf{A}_i, B_i = \langle \mathbf{A}_i, \mathbf{s'} \rangle + 2E_i + s[i])$

• We get: $S[i]S[j] \approx B_{i,j} - \langle A_{i,j}, S \rangle$

 $h_0 + \sum h_i \, s[i] + \sum h_{i,j} \, s[i] s[j] = mm' + 2e''$

of new secret s'

Find linear function of s that represents this quadratic func.

New KeyGen:

- Sample $s, s' \in \mathbb{Z}_q^n$ and set sk = (s, s').
- Evaluation key evk: sample $A_{i,j}$, $E_{i,j}$

$$\forall i,j. \quad (\mathbf{A}_{i,j}, B_{i,j} = \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle + 2E_{i,j} + S[i]S[j])$$

$$\forall i. \quad (\mathbf{A}_i, B_i = \langle \mathbf{A}_i, \mathbf{s'} \rangle + 2E_i + S[i])$$

LWE ⇒ Security still holds.

• We get: $S[i]S[j] \approx B_{i,j} - \langle A_{i,j}, S' \rangle$

 $h_0 + \sum h_i \, s[i] + \sum h_{i,j} \, s[i] s[j] = mm' + 2e''$

of new secret s'

Find linear function -of s that represents this quadratic func.

New KeyGen:

- Sample $s, s' \in \mathbb{Z}_q^n$ and set sk = (s, s').
- Evaluation key evk : sample $A_{i,j}$, $E_{i,j}$

$$\forall i,j. \quad (\mathbf{A}_{i,j}, B_{i,j} = \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle + 2E_{i,j} + S[i]S[j])$$

$$\forall i. \quad (\mathbf{A}_i, B_i = \langle \mathbf{A}_i, \mathbf{s'} \rangle + 2E_i + S[i])$$

LWE ⇒ Security still holds.

• We get: $\underline{S[i]S[j]} \approx \underbrace{B_{i,j} - \langle A_{i,j}, s' \rangle}_{Quadratic function (in s)}$ Linear function (in s')

 $h_0 + \sum h_i \operatorname{s[i]} + \sum h_{i,j} \operatorname{s[i]} = mm' + 2e''$

of new secret s'

Find linear function -of s that represents this quadratic func.

New KeyGen:

- Sample $s, s' \in \mathbb{Z}_q^n$ and set sk = (s, s').
- Evaluation key evk : sample $A_{i,j}$, $E_{i,j}$

$$\forall i,j. \quad (\mathbf{A}_{i,j}, B_{i,j} = \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle + 2E_{i,j} + s[i]s[j])$$

$$\forall i. \quad (\mathbf{A}_i, B_i = \langle \mathbf{A}_i, \mathbf{s'} \rangle + 2E_i + s[i])$$

LWE ⇒ Security still holds.

 $h_0 + \sum h_i \operatorname{s[i]} + \sum h_{i,j} \operatorname{s[i]} = mm' + 2e''$

Plug back into quadratic equation:

$$\underbrace{h_0 + \sum h_i (B_i - \langle \mathbf{A}_i, \mathbf{s'} \rangle) + \sum h_{i,j} (B_{i,j} - \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle)}_{\text{Linear in } \mathbf{s'}} = mm' + 2e'''$$

c func.

• Sample $s, s' \in \mathbb{Z}_q^n$ and set sk = (s, s').

1

Nev

• Evaluation key *evk* : sample $A_{i,j}$, $E_{i,j}$

$$\forall i,j. \quad (\mathbf{A}_{i,j}, B_{i,j} = \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle + 2E_{i,j} + s[i]s[j])$$

$$\forall i. \quad (\mathbf{A}_i, B_i = \langle \mathbf{A}_i, \mathbf{s'} \rangle + 2E_i + s[i])$$

LWE ⇒ Security still holds.

Re-Linearization $h_0+\sum h_i (B_i - \langle \mathbf{A}_i, \mathbf{s'} \rangle) + \sum h_{i,j} (B_{i,j} - \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle) = mm'+2e'''$

 $h_0 + \sum h_i (B_i - \langle \mathbf{A}_i, \mathbf{s'} \rangle) + \sum h_{i,j} (B_{i,j} - \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle) = mm' + 2e'''$

Regrouping, we can now define (a_{mult}, b_{mult}) :

$$\boldsymbol{a}_{\text{mult}} = \sum h_i \, \boldsymbol{A}_i + \sum h_{i,j} \, \boldsymbol{A}_{i,j} \in \boldsymbol{Z}_q^n$$
$$\boldsymbol{b}_{\text{mult}} = h_0 + \sum h_i \, \boldsymbol{B}_i + \sum h_{i,j} \, \boldsymbol{B}_{i,j} \in \boldsymbol{Z}_q$$

Correctness:

$$Dec_{s'}(\boldsymbol{a}_{mult}, b_{mult}) = (b_{mult} - \langle \boldsymbol{a}_{mult}, \mathbf{s'} \rangle) \pmod{2}$$

= $(h_0 + \sum h_i B_i + \sum h_{i,j} B_{i,j}) - \langle (\sum h_i A_i + \sum h_{i,j} A_{i,j}), \mathbf{s'} \rangle \pmod{2}$
= $h_0 + \sum h_i (B_i - \langle A_i, \mathbf{s'} \rangle) + \sum h_{i,j} (B_{i,j} - \langle A_{i,j}, \mathbf{s'} \rangle) \pmod{2}$
= $m \cdot m' \pmod{2}$

Re-Linearization $h_0+\sum h_i (B_i - \langle \mathbf{A}_i, \mathbf{s'} \rangle) + \sum h_{i,j} (B_{i,j} - \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle) = mm'+2e'''$

Single multiplication accomplished!

For greater depth, repeat using new secrets s", s""...

Re-Linearization $h_0+\sum h_i (B_i - \langle \mathbf{A}_i, \mathbf{s'} \rangle) + \sum h_{i,j} (B_{i,j} - \langle \mathbf{A}_{i,j}, \mathbf{s'} \rangle) = mm'+2e'''$

Single multiplication accomplished!

For greater depth, repeat using new secrets s", s"...

Problem: Noise amplitude grows from T to $\approx T^2$. (Actually, from nT to $(nT)^2$.)

Naïve approach: Divide everything by *nT*.

Naïve approach: Divide everything by *nT*.

Can you believe that this actually works?

Naïve approach: Divide everything by *nT*.

Can you believe that this actually works?

 $(a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ $(a^*, b^*) \in \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n$ $a^*[i] = a[i]/(nT); b^*=b/(nT)$
Naïve approach: Divide everything by *nT*.

Can you believe that this actually works?

 $(a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ $(a^*, b^*) \in \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n$ $a^*[i] = a[i]/(nT); b^*=b/(nT)$

Special rounding: Round so that LSB doesn't change.

Naïve approach: Divide everything by *nT*.

Can you believe that this actually works?

 $(a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ $(a^*, b^*) \in \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n$ $a^*[i] = a[i]/(nT); b^*=b/(nT)$

Special rounding: Round so that LSB doesn't change. Why?

Naïve approach: Divide everything by *nT*.

Can you believe that this actually works?

 $(a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ $(a^*, b^*) \in \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n$

Special rounding: Round so that LSB doesn't change. Why?

Rounding guarantees correct decryption:

 $b^* - \sum a^*[i] \cdot s[i] \pmod{2} = b - \sum a[i] \cdot s[i] \pmod{2} = m$

Naïve approach: Divide everything by *nT*.

Can you believe that this actually works?

 $(a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ $(a^*, b^*) \in \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n \times \mathbb{Z}_{(q/nT)}^n$

Special rounding: Round so that LSB doesn't change. Why?

Rounding guarantees correct decryption:

 $b^* - \sum a^*[i] \cdot s[i] \pmod{2} = b - \sum a[i] \cdot s[i] \pmod{2} = m$

Noise amplitude after modulus reduction:

$$(nT)^2/(nT)$$
 + nT = $O(nT)$
scaled down rounding
"original" noise error

Re-linearization and Modulus Reduction – Recap

Re-linearization and Modulus Reduction – Recap

- Eval for mult. depth = 1.
- Modulus reduced: $q \Rightarrow q/(nT)$.
- Noise amplitude at most *nT*.

Deeper Circuit? Just repeat!

- Mult. depth = d.
- Modulus reduced: $q \Rightarrow q/(nT)^d$.
- Noise amplitude at most *nT*.

Re-linearization and Modulus Reduction – Recap

- Eval for mult. depth = 1.
- Modulus reduced: $q \Rightarrow q/(nT)$.
- Noise amplitude at most *nT*.

Deeper Circuit? Just repeat!

- Mult. depth = d.
 Modulus reduced: $q \Rightarrow q/(nT)^d$.
 Noise amplitude at most nT.

Need *d*-HE scheme with decryption depth < *d*.

Need *d*-HE scheme with decryption depth < *d*.

Our decryption depth:

 $d = \log(n) + \log\log(nT) = O(\log(n))$

Independent of q!

Need *d*-HE scheme with decryption depth < *d*.

Our decryption depth:

 $d = \log(n) + \log\log(nT) = O(\log(n))$

Independent of q!

We decrypt **after** the hom. eval., so q is already reduced all the way down to O(nT).

Need *d*-HE scheme with decryption depth < *d*.

Our decryption depth:

 $d = \log(n) + \log\log(nT) = O(\log(n))$

Independent of q!

We decrypt **after** the hom. eval., so q is already reduced all the way down to O(nT).

To bootstrap:

 $q = n^{O(d)} = n^{O(\log n)}$

Need *d*-HE scheme with decryption depth < d.

Our decryption depth:

$$d = \log(n) + \log\log(nT) = O(\log(n))$$

Independent of q!

We decrypt **after** the hom. eval., so q is already reduced all the way down to O(nT).

To bootstrap:

$$q = n^{O(d)} = n^{O(\log n)}$$

Need *d*-HE scheme with decryption depth < d.

Our decryption depth:

$$d = \log(n) + \log\log(nT) = O(\log(n))$$

Independent of q!

Is this secure?

We decrypt **after** the hom. eval., so q is already reduced all the way down to O(nT).

Very much so! As hard as quasi-poly apx.

to short vectors in arbitrary lattices!

(Not known even in time $2^{n^{1-\epsilon}}$.)

To bootstrap:

$$q = n^{O(d)} = n^{O(\log n)}$$

FHE with Bootstrapping

- No "squashing" whatsoever.
- Ciphertext size: $n \log(nT)$.
 - Post-bootstrapping size "survives".
- Decryption depth: O(log(n)).
- Security: **LWE**_{*n*,*q*= $n^{O(log n)}$ \Rightarrow quasy-poly apx. to short-vectors.}

FHE with Bootstrapping

- No "squashing" whatsoever.
- Ciphertext size: n log (nT).
 - Post-bootstrapping size "survives".
- Decryption depth: O(log(n)).

• Security: $LWE_{n,q=n^{O(log n)}}$ \Rightarrow quasy-poly apx. to short-vectors.

Assumption is "too good"...

Can we get more features from a (somewhat) stronger assumption?

FHE with Bootstrapping

- No "squashing" whatsoever.
- Ciphertext size: n log (nT).
 - Post-bootstrapping size "survives".
- Decryption depth: O(log(n)).

Assumption is "too good"...

Can we get more features from a (somewhat) stronger assumption?

Recall:

$$q = n^{O(d)}$$

Recall:

$$q = n^{O(d)}$$

Bigger $q \Rightarrow$ deeper circuits.

So how big can q get (securely)?

Recall:

Bigger $q \Rightarrow$ deeper circuits.

So how big can q get (securely)?

 $q = n^{O(d)}$

Best known attacks run in time $\sim 2^{\Omega(n/\log q)}$

 $\Rightarrow q = 2^{\sqrt{n}} \text{ is fairly safe}$ $\Rightarrow d = \widetilde{\Omega}(\sqrt{n})$

Recall:

Bigger $q \Rightarrow$ deeper circuits.

So how big can q get (securely)?

 $q = n^{O(d)}$

Best known attacks run in time $\sim 2^{\Omega(n/\log q)}$

 $\Rightarrow q = 2^{\sqrt{n}} \text{ is fairly safe}$ $\Rightarrow d = \widetilde{\Omega}(\sqrt{n})$

Let's look at it backwards:

Recall:

Bigger $q \Rightarrow$ deeper circuits.

So how big can q get (securely)?

 $q = n^{O(d)}$

Best known attacks run in time $\sim 2^{\Omega(n/\log q)}$

 $\Rightarrow q = 2^{\sqrt{n}} \text{ is fairly safe}$ $\Rightarrow d = \widetilde{\Omega}(\sqrt{n})$

Let's look at it backwards:

 $\forall d$, set $n \approx d^2$ and obtain *d*-HE scheme with ciphertext length $n \log(nT) \approx d^2$.

Recall:

Bigger $q \Rightarrow$ deeper circuits.

So how big can q get (securely)?

 $q = n^{O(d)}$

Best known attacks run in time $\sim 2^{\Omega(n/\log q)}$

 $\Rightarrow q = 2^{\sqrt{n}} \text{ is fairly safe}$ $\Rightarrow d = \widetilde{\Omega}(\sqrt{n})$

Let's look at it backwards:

Post-processing can reduce ciphertext length.

 $\forall d$, set $n \approx d^2$ and obtain d-HE scheme with ciphertext length $n \log(nT) \approx d^2$.

Recall:

Bigger $q \Rightarrow$ deeper circuits.

So how big can q get (securely)?

 $q = n^{O(d)}$

Best known attacks run in time $\sim 2^{\Omega(n/\log q)}$

 $\Rightarrow q = 2^{\sqrt{n}} \text{ is fairly safe}$ $\Rightarrow d = \widetilde{\Omega}(\sqrt{n})$

Let's look at it backwards:

Post-processing can reduce ciphertext length.

 $\forall d$, set $n \approx d^2$ and obtain *d*-HE scheme with ciphertext length $n \log(nT) \approx d^2$.

No bootstrapping whatsoever!

Talk Outline

- The LWE assumption.
- Re-linearization and modulus reduction.
- FHE using bootstrapping.
- (Leveled) FHE without bootstrapping.
- PIR protocol.
- Conclusion and open problems.

Single-Server PIR [CGKS95,KO97,CMS99]

Single-Server PIR [CGKS95,KO97,CMS99]

sk

Single-Server PIR [CGKS95,KO97,CMS99]

Single-Server PIR [CGKS95,KO97,CMS99] sk $\stackrel{(Enc"(x))}{=} \stackrel{(Enc"(x))}{=} \stackrel$

Single-Server PIR [CGKS95,KO97,CMS99] evk sk eval. key "Enc"(*x*) Database Index DB $x \in [N]$ y =*"*Eval"(*DB*, "Enc"(*x*)) *|DB|=N* ≈2ⁿ Dec(y) = DB[x]

Single-Server PIR [CGKS95,KO97,CMS99] evk sk eval. key "Enc"(*x*) Database Index DB $x \in [N]$ y = "Eval" (**DB**, "Enc"(x)) *|DB|=N*≈2ⁿ Correctness guarantee: Dec(y) = DB[x]

Single-Server PIR [CGKS95,KO97,CMS99] evk sk eval. key "Enc"(*x*) Database Index DB $X \in [N]$ y = "Eval" (**DB**, "Enc"(x)) *|DB|=N* ≈2ⁿ Correctness guarantee: Dec(y) = DB[x]Privacy guarantee: $^{"}Enc"(x) \cong ^{"}Enc"(0)$

Single-Server PIR [CGKS95,KO97,CMS99] evk sk eval. key "Enc"(*x*) Database Index DB $X \in [N]$ y ="Eval"(**DB**, "Enc"(x)) *|DB|=N* ≈2ⁿ Correctness guarantee: Dec(y) = DB[x]Privacy guarantee:

 $\operatorname{"Enc"}(x) \cong \operatorname{"Enc"}(0)$

Communication complexity: CC = |"Enc"(x)| + |y|

Single-Server PIR [CGKS95,KO97,CMS99] evk sk eval. key "Enc"(*x*) Database Index DB $X \in [N]$ y ="Eval"(**DB**, "Enc"(x)) *|DB|=N* ≈2ⁿ Correctness guarantee: Dec(y) = DB[x]Privacy guarantee: $FHE \Rightarrow PIR$ $"Enc"(x) \cong "Enc"(0)$ Use our FHE naïvely: Communication complexity: $cc = n \cdot \log(nT) \cdot \log(N) \approx \tilde{O}(\log^2 N)$ cc = |"Enc"(x)| + |y|

Reducing comm. complexity:

- Enc(*x*) using different, more efficient, scheme.
- Hom. decrypt efficient ciphertext and use as before.
- Using known efficient schemes: $cc = \tilde{O}(\log N)$.

Reducing comm. complexity:

- Enc(*x*) using different, more efficient, scheme.
- Hom. decrypt efficient ciphertext and use as before.
- Using known efficient schemes: $cc = \tilde{O}(\log N)$.

Reducing comm. complexity:

- Enc(*x*) using different, more efficient, scheme.
- Hom. decrypt efficient ciphertext and use as before.
- Using known efficient schemes: $cc = \tilde{O}(\log N)$.

- Enc(x) using different, more efficient, scheme.
- Hom. decrypt efficient ciphertext and use as before.
- Using known efficient schemes: $cc = \tilde{O}(\log N)$.

Conclusion

• FHE is not so complicated anymore...

- No ideals.
- No squashing or sparse subset sum assumption.
- Efficiency! Short ciphertexts, keys are easy to generate and are fairly unstructured.
- Can't lose: Don't care about homomorpism? Use our scheme anyway same efficiency and security.
- Private Information Retrieval.
 - Don't pay more than $\tilde{O}(\log(N))$.

Open Problems

- Remove circular security assumption.
- Go from quasi-polynomial to strictly polynomial LWE modulus.
- Improve efficiency, possibly using ideals [BGV11, LNV11, GHS11].
- New notions of security [BSW11].

Questions?

