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MCELIECE’s Cryptosystem [R.J. MCELIECE, 1978]

One of the oldest public-key cryptosystems
based on coding theory

Principle is to mask a structured code in such a way that it
looks like random

Trapdoor = H t(x ,y) [parity-check matrix of a
Goppa/alternant code Gs]
Public key = Random basis G of Ker

(
H t(x ,y)

)
∩ Fn

q



Generation of (pk,sk)

1 Choose a generator matrix Gs of a Goppa (or alternant)
code Cs randomly chosen

2 Pick at random:
n × n permutation matrix P
k × k non-singular matrix S

3 Compute G = S ×Gs × P
4 Output

pk = (G, t) and sk = (S,Gs,P)



Encrypt/Decrypt

c ∈ Fn
2 ← Encrypt(m ∈ Fk

2)
1 Draw at random e ∈ Fn

2 of Hamming weight at most t
2 Output c = m ×G ⊕ e

m′ ∈ Fk
2 ← Decrypt(c′ ∈ Fn

2)

1 Let γGs : Fn
2 → Fk

2 be a decoding algorithm associated to Gs

2 Compute z = c′ × P−1 // z = (m × S ×Gs)⊕ (e × P−1)
3 Compute y = γGs(z) // y = m × S
4 Output m′ = y × S−1 // m′ = m



Security of McEliece – Message-recovery

Related to the difficulty of inverting Encrypt:

c  (m,e) such that c = m ×G ⊕ e.

Given (n, k , t) and a random k × n matrix G, we set:

fG,t : Fk
2 × Bn(0, t) −→ Fn

2
(x ,e) 7−→ m ×G ⊕ e

where Bn(0, t) =
{

z ∈ Fn
2 : wt(z) ≤ t

}
.

Inverting fG,t is NP-Hard (BERLEKAMP - MCELIECE - VAN

TILBORG ’78)
Best algorithms are based on Information Set Decoding

MCELIECE (’78), LEE - BRICKELL (’88), LEON (’88), STERN (’93), . . .

Binary codes : CANTEAUT-CHABAUD (’98), SENDRIER-FINIASZ’08, BERNSTEIN
- LANGE - PETERS (’08,’11), MAY - MEURER - THOMAE (’11) . . .



Security of McEliece – Key-recovery (I)

Related to the difficulty of extracting the secret matrices:

G  (S,Gs,P) such that G = S ×Gs × P.

Finding the (S,P) is not hard in practice if Gs is known
(SENDRIER ’00)
No real structural attack against McEliece’s scheme . . .

Goppa Code Distinguishing (GD) [COURTOIS, FINIASZ, AND

SENDRIER, 2001]
Let G = S×Gs ×P be the public matrix of McEliece’s scheme.

GD is the problem of distinguishing G from a random
matrix of the same type.



Security of McEliece – Key-recovery (II)

Goppa Code Distinguishing (GD) [CFS’01]

Let G = S×Gs ×P be the public matrix of McEliece’s scheme.
GD is the problem of distinguishing G from a random
matrix of the same form.

standard assumption for proving the security (NOJIMA,
IMAI, KOBARA, MOROZOV, SENDRIER, FINAISZ, DALLOT,
VERGNAUT, VÉRON, . . .

H. Dinh, C. Moore, and A. Russell.
“The McEliece Cryptosystem Resists Quantum Fourier
Sampling Attacks."
Crypto’11.
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Alternant Codes

Consider two fields Fq and Fqm with q = 2s (s ≥ 1) and m ≥ 1
x = (x0, . . . , xn−1) ∈ Fn

qm such that xi 6= xj , if i 6= j .
y = (y0, . . . , yn−1) ∈ Fn

qm with yi 6= 0.
For any t < n, we set:

H t(x ,y) =


y0 y1 · · · yn−1
y0x0 y1x1 · · · yn−1xn−1
...

...
...

y0x t−1
0 y1x t−1

1 · · · yn−1x t−1
n−1

 .

Definition

An alternant code At(x ,y) is the kernel of H t(x ,y) in Fn
q, i.e.

v ∈ At(x ,y) ⇐⇒ v ∈ Fn
q and H t(x ,y) vT = 0.

Can be efficiently decoded if x ,y are known.



Algebraic Cryptanalysis of McEliece – (I)

What we have: G = (gi,j) is the public matrix
What is known: rows of G belong to the kernel of H t(x ,y)

⇒ The secret vectors x and y satisfy H t(x ,y) GT = 0t ,k , i.e.
Y0 Y1 · · · Yn−1
Y0X0 Y1X1 · · · Yn−1Xn−1
...

...
...

Y0X t−1
0 Y1X t−1

1 · · · Yn−1X t−1
n−1

 GT = 0t ,k .



Algebraic Cryptanalysis of McEliece – (II)

McEn,k ,t(X ,Y )=
...

gi,0Y0X j
0 + . . .+ gi,n−1Yn−1X j

n−1 = 0 with
{

i ∈ {0, . . . , k − 1}
j ∈ {0, . . . , t − 1}

...

gi,j ’s are known coefficients in Fq of the public matrix
k is an integer ≥ n − t m.

[McEliece, 1978]

q = 2,m = 10,n = 1024, t = 50⇒ k > 524
Public key has 250Kbits (60-bit security)
#variables ≈ 2048, #equations ≈ 26200.



Algebraic Cryptanalysis of McEliece – (II)

McEn,k ,t(X ,Y )=
...

gi,0Y0X j
0 + . . .+ gi,n−1Yn−1X j

n−1 = 0 with
{

i ∈ {0, . . . , k − 1}
j ∈ {0, . . . , t − 1}

...

gi,j ’s are known coefficients in Fq of the public matrix
k is an integer ≥ n − t m.

[McEliece, 1978]

q = 2,m = 10,n = 1024, t = 50⇒ k > 524
Public key has 250Kbits (60-bit security)
#variables ≈ 2048, #equations ≈ 26200.



Outline

1 McEliece’s Algebraic System

2 Linearizing McEliece’s Algebraic System

3 Simplifying McEliece’s Algebraic System

4 Bi-Homogeneous Structure of McEliece’s System



Systematic Form of the Public Matrix

1

1

0

0

G = P k

k n−k=mr

k = n −m · t .
Let P = (pij) 1≤i≤k

k+1≤j≤n
be the sub-matrix of G formed by its

last mt columns.



Systematic Form of the System

Let P = (pij) 1≤i≤k
k+1≤j≤n

be the submatrix of G formed by its

last mt columns.
McEn,k ,t(X ,Y )=

Yi =
∑n

j=k+1 pi,jYj, for all i ∈ {0, . . . , k − 1}
YiXi =

∑n
j=k+1 pi,jYj · Xj, for all i ∈ {0, . . . , k − 1}

YiX2
i =

∑n
j=k+1 pi,jYj · X2

j , for all i ∈ {0, . . . , k − 1}
. . .

YiX t−1
i =

∑n
j=k+1 pi,jYj · X t−1

j , for all i ∈ {0, . . . , k − 1}

[MCELIECE, 1978]
q = 2,m = 10,n = 1024, t = 50⇒ k = 524

Public key has 250Kbits (60-bit security)
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Systematic Form of the System

Let P = (pij) 1≤i≤k
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be the submatrix of G formed by its
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YiX2
i =

∑n
j=k+1 pi,jYj · X2

j , for all i ∈ {0, . . . , k − 1}
. . .

YiX t−1
i =

∑n
j=k+1 pi,jYj · X t−1

j , for all i ∈ {0, . . . , k − 1}

Consider the trivial identity YiYiX2
i = (YiXi)

2

i.e. Rows(1)×Rows(3)=Rows(2)2



Linearization of McEliece

Rows(1)×Rows(3) = Rows(2)2 n∑
j=k+1

pi,jYj

 n∑
j ′=k+1

pi,j ′Yj ′X 2
j ′

 =

 n∑
j=k+1

pi,jYjXj

2

 n∑
j=k+1

pi,jYj

 n∑
j ′=k+1

pi,j ′Yj ′X 2
j ′

 =
n∑

j=k+1

p2
i,jY

2
j X 2

j [Char. 2]



Linearization of McEliece

 n∑
j=k+1

pi,jYj

 n∑
j ′=k+1

pi,j ′Yj ′X 2
j ′

 =
n∑

j=k+1

p2
i,jY

2
j X 2

j

n∑
j=k+1

p2
i,jY

2
j X 2

j +
n∑

j=k+1

∑
j ′ 6=j

pi,jpi,j ′YjYj ′X 2
j ′ =

n∑
j=k+1

p2
i,jY

2
j X 2

j

n∑
j=k+1

∑
j ′ 6=j

pi,jpi,j ′YjYj ′X 2
j ′ = 0, ∀i ∈ {0, . . . , k − 1},

n∑
j=k+1

n∑
j ′>j

pi,jpi,j ′YjYj ′
(

X 2
j + X 2

j ′

)
= 0, ∀i ∈ {0, . . . , k − 1}.



Linearization of McEliece

n∑
j=k+1

n∑
j ′>j

pi,jpi,j ′YjYj ′
(

X 2
j + X 2

j ′

)
= 0, for all i ∈ {0, . . . , k − 1},

n∑
j=k+1

n∑
j ′>j

pi,jpi,j ′Zjj ′ = 0, for all i ∈ {0, . . . , k − 1},

with Zjj ′ = YjYj ′
(

X 2
j + X 2

j ′

)
.

Number of equations k
Number of variables

(mt
2

)



Experiments [Binary case (q = 2) and m = 14]

t 3 4 5 6 7 8 9 10 11 12

N 861 1540 2415 3486 4753 6216 7875 9730 11781 14028
k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216

Drandom 0 0 0 0 0 0 0 0 0 0
Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158
DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316

t 13 14 15 16

N 16471 19110 21945 24976
k 16202 16188 16174 16160

Drandom 269 2922 5771 8816
Dalternant 5124 6188 7350 8816
DGoppa 10010 11858 13860 16016

N def
=
(mt

2

)
the number of variables

Drandom, dimension of the vector space solution for a
random code
Dalternant, dimension of the vector space solution for a
random alternant code of degree r
DGoppa, dimension of the vector space solution for a
random Goppa code of degree r .



Experiments [Binary case (q = 2) and m = 14]

Rank of a Linearized McEliece system using a Goppa code vs
Rank of a Linearized McEliece system using a random code.



Bounds

Table: Smallest order t of a binary Goppa code of length n = 2m for
which our distinguisher does not work.

m 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tmin 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

M. Finiasz, and N. Sendrier.
“Security Bounds for the Design of Code-Based
Cryptosystems."
Asiacrypt’09.
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Cleaning McEliece’s Algebraic System

For j = 0, linear equations involving only the variables of Y:
...
gi,0Y0 + . . .+ gi,n−1Yn−1 = 0, i ∈ {0, . . . , k − 1}.
...

For quasi-cyclic/dyadic alternant codes, we have additional
linear equations involving the variables of Y (resp. X).

T. Berger, P.-L. Cayrel, P. Gaborit, A. Otmani.
“Reducing Key Length of the McEliece Cryptosystem".
AFRICACRYPT 2009.

R. Misoczki, P. Barreto.
“ Compact McEliece Keys from Goppa Codes". SAC
2009.
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BCGO Proposal (Africacrypt’09)

Assumption

Let n = `n0 and let β be a public element of Fqm of order `.

Secret key.
(x0, . . . , xn0−1) with xi ∈ Fqm such that xi 6= xj if i 6= j
(y0, . . . , yn0−1) with yi 6= 0 (yi ∈ Fqm )
e ∈ {0, . . . , `− 1}

Public key. A basis G of Ker
(

H t(x ,y)
)
∩ Fn

q with

x = (

`︷ ︸︸ ︷
x0, βx0 . . . , β

`−1x0, . . . ,

`︷ ︸︸ ︷
xn0−1, βxn0−1, . . . , β

`−1xn0−1)
y =

(

`︷ ︸︸ ︷
y0, β

ey0, . . . , β
e(`−1)y0, . . . ,

`︷ ︸︸ ︷
yn0−1, β

eyn0−1, . . . , β
e(`−1)yn0−1)



BCGO Proposal (Africacrypt’09)

We have the following linear relations for any
i ∈ {0, . . . ,n0 − 1} and j ∈ {0, . . . , `− 1}:{

xi`+j = β jxi`

yi`+j = βejyi`

The system is completely described by n0 variables Yi and
n0 variables Xi assuming that e is known (0 ≤ e ≤ 100)



MB Proposal (SAC’09)

The public code is an alternant over Fq with q = 2s (s ≥ 1)
where for any 0 ≤ j ≤ n0 − 1 and 0 ≤ i , i ′ ≤ `− 1, we have:

yj`+i = yj`
xj`+i + xj` = xi + x0
xj`+(i⊕i ′) = xj`+i + xj`+i ′ + xj`

For any 1 ≤ i ≤ `− 1, if we write the binary decomposition
of i =

∑log2(`−1)
j=0 ηj2j then:

xi = x0 +

log2(`−1)∑
j=0

ηj(x2j + x0).

Hence, the system is described by n0 variables Yi and
n0 + log2(`) variables Xi



Summary

We have equivalent secret-keys.
some variables can be fixed.

Let nY (resp. nX ) be #Y (resp. #X)
McEn,k ,t(X ,Y ). nY = n − 1 and nX = n − 3 (one Yi and
three Xi ’s)
BCGO variant. nY = n0 − 1 and nX = n0 − 1 (one Yi and
one Xi )
MB variant. nY = n0 − 1 and nX = n0 − 2 + log2(`) (one Yi
and two Xi ’s)

[First step – Cleaning.] Reduce the number of variables by
removing all the linear equations involving the Yi ’s (resp. Xj ’s)

⇒ Let d be the remaining variables in the block Y.
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Solving the Algebraic System

Naive approach by applying directly a generic Gröbner
basis algorithm (Magma)

It fails for almost all challenges
But, one challenge A20 (AfricaCrypt ’09) was broken in 24
hours of computation using a non negligible amount of
memory

How to exploit the particular structure of the system ?
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Computing a Gröbner Basis

Buchberger’s algorithm (1965)
F4/F5 (J.-C. Faugère, 1999/2002)

⇒ For a zero-dimensional (i.e. finite number of solutions)
system of n variables:

O
(

n3·Dreg
)
,

Dreg being the maximum degree reached during the
computation.

Behavior on random systems of equations
Dreg is generically equal to n + 1 ( If #eq.= n).
#Sol ≤

∏n
i=1 degreei (Bezout’s bound)



Bi-Homogeneous Structure of McEn,k ,t(X ,Y )

McEn,k ,t(X ,Y ) =
...

gi,0Y0X j
0 + . . .+ gi,n−1Yn−1X j

n−1 = 0 with
{

i ∈ {0, . . . , k − 1}
j ∈ {0, . . . , t − 1}

...

The only monomials occurring are YiX
j
i

Definition

f ∈ Fqm [X,Y] is bi-homogeneous of bi-degree (d1,d2) if:

∀α, µ ∈ Fqm , f (αX, µY) = αd1µd2 f (X,Y).

f is bilinear if it is bi-homogeneous of bi-degree (1,1).
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0 + . . .+ gi,n−1Yn−1X j

n−1 = 0 with
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i ∈ {0, . . . , k − 1}
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Each block of k equations is bi-homogeneous of bi-degree
(1, j)
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Complexity of Solving Bilinear Systems

J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer.
“Gröbner Bases of Bihomogeneous Ideals Generated by
Polynomials of Bidegree (1,1): Algorithms and Complexity".
arXiv:1001.4004v1 [cs.SC], 2010.

Dedicated version of F5 for such systems (avoiding
reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear
0-dimensional system over K[X ,Y ] is upper bounded by

Dreg 6 min (nX ,nY ) + 1 [vs. nX + nY + 1 for a rand. system].

Polynomial time complexity for computing the Gröbner basis if
the min is constant.
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Extracting a Bilinear Subsystem

[Second step – Extracting a Bilinear Subsystem.] We keep
only the exponents of Xi that are powers of 2:

biMcEn,k ,t(X ,Y )
def
=


...
gi,0Y0X 2`

0 + . . .+ gi,n−1Yn−1X 2`

n−1 = 0
...

with i ∈
{

0, . . . , k − 1
}

and ` ∈
{

0, . . . , log2(t − 1)
}

.

The system is “quasi" bilinear, precisely bi-homogeneous of
bi-degree (1,2`) (Char(Fq) = 2)



Solving biMcEn,k ,t(X ,Y )

1 [First step – Cleaning.] Let d be the number of free
variables in Y.

2 [Second step – Extracting a Bilinear Subsystem.]

“Naive Approach"

If d is very small then perform an exhaustive search in Fqm

Solve the remaining linear system with the Xi ’s
Time complexity O

(
qmd(mnX )3)

Challenge A20 (BCGO variant):
q = 210,m = 2,d = 3 −→> 260 (here 215.8)
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Complexity of Solving biMcEn,k ,t(X ,Y )

biMcEn,k ,t(X ,Y )

Let d be the number of free variables in Y.
For biMcEn,k ,t(X ,Y ), it holds that Dreg 6 d + 1.
Computing a Gröbner basis of biMcEn,k ,t(X ,Y ) can be
done with a tweaked version of F5 in:

O
(

nω(d+1)
X

)
,

2 ≤ ω ≤ 3 being the linear algebra constant.



Practical results – BCGO Variant

q ` n0 d Sec. (log) nX #Eq Time (Op., M.) Ttheo

A16 28 51 9 3 80 8 510 0.06 sec (218.9 op, 115 Meg) 217

B16 28 51 10 3 90 9 612 0.03 sec (217.1 op, 116 Meg) 218

C16 28 51 12 3 100 11 816 0.05 sec (216.2 op, 116 Meg) 220

D16 28 51 15 4 120 14 1275 0.02 sec (214.7 op, 113 Meg) 226

A20 210 75 6 2 80 5 337 0.05 sec (215.8 op, 115 Meg) 210

B20 210 93 6 2 90 5 418 0.05 sec (217.1 op, 115 Meg) 210

C20 210 93 8 2 110 7 697 0.02 sec (214.5 op, 115 Meg) 211

QC600 28 255 15 3 600 14 6820 0.08 sec (216.6 op, 116 Meg) 221

The solutions always belong to Fqm with m = 2 (BCGO
constraint)
We also proposed the parameter QC600 to show the
influence of d



Practical Results – MB Variant

q d ` n0 Sec. (log) nX #Equ Time (Op., Me.) Ttheo

T. 2 22 7 64 56 128 59 193, 584 1, 776.3 sec (234.2 op, 360 Meg) 265

T. 2 24 3 64 32 128 36 112, 924 0.50 sec (222.1 op, 118M) 229

T. 2 28 1 64 12 128 16 40, 330 0.03 sec (216.7 op, 35M) 28

T. 3 28 1 64 10 102 14 32, 264 0.03 sec (215.9 op, 113M.) 28

T. 3 28 1 128 6 136 11 65, 028 0.02 sec (215.4 op, 113 M.) 27

T. 3 28 1 256 4 168 10 130, 562 0.11 sec (219.2 op, 113M.) 27

T. 5 28 1 128 4 80 9 32, 514 0.06 sec (217.7 op, 35M.) 26

T. 5 28 1 128 5 112 10 48, 771 0.02 sec (214.5 op, 35M.) 27

T. 5 28 1 128 6 128 11 65, 028 0.01 sec (216.6 op, 35 M.) 27

T. 5 28 1 256 5 192 11 195, 843 0.05 sec (217.5 op, 35M.) 27

T. 5 28 1 256 6 256 12 261, 124 0.06 sec (217.8 op, 35M.) 27

D256 24 3 128 32 256 37 455, 196 7.1 sec (226.1 op, 131M.) 229

D512 28 1 512 6 512 13 1, 046, 532 0.15 sec (219.7 op, 38M.) 28

Binary challenges are not solved (work in progress)
We proposed the challenges D256 and D512



Conclusion

MCELIECE scheme is a challenging public key cryptosystem
Little is known about key-recovery attacks
We introduced an algebraic framework for tackling this
issue focusing on a bilinear subsystem

This approach gave successful results for variants with
compact keys

The proposed parameters were too optimistic (key should
be larger)
An unbalanced number of variables does not improve the
security
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