Algebraic Analysis of McEliece Cryptosystems

J.-C. Faugère¹ A. Otmani^{2,3} L. Perret¹ J.-P. Tillich²

SALSA Team-Project – LIP6/UPMC/INRIA Paris-Rocquencourt jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

SECRET Team-Project – INRIA Paris-Rocquencourt ayoub.otmani@inria.fr, jean-pierre.tillich@inria.fr

GREYC - Université de Caen - Ensicaen

Post-Quantum Cryptography

Known Candidates

- Lattice-based Cryptography
- Multivariate Cryptography
- Code-based Cryptography

Post-Quantum Cryptography

Known Candidates

- Lattice-based Cryptography
- Multivariate Cryptography
 - Public-key is large, but recent papers seem to mitigate this issue [Petzoldt, Bulygin, Buchmann]
- Code-based Cryptography
 - Public-key is large, but key-reduction techniques [Barreto et al, Berget et al]
 - provable-security

Post-Quantum Cryptography

Known Candidates

- Lattice-based Cryptography
- Multivariate Cryptography
 - Public-key is large, but recent papers seem to mitigate this issue [Petzoldt, Bulygin, Buchmann]
- Code-based Cryptography
 - Public-key is large, but key-reduction techniques [Barreto et al, Berget et al]
 - provable-security

MCELIECE's Cryptosystem [R.J. MCELIECE, 1978]

- One of the oldest public-key cryptosystems
 - based on coding theory
- Principle is to mask a structured code in such a way that it looks like random
 - Trapdoor = H_t(x, y) [parity-check matrix of a Goppa/alternant code G_s]
 - Public key = Random basis **G** of Ker $(H_t(\mathbf{x}, \mathbf{y})) \cap \mathbb{F}_q^n$

- Choose a generator matrix G_s of a Goppa (or alternant) code C_s randomly chosen
- 2 Pick at random:
 - **n** \times *n* permutation matrix **P**
 - $k \times k$ non-singular matrix **S**
- **3** Compute $G = S \times G_s \times P$

4 Output

$$\mathsf{pk} = (\mathbf{G}, t)$$
 and $\mathsf{sk} = (\mathbf{S}, \mathbf{G}_{\mathcal{S}}, \mathbf{P})$

$$c \in \mathbb{F}_2^n \leftarrow Encrypt(m \in \mathbb{F}_2^k)$$
1 Draw at random $e \in \mathbb{F}_2^n$ of Hamming weight at most t
2 Output $c = m \times G \oplus e$

$$\begin{split} \boldsymbol{m}' \in \mathbb{F}_2^k \leftarrow \textit{Decrypt}(\boldsymbol{c}' \in \mathbb{F}_2^n) \\ \hline \mathbf{1} \quad \text{Let } \gamma_{\boldsymbol{G}_s} : \mathbb{F}_2^n \to \mathbb{F}_2^k \text{ be a decoding algorithm associated to } \boldsymbol{G}_s \end{split}$$

2 Compute
$$z = c' \times P^{-1}$$
// $z = (m \times S \times G_s) \oplus (e \times P^{-1})$ 3 Compute $y = \gamma_{G_s}(z)$ // $y = m \times S$ 4 Output $m' = y \times S^{-1}$ // $m' = m$

Related to the difficulty of inverting Encrypt:

$$\boldsymbol{c} \rightsquigarrow (\boldsymbol{m}, \boldsymbol{e})$$
 such that $\boldsymbol{c} = \boldsymbol{m} \times \boldsymbol{G} \oplus \boldsymbol{e}$.

Given (n, k, t) and a random $k \times n$ matrix **G**, we set:

$$\begin{array}{rcl} f_{\boldsymbol{G},t} : & \mathbb{F}_2^k \times \mathcal{B}_n(\boldsymbol{0},t) & \longrightarrow & \mathbb{F}_2^n \\ & (\boldsymbol{x},\boldsymbol{e}) & \longmapsto & \boldsymbol{m} \times \boldsymbol{G} \oplus \boldsymbol{e} \end{array}$$

where $\mathcal{B}_n(\mathbf{0}, t) = \{ \mathbf{z} \in \mathbb{F}_2^n : wt(\mathbf{z}) \le t \}$. Inverting $f_{\mathbf{G},t}$ is NP-Hard (BERLEKAMP - MCELIECE - VAN TILBORG '78)

Best algorithms are based on Information Set Decoding

- MCELIECE ('78), LEE BRICKELL ('88), LEON ('88), STERN ('93), ...
- Binary codes : CANTEAUT-CHABAUD ('98), SENDRIER-FINIASZ'08, BERNSTEIN
 - LANGE PETERS ('08,'11), MAY MEURER THOMAE ('11) ...

Related to the difficulty of extracting the secret matrices:

 $\boldsymbol{G} \rightsquigarrow (\boldsymbol{S}, \boldsymbol{G}_{\boldsymbol{s}}, \boldsymbol{P})$ such that $\boldsymbol{G} = \boldsymbol{S} \times \boldsymbol{G}_{\boldsymbol{s}} \times \boldsymbol{P}.$

- Finding the (S, P) is not hard in practice if G_s is known (SENDRIER '00)
- No real structural attack against McEliece's scheme

Goppa Code Distinguishing (GD) [COURTOIS, FINIASZ, AND SENDRIER, 2001]

Let $\mathbf{G} = \mathbf{S} \times \mathbf{G}_s \times \mathbf{P}$ be the public matrix of McEliece's scheme.

GD is the problem of distinguishing G from a random matrix of the same type.

Goppa Code Distinguishing (GD) [CFS'01]

Let $\mathbf{G} = \mathbf{S} \times \mathbf{G}_s \times \mathbf{P}$ be the public matrix of McEliece's scheme.

- GD is the problem of distinguishing *G* from a random matrix of the same *form*.
 - standard assumption for proving the security (NOJIMA, IMAI, KOBARA, MOROZOV, SENDRIER, FINAISZ, DALLOT, VERGNAUT, VÉRON, ...
- H. Dinh, C. Moore, and A. Russell.

"The McEliece Cryptosystem Resists Quantum Fourier Sampling Attacks." Crypto'11.

1 McEliece's Algebraic System

- 2 Linearizing McEliece's Algebraic System
- 3 Simplifying McEliece's Algebraic System
- 4 Bi-Homogeneous Structure of McEliece's System

Alternant Codes

Consider two fields \mathbb{F}_q and \mathbb{F}_{q^m} with $q = 2^s$ ($s \ge 1$) and $m \ge 1$ **a** $\mathbf{x} = (x_0, \dots, x_{n-1}) \in \mathbb{F}_{q^m}^n$ such that $x_i \ne x_j$, if $i \ne j$. **b** $\mathbf{y} = (y_0, \dots, y_{n-1}) \in \mathbb{F}_{q^m}^n$ with $y_i \ne 0$. For any t < n, we set: $\mathbf{H}_t(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} y_0 & y_1 & \cdots & y_{n-1} \\ y_0 x_0 & y_1 x_1 & \cdots & y_{n-1} x_{n-1} \\ \vdots & \vdots & \vdots \\ y_0 x_0^{t-1} & y_1 x_1^{t-1} & \cdots & y_{n-1} x_{n-1}^{t-1} \end{pmatrix}$.

Definition

An alternant code $\mathcal{A}_t(\mathbf{x}, \mathbf{y})$ is the kernel of $\mathbf{H}_t(\mathbf{x}, \mathbf{y})$ in \mathbb{F}_q^n , i.e.

$$\boldsymbol{v} \in \mathcal{A}_t(\boldsymbol{x}, \boldsymbol{y}) \iff \boldsymbol{v} \in \mathbb{F}_q^n \text{ and } \boldsymbol{H}_t(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{v}^T = \boldsymbol{0}.$$

Can be efficiently decoded if **x**, **y** are *known*.

- What we have: $G = (g_{i,j})$ is the public matrix
- What is known: rows of **G** belong to the kernel of $H_t(x, y)$
- \Rightarrow The secret vectors **x** and **y** satisfy $H_t(\mathbf{x}, \mathbf{y}) \mathbf{G}^T = \mathbf{0}_{t,k}$, i.e.

$$\begin{pmatrix} Y_0 & Y_1 & \cdots & Y_{n-1} \\ Y_0 X_0 & Y_1 X_1 & \cdots & Y_{n-1} X_{n-1} \\ \vdots & \vdots & & \vdots \\ Y_0 X_0^{t-1} & Y_1 X_1^{t-1} & \cdots & Y_{n-1} X_{n-1}^{t-1} \end{pmatrix} \boldsymbol{G}^T = \boldsymbol{0}_{t,k}.$$

Algebraic Cryptanalysis of McEliece – (II)

$$McE_{n,k,t}(\boldsymbol{X},\boldsymbol{Y}) =$$

$$\begin{cases} \vdots \\ g_{i,0}Y_0X_0^j + \ldots + g_{i,n-1}Y_{n-1}X_{n-1}^j = 0 \text{ with } \begin{cases} i \in \{0,\ldots,k-1\} \\ j \in \{0,\ldots,t-1\} \end{cases}$$

■ $g_{i,j}$'s are *known* coefficients in \mathbb{F}_q of the public matrix ■ *k* is an integer $\geq n - t m$.

[McEliece, 1978]

- $q = 2, m = 10, n = 1024, t = 50 \Rightarrow k \ge 524$
 - Public key has 250Kbits (60-bit security)
 - **u** #variables \approx 2048, #equations \approx 26200.

Algebraic Cryptanalysis of McEliece – (II)

$$McE_{n,k,t}(\boldsymbol{X},\boldsymbol{Y}) =$$

$$\begin{cases} \vdots \\ g_{i,0}Y_0X_0^j + \ldots + g_{i,n-1}Y_{n-1}X_{n-1}^j = 0 \text{ with } \begin{cases} i \in \{0,\ldots,k-1\} \\ j \in \{0,\ldots,t-1\} \end{cases}$$

■ $g_{i,j}$'s are *known* coefficients in \mathbb{F}_q of the public matrix ■ *k* is an integer $\geq n - t m$.

[McEliece, 1978]

- $q = 2, m = 10, n = 1024, t = 50 \Rightarrow k \ge 524$
 - Public key has 250Kbits (60-bit security)
 - **v**ariables \approx 2048, #equations \approx 26200.

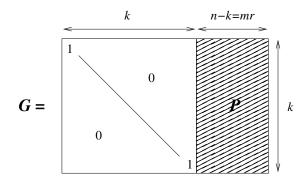
1 McEliece's Algebraic System

2 Linearizing McEliece's Algebraic System

3 Simplifying McEliece's Algebraic System

4 Bi-Homogeneous Structure of McEliece's System

Systematic Form of the Public Matrix



 $\blacksquare k = n - m \cdot t.$

■ Let $\mathbf{P} = (p_{ij})_{\substack{1 \le i \le k \\ k+1 \le j \le n}}$ be the sub-matrix of *G* formed by its last *mt* columns.

Systematic Form of the System

Let $\mathbf{P} = (p_{ij})_{\substack{1 \le i \le k \\ k+1 \le j \le n}}$ be the submatrix of *G* formed by its last *mt* columns.

 $McE_{n,k,t}(\boldsymbol{X}, \boldsymbol{Y}) =$

$$\begin{cases} \mathbf{Y}_{i} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j}, \text{ for all } i \in \{0, \dots, k-1\} \\ \mathbf{Y}_{i} \mathbf{X}_{i} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j} \cdot \mathbf{X}_{j}, \text{ for all } i \in \{0, \dots, k-1\} \\ \mathbf{Y}_{i} \mathbf{X}_{i}^{2} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j} \cdot \mathbf{X}_{j}^{2}, \text{ for all } i \in \{0, \dots, k-1\} \\ \dots \\ \mathbf{Y}_{i} \mathbf{X}_{i}^{t-1} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j} \cdot \mathbf{X}_{j}^{t-1}, \text{ for all } i \in \{0, \dots, k-1\} \end{cases}$$

[MCELIECE, 1978]

 $q = 2, m = 10, n = 1024, t = 50 \Rightarrow k = 524$

Public key has 250Kbits (60-bit security)

variables \approx 2048, #equations \approx 26200.

Systematic Form of the System

■ Let $\mathbf{P} = (p_{ij})_{\substack{1 \le i \le k \\ k+1 \le j \le n}}$ be the submatrix of *G* formed by its last *mt* columns.

 $McE_{n,k,t}(\boldsymbol{X}, \boldsymbol{Y}) =$

$$\begin{cases} \mathbf{Y}_{\mathbf{i}} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j}, \text{ for all } i \in \{0, \dots, k-1\} \\ \mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j} \cdot \mathbf{X}_{j}, \text{ for all } i \in \{0, \dots, k-1\} \\ \mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}^{2} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j} \cdot \mathbf{X}_{j}^{2}, \text{ for all } i \in \{0, \dots, k-1\} \\ \dots \\ \mathbf{Y}_{i} \mathbf{X}_{i}^{t-1} = \sum_{j=k+1}^{n} \mathbf{p}_{i,j} \mathbf{Y}_{j} \cdot \mathbf{X}_{j}^{t-1}, \text{ for all } i \in \{0, \dots, k-1\} \end{cases}$$

■ Consider the trivial identity **Y**_i**Y**_i**X**²_i = (**Y**_i**X**_i)² i.e. Rows(1)×Rows(3)=Rows(2)²

Linearization of McEliece

$$Rows(1) \times Rows(3) = Rows(2)^{2}$$

$$\left(\sum_{j=k+1}^{n} p_{i,j}Y_{j}\right) \left(\sum_{j'=k+1}^{n} p_{i,j'}Y_{j'}X_{j'}^{2}\right) = \left(\sum_{j=k+1}^{n} p_{i,j}Y_{j}X_{j}\right)^{2}$$

$$\left(\sum_{j=k+1}^{n} p_{i,j}Y_{j}\right) \left(\sum_{j'=k+1}^{n} p_{i,j'}Y_{j'}X_{j'}^{2}\right) = \sum_{j=k+1}^{n} p_{i,j}^{2}Y_{j}^{2}X_{j}^{2}$$
[Char. 2]

Linearization of McEliece

$$\begin{split} \left(\sum_{j=k+1}^{n} p_{i,j} Y_{j}\right) \left(\sum_{j'=k+1}^{n} p_{i,j'} Y_{j'} X_{j'}^{2}\right) &= \sum_{j=k+1}^{n} p_{i,j}^{2} Y_{j}^{2} X_{j}^{2} \\ \sum_{j=k+1}^{n} p_{i,j}^{2} Y_{j}^{2} X_{j}^{2} + \sum_{j=k+1}^{n} \sum_{j' \neq j} p_{i,j} p_{i,j'} Y_{j} Y_{j'} X_{j'}^{2} &= \sum_{j=k+1}^{n} p_{i,j}^{2} Y_{j}^{2} X_{j}^{2} \\ \sum_{j=k+1}^{n} \sum_{j' \neq j} p_{i,j} p_{i,j'} Y_{j} Y_{j'} X_{j'}^{2} &= 0, \forall i \in \{0, \dots, k-1\}, \\ \sum_{j=k+1}^{n} \sum_{j' > j}^{n} p_{i,j} p_{i,j'} Y_{j} Y_{j'} \left(X_{j}^{2} + X_{j'}^{2}\right) &= 0, \forall i \in \{0, \dots, k-1\}. \end{split}$$

Linearization of McEliece

$$\sum_{j=k+1}^{n} \sum_{j'>j}^{n} p_{i,j} p_{i,j'} \frac{Y_j Y_{j'} \left(X_j^2 + X_{j'}^2\right)}{\sum_{j=k+1}^{n} \sum_{j'>j}^{n} p_{i,j} p_{i,j'} Z_{jj'}} = 0, \text{ for all } i \in \{0, \dots, k-1\},$$

with $Z_{jj'} = Y_j Y_{j'} (X_j^2 + X_{j'}^2).$

- Number of equations k
- Number of variables $\binom{mt}{2}$

Experiments [Binary case (q = 2) and m = 14]

t	3	4	5	6	7	8	9	10	11	12
N	861	1540	2415	3486	4753	6216	7875	9730	11781	14028
k	16342	16328	16314	16300	16286	16272	16258	16244	16230	16216
Drandom	0	0	0	0	0	0	0	0	0	0
Dalternant	42	126	308	560	882	1274	1848	2520	3290	4158
D _{Goppa}	252	532	980	1554	2254	3080	4158	5390	6776	8316

t	13	14	15	16
N	16471	19110	21945	24976
k	16202	16188	16174	16160
Drandom	269	2922	5771	8816
D _{alternant}	5124	6188	7350	8816
D _{Goppa}	10010	11858	13860	16016

• $N \stackrel{\text{def}}{=} \binom{mt}{2}$ the number of variables

- *D*_{random}, dimension of the vector space solution for a random code
- D_{alternant}, dimension of the vector space solution for a random alternant code of degree r
- D_{Goppa}, dimension of the vector space solution for a random Goppa code of degree r.

Rank of a Linearized McEliece system using a Goppa code vs Rank of a Linearized McEliece system using a random code.

Table: Smallest order *t* of a binary Goppa code of length $n = 2^m$ for which our distinguisher does not work.

m	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
t _{min}	8	8	11	16	20	26	34	47	62	85	114	157	213	290	400

M. Finiasz, and N. Sendrier. "Security Bounds for the Design of Code-Based Cryptosystems." Asiacrypt'09.

1 McEliece's Algebraic System

2 Linearizing McEliece's Algebraic System

3 Simplifying McEliece's Algebraic System

4 Bi-Homogeneous Structure of McEliece's System

Cleaning McEliece's Algebraic System

For j = 0, linear equations involving only the variables of **Y**:

$$\begin{cases} \vdots \\ g_{i,0} Y_0 + \ldots + g_{i,n-1} Y_{n-1} = 0, \ i \in \{0, \ldots, k-1\}. \\ \vdots \end{cases}$$

For quasi-cyclic/dyadic alternant codes, we have additional linear equations involving the variables of Y (resp. X).

- T. Berger, P.-L. Cayrel, P. Gaborit, A. Otmani. "Reducing Key Length of the McEliece Cryptosystem". AFRICACRYPT 2009.
- R. Misoczki, P. Barreto. " Compact McEliece Keys from Goppa Codes". SAC 2009.

For j = 0, linear equations involving only the variables of **Y**:

$$\begin{cases} \vdots \\ g_{i,0}Y_0 + \ldots + g_{i,n-1}Y_{n-1} = 0, i \in \{0, \ldots, k-1\}. \\ \vdots \end{cases}$$

- For quasi-cyclic/dyadic alternant codes, we have additional linear equations involving the variables of Y (resp. X).
 - T. Berger, P.-L. Cayrel, P. Gaborit, A. Otmani. "Reducing Key Length of the McEliece Cryptosystem". AFRICACRYPT 2009.
 - R. Misoczki, P. Barreto.

"Compact McEliece Keys from Goppa Codes". SAC 2009.

BCGO Proposal (Africacrypt'09)

Assumption

Let $n = \ell n_0$ and let β be a *public* element of \mathbb{F}_{q^m} of order ℓ .

Secret key. • (x_0, \ldots, x_{n_0-1}) with $x_i \in \mathbb{F}_{q^m}$ such that $x_i \neq x_i$ if $i \neq j$ (y_0, \ldots, y_{n_0-1}) with $y_i \neq 0$ ($y_i \in \mathbb{F}_{q^m}$) • $e \in \{0, \ldots, \ell - 1\}$ Public key. A basis **G** of Ker $(H_t(\mathbf{x}, \mathbf{y})) \cap \mathbb{F}_q^n$ with $\mathbf{x} = (\overline{x_0, \beta x_0, \dots, \beta^{\ell-1} x_0}, \dots, \overline{x_{n_0-1}, \beta x_{n_0-1}}, \dots, \beta^{\ell-1} x_{n_0-1})$ **V V V** $(V_0, \beta^e V_0, \ldots, \beta^{e(\ell-1)} V_0, \ldots, V_{n_0-1}, \beta^e V_{n_0-1}, \ldots, \beta^{e(\ell-1)} V_{n_0-1})$

We have the following linear relations for any $i \in \{0, ..., n_0 - 1\}$ and $j \in \{0, ..., \ell - 1\}$:

$$\begin{cases} \mathbf{x}_{i\ell+j} = \beta^j \mathbf{x}_{i\ell} \\ \mathbf{y}_{i\ell+j} = \beta^{\mathbf{e}j} \mathbf{y}_{i\ell} \end{cases}$$

The system is completely described by n_0 variables Y_i and n_0 variables X_i assuming that e is known ($0 \le e \le 100$)

The public code is an alternant over \mathbb{F}_q with $q = 2^s$ ($s \ge 1$) where for any $0 \le j \le n_0 - 1$ and $0 \le i, i' \le \ell - 1$, we have:

$$\left\{ egin{array}{ll} y_{j\ell+i} &= y_{j\ell} \ x_{j\ell+i} + x_{j\ell} &= x_i + x_0 \ x_{j\ell+(i\oplus i')} &= x_{j\ell+i} + x_{j\ell+i'} + x_{j\ell} \end{array}
ight.$$

For any $1 \le i \le \ell - 1$, if we write the binary decomposition of $i = \sum_{j=0}^{\log_2(\ell-1)} \eta_j 2^j$ then:

$$x_i = x_0 + \sum_{j=0}^{\log_2(\ell-1)} \eta_j(x_{2^j} + x_0).$$

■ Hence, the system is described by n₀ variables Y_i and n₀ + log₂(ℓ) variables X_i

Summary

We have equivalent secret-keys.

- some variables can be *fixed*.
- Let n_Y (resp. n_X) be #**Y** (resp. #**X**)
 - $McE_{n,k,t}(X, Y)$. $n_Y = n 1$ and $n_X = n 3$ (one Y_i and three X_i 's)
 - **BCGO variant.** $n_Y = n_0 1$ and $n_X = n_0 1$ (one Y_i and one X_i)
 - **MB variant.** $n_Y = n_0 1$ and $n_X = n_0 2 + \log_2(\ell)$ (one Y_i and two X_i 's)

[First step – Cleaning.] Reduce the number of variables by removing all the linear equations involving the Y_i 's (resp. X_i 's)

 \Rightarrow Let *d* be the *remaining* variables in the block **Y**.

Summary

We have equivalent secret-keys.

- some variables can be *fixed*.
- Let n_Y (resp. n_X) be #**Y** (resp. #**X**)
 - $McE_{n,k,t}(X, Y)$. $n_Y = n 1$ and $n_X = n 3$ (one Y_i and three X_i 's)
 - **BCGO variant.** $n_Y = n_0 1$ and $n_X = n_0 1$ (one Y_i and one X_i)
 - **MB variant.** $n_Y = n_0 1$ and $n_X = n_0 2 + \log_2(\ell)$ (one Y_i and two X_i 's)

[First step – Cleaning.] Reduce the number of variables by removing all the linear equations involving the Y_i 's (resp. X_j 's)

 \Rightarrow Let *d* be the *remaining* variables in the block **Y**.

1 McEliece's Algebraic System

- 2 Linearizing McEliece's Algebraic System
- 3 Simplifying McEliece's Algebraic System
- 4 Bi-Homogeneous Structure of McEliece's System

- Naive approach by applying directly a generic Gröbner basis algorithm (Magma)
 - It fails for almost all challenges
 - But, one challenge A₂₀ (AfricaCrypt '09) was broken in 24 hours of computation using a non negligible amount of memory

How to exploit the particular structure of the system ?

- Naive approach by applying directly a generic Gröbner basis algorithm (Magma)
 - It fails for almost all challenges
 - But, one challenge A₂₀ (AfricaCrypt '09) was broken in 24 hours of computation using a non negligible amount of memory
- How to exploit the particular structure of the system ?

Computing a Gröbner Basis

- Buchberger's algorithm (1965)
- F₄/F₅ (J.-C. Faugère, 1999/2002)
- \Rightarrow For a zero-dimensional (i.e. finite number of solutions) system of *n* variables:

 $\mathcal{O}\left(n^{3\cdot D_{reg}}\right),$

D_{reg} being the maximum degree reached during the computation.

- Behavior on random systems of equations
 - **D**_{reg} is generically equal to n + 1 (If #eq.= n).
 - $\#Sol \leq \prod_{i=1}^{n} \text{degree}_i$ (Bezout's bound)

Bi-Homogeneous Structure of $McE_{n,k,t}(\boldsymbol{X}, \boldsymbol{Y})$

$$\mathsf{McE}_{n,k,t}(\boldsymbol{X},\boldsymbol{Y}) =$$

$$\begin{cases} \vdots \\ g_{i,0} Y_0 X_0^j + \ldots + g_{i,n-1} Y_{n-1} X_{n-1}^j = 0 \text{ with } \begin{cases} i \in \{0,\ldots,k-1\} \\ j \in \{0,\ldots,t-1\} \end{cases} \\ \vdots \end{cases}$$

The only monomials occurring are $Y_i X_i^j$

Definition

 $f \in \mathbb{F}_{q^m}[\mathbf{X}, \mathbf{Y}]$ is *bi-homogeneous* of *bi-degree* (d_1, d_2) if:

$$\forall \alpha, \mu \in \mathbb{F}_{q^m}, \ f(\alpha \mathbf{X}, \mu \mathbf{Y}) = \alpha^{d_1} \mu^{d_2} f(\mathbf{X}, \mathbf{Y}).$$

f is *bilinear* if it is *bi-homogeneous* of *bi-degree* (1, 1).

Bi-Homogeneous Structure of $McE_{n,k,t}(\boldsymbol{X}, \boldsymbol{Y})$

$$\begin{cases} \mathsf{MCE}_{n,k,t}(X,Y) = \\ \\ \\ g_{i,0}Y_0X_0^j + \ldots + g_{i,n-1}Y_{n-1}X_{n-1}^j = 0 \text{ with } \begin{cases} i \in \{0,\ldots,k-1\} \\ j \in \{0,\ldots,t-1\} \end{cases}$$

Each block of k equations is bi-homogeneous of bi-degree (1, j)

Definition

 $f \in \mathbb{F}_{q^m}[\mathbf{X}, \mathbf{Y}]$ is *bi-homogeneous* of *bi-degree* (d_1, d_2) if:

$$\forall \alpha, \mu \in \mathbb{F}_{q^m}, \ f(\alpha \mathbf{X}, \mu \mathbf{Y}) = \alpha^{d_1} \mu^{d_2} f(\mathbf{X}, \mathbf{Y}).$$

f is *bilinear* if it is *bi-homogeneous* of *bi-degree* (1, 1).

Complexity of Solving Bilinear Systems

J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. "Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity". arXiv:1001.4004v1 [cs.SC], 2010.

 Dedicated version of F₅ for such systems (avoiding reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear 0-dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

 $D_{reg} \leq \min(n_X, n_Y) + 1$ [vs. $n_X + n_Y + 1$ for a rand. system].

Polynomial time complexity for computing the Gröbner basis if the min is constant.

Complexity of Solving Bilinear Systems

J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. "Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity". arXiv:1001.4004v1 [cs.SC], 2010.

 Dedicated version of F₅ for such systems (avoiding reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear 0-dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

 $D_{reg} \leq \min(n_X, n_Y) + 1$ [vs. $n_X + n_Y + 1$ for a rand. system].

Polynomial time complexity for computing the Gröbner basis if the min is constant.

Complexity of Solving Bilinear Systems

J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. "Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity". arXiv:1001.4004v1 [cs.SC], 2010.

 Dedicated version of F₅ for such systems (avoiding reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear 0-dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

 $D_{reg} \leq \min(n_X, n_Y) + 1$ [vs. $n_X + n_Y + 1$ for a rand. system].

Polynomial time complexity for computing the Gröbner basis if the min is constant.

[Second step – Extracting a Bilinear Subsystem.] We keep only the exponents of X_i that are powers of 2:

biMcE_{*n,k,t*}(**X**, **Y**)
$$\stackrel{\text{def}}{=} \begin{cases} \vdots \\ g_{i,0} Y_0 X_0^{2^{\ell}} + \ldots + g_{i,n-1} Y_{n-1} X_{n-1}^{2^{\ell}} = 0 \\ \vdots \end{cases}$$

- with $i \in \{0, ..., k-1\}$ and $\ell \in \{0, ..., \log_2(t-1)\}$.
 - The system is "quasi" bilinear, precisely bi-homogeneous of bi-degree (1, 2^ℓ) (Char(F_q) = 2)

Solving biMcE_{n,k,t}($\boldsymbol{X}, \boldsymbol{Y}$)

- [First step Cleaning.] Let d be the number of free variables in Y.
- 2 [Second step Extracting a Bilinear Subsystem.]

"Naive Approach"

- If *d* is very small then perform an exhaustive search in \mathbb{F}_{q^m}
- Solve the remaining linear system with the X_i's
- Time complexity $\mathcal{O}\left(q^{md}(mn_X)^3\right)$
- Challenge A₂₀ (BCGO variant):

■
$$q = 2^{10}, m = 2, d = 3 \longrightarrow \ge 2^{60}$$
 (here $2^{15.8}$)

Solving biMcE_{n,k,t}($\boldsymbol{X}, \boldsymbol{Y}$)

- [First step Cleaning.] Let d be the number of free variables in Y.
- [2] [Second step Extracting a Bilinear Subsystem.]

"Naive Approach"

- If *d* is very small then perform an exhaustive search in \mathbb{F}_{q^m}
- Solve the remaining linear system with the X_i's
- Time complexity $\mathcal{O}\left(q^{md}(mn_X)^3\right)$
- Challenge A₂₀ (BCGO variant):

■
$$q = 2^{10}, m = 2, d = 3 \longrightarrow 2^{60}$$
 (here $2^{15.8}$)

Complexity of Solving biMcE_{n,k,t}(**X**, **Y**)

$biMcE_{n,k,t}(\boldsymbol{X},\boldsymbol{Y})$

Let d be the number of free variables in **Y**.

- For biMcE_{*n*,*k*,*t*(\boldsymbol{X} , \boldsymbol{Y}), it holds that $D_{reg} \leq \boldsymbol{d} + 1$.}
- Computing a Gröbner basis of biMcE_{n,k,t}(X, Y) can be done with a tweaked version of F₅ in:

 $\mathcal{O}\left(n_{X}^{\omega(d+1)}
ight),$

 $2 \le \omega \le 3$ being the linear algebra constant.

	q	l	n ₀	d	Sec. (log)	n _X	#Eq	Time (Op., M.)	T _{theo}
A ₁₆	2 ⁸	51	9	3	80	8	510	0.06 sec (2 ^{18.9} op, 115 Meg)	2 ¹⁷
B ₁₆	2 ⁸	51	10	3	90	9	612	0.03 sec (2 ^{17.1} op, 116 Meg)	2 ¹⁸
C ₁₆	2 ⁸	51	12	3	100	11	816	0.05 sec (2 ^{16.2} op, 116 Meg)	2 ²⁰
D ₁₆	2 ⁸	51	15	4	120	14	1275	0.02 sec (2 ^{14.7} op, 113 Meg)	2 ²⁶
A ₂₀	2 ¹⁰	75	6	2	80	5	337	0.05 sec (2 ^{15.8} op, 115 Meg)	2 ¹⁰
B ₂₀	2 ¹⁰	93	6	2	90	5	418	0.05 sec (2 ^{17.1} op, 115 Meg)	2 ¹⁰
C ₂₀	2 ¹⁰	93	8	2	110	7	697	0.02 sec (2 ^{14.5} op, 115 Meg)	2 ¹¹
QC ₆₀₀	2 ⁸	255	15	3	600	14	6820	0.08 sec (2 ^{16.6} op, 116 Meg)	2 ²¹

- The solutions always belong to F_{q^m} with m = 2 (BCGO constraint)
- We also proposed the parameter QC₆₀₀ to show the influence of d

	q	d	l	n ₀	Sec. (log)	nχ	#Equ	Time (Op., Me.)	T _{theo}
T. 2	2 ²	7	64	56	128	59	193, 584	1, 776.3 sec (2 ^{34.2} op, 360 Meg)	2 ⁶⁵
T. 2	2 ⁴	3	64	32	128	36	112, 924	0.50 sec (2 ^{22.1} op, 118M)	2 ²⁹
T. 2	2 ⁸	1	64	12	128	16	40,330	0.03 sec (2 ^{16.7} op, 35M)	2 ⁸
T. 3	2 ⁸	1	64	10	102	14	32, 264	0.03 sec (2 ^{15.9} op, 113M.)	2 ⁸
T. 3	2 ⁸	1	128	6	136	11	65,028	0.02 sec (2 ^{15.4} op, 113 M.)	27
Т. З	2 ⁸	1	256	4	168	10	130, 562	0.11 sec (2 ^{19.2} op, 113M.)	2 ⁷
T. 5	2 ⁸	1	128	4	80	9	32, 514	0.06 sec (2 ^{17.7} op, 35M.)	2 ⁶
T. 5	2 ⁸	1	128	5	112	10	48,771	0.02 sec (2 ^{14.5} op, 35M.)	2 ⁷
T. 5	2 ⁸	1	128	6	128	11	65,028	0.01 sec (2 ^{16.6} op, 35 M.)	27
T. 5	2 ⁸	1	256	5	192	11	195, 843	0.05 sec (2 ^{17.5} op, 35M.)	27
T. 5	2 ⁸	1	256	6	256	12	261, 124	0.06 sec (2 ^{17.8} op, 35M.)	2 ⁷
D ₂₅₆	2 ⁴	3	128	32	256	37	455, 196	7.1 sec (2 ^{26.1} op, 131M.)	2 ²⁹
D ₅₁₂	2 ⁸	1	512	6	512	13	1,046,532	0.15 sec (2 ^{19.7} op, 38M.)	2 ⁸

- Binary challenges are not solved (work in progress)
- We proposed the challenges D₂₅₆ and D₅₁₂

Conclusion

MCELIECE scheme is a *challenging* public key cryptosystem

- Little is known about key-recovery attacks
- We introduced an algebraic framework for tackling this issue focusing on a bilinear subsystem
- This approach gave successful results for variants with compact keys
 - The proposed parameters were too optimistic (key should be larger)
 - An unbalanced number of variables does not improve the security

Conclusion

J.-C. Faugère, V. Gauthier, A. Otmani, L. Perret and J-P. Tillich.

"A Distinguisher for High Rate McEliece Cryptosystems". ITW'11.

Explain the defect of Rank

Formalize the advantage (prob. of success)

L. Dallot.

"Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme." WeWorc'07.

- ALGEBRAIC TECHNIQUES vs QUANTUM ?
 - H. Dinh, C. Moore, and A. Russell. "The McEliece Cryptosystem Resists Quantum Fourier Sampling Attacks."