Algebraic Analysis of McEliece Cryptosystems

J.-C. Faugère ${ }^{1} \quad$ A. Otmani ${ }^{2,3} \quad$ L. Perret ${ }^{1} \quad$ J.-P. Tillich ${ }^{2}$

SALSA Team-Project - LIP6/UPMC/INRIA Paris-Rocquencourt jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

SECRET Team-Project - INRIA Paris-Rocquencourt ayoub.otmani@inria.fr, jean-pierre.tillich@inria.fr

GREYC - Université de Caen - Ensicaen

Post-Quantum Cryptography

Known Candidates
■ Lattice-based Cryptography

- Multivariate Cryptography

■ Code-based Cryptography

Post-Quantum Cryptography

Known Candidates

■ Lattice-based Cryptography

- Multivariate Cryptography
- Public-key is large, but recent papers seem to mitigate this issue [Petzoldt, Bulygin, Buchmann]
■ Code-based Cryptography
■ Public-key is large, but key-reduction techniques [Barreto et al, Berget et al]
- provable-security

Post-Quantum Cryptography

Known Candidates

■ Lattice-based Cryptography

- Multivariate Cryptography

■ Public-key is large, but recent papers seem to mitigate this issue [Petzoldt, Bulygin, Buchmann]
■ Code-based Cryptography

- Public-key is large, but key reduction techniques [Barreto et al, Berget et all
- provable-security

McEliece's Cryptosystem [R.J. McEliece, 1978]

■ One of the oldest public-key cryptosystems
■ based on coding theory
■ Principle is to mask a structured code in such a way that it looks like random

■ Trapdoor $=\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y})$ [parity-check matrix of a Goppa/alternant code \boldsymbol{G}_{s}]
■ Public key $=$ Random basis \boldsymbol{G} of $\operatorname{Ker}\left(\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y})\right) \cap \mathbb{F}_{q}^{n}$

Generation of (pk, sk)

1 Choose a generator matrix \boldsymbol{G}_{s} of a Goppa (or alternant) code \mathcal{C}_{s} randomly chosen
2 Pick at random:
■ $n \times n$ permutation matrix \boldsymbol{P}

- $k \times k$ non-singular matrix \boldsymbol{S}

3 Compute $\boldsymbol{G}=\boldsymbol{S} \times \boldsymbol{G}_{\boldsymbol{s}} \times \boldsymbol{P}$
4 Output

$$
\mathrm{pk}=(\boldsymbol{G}, t) \quad \text { and } \quad \mathrm{sk}=\left(\boldsymbol{S}, \boldsymbol{G}_{\boldsymbol{s}}, \boldsymbol{P}\right)
$$

Encrypt/Decrypt

$\boldsymbol{c} \in \mathbb{F}_{2}^{n} \leftarrow \operatorname{Encrypt}\left(\boldsymbol{m} \in \mathbb{F}_{2}^{k}\right)$
1 Draw at random $\boldsymbol{e} \in \mathbb{F}_{2}^{n}$ of Hamming weight at most t
2 Output $\boldsymbol{c}=\boldsymbol{m} \times \boldsymbol{G} \oplus \boldsymbol{e}$
$\boldsymbol{m}^{\prime} \in \mathbb{F}_{2}^{k} \leftarrow \operatorname{Decrypt}\left(\boldsymbol{c}^{\prime} \in \mathbb{F}_{2}^{n}\right)$
1 Let $\gamma_{\boldsymbol{G}_{s}}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{k}$ be a decoding algorithm associated to \boldsymbol{G}_{s}

2 Compute $\boldsymbol{z}=\boldsymbol{c}^{\prime} \times \boldsymbol{P}^{-1}$
3 Compute $\boldsymbol{y}=\gamma_{\boldsymbol{G}_{s}}(\boldsymbol{z})$

$$
\begin{aligned}
/ / \boldsymbol{z}=\left(\boldsymbol{m} \times \boldsymbol{S} \times \boldsymbol{G}_{\boldsymbol{s}}\right) & \oplus\left(\boldsymbol{e} \times \boldsymbol{P}^{-1}\right) \\
& / / \boldsymbol{y}=\boldsymbol{m} \times \boldsymbol{S}
\end{aligned}
$$

4 Output $\boldsymbol{m}^{\prime}=\boldsymbol{y} \times \boldsymbol{S}^{-1}$
$/ / \boldsymbol{m}^{\prime}=\boldsymbol{m}$

Security of McEliece - Message-recovery

■ Related to the difficulty of inverting Encrypt:

$$
\boldsymbol{c} \rightsquigarrow(\boldsymbol{m}, \boldsymbol{e}) \text { such that } \boldsymbol{c}=\boldsymbol{m} \times \boldsymbol{G} \oplus \boldsymbol{e} .
$$

Given (n, k, t) and a random $k \times n$ matrix G, we set:

$$
\begin{aligned}
f_{\boldsymbol{G}, t}: \mathbb{F}_{2}^{k} \times \mathcal{B}_{n}(\mathbf{0}, t) & \longrightarrow \mathbb{F}_{2}^{n} \\
(\boldsymbol{x}, \boldsymbol{e}) & \longmapsto \boldsymbol{m} \times \boldsymbol{G} \oplus \boldsymbol{e}
\end{aligned}
$$

where $\mathcal{B}_{n}(\mathbf{0}, t)=\left\{\boldsymbol{z} \in \mathbb{F}_{2}^{n}: \operatorname{wt}(\boldsymbol{z}) \leq t\right\}$.
Inverting $f_{G, t}$ is NP-Hard (Berlekamp - McEliece - Van
Tilborg '78)
Best algorithms are based on Information Set Decoding
■ McEliece ('78), Lee - Brickell ('88), Leon ('88), Stern ('93), ...
■ Binary codes : Canteaut-Chabaud ('98), Sendrier-Finiasz'08, Bernstein - Lange - Peters ('08,'11), May - Meurer - Thomae ('11) . . .

Security of McEliece - Key-recovery (I)

- Related to the difficulty of extracting the secret matrices:

$$
\boldsymbol{G} \rightsquigarrow\left(\boldsymbol{S}, \boldsymbol{G}_{s}, \boldsymbol{P}\right) \text { such that } \boldsymbol{G}=\boldsymbol{S} \times \boldsymbol{G}_{\boldsymbol{s}} \times \boldsymbol{P}
$$

■ Finding the $(\boldsymbol{S}, \boldsymbol{P})$ is not hard in practice if \boldsymbol{G}_{s} is known (SENDRIER '00)
■ No real structural attack against McEliece's scheme ...

Goppa Code Distinguishing (GD) [CourtoIs, FINIASZ, AND SENDRIER, 2001]
 Let $\boldsymbol{G}=\boldsymbol{S} \times \boldsymbol{G}_{\boldsymbol{s}} \times \boldsymbol{P}$ be the public matrix of McEliece's scheme.
 - GD is the problem of distinguishing G from a random matrix of the same type.

Security of McEliece - Key-recovery (II)

Goppa Code Distinguishing (GD) [CFS'01]

Let $\boldsymbol{G}=\boldsymbol{S} \times \boldsymbol{G}_{\boldsymbol{s}} \times \boldsymbol{P}$ be the public matrix of McEliece's scheme.
■ GD is the problem of distinguishing G from a random matrix of the same form.

■ standard assumption for proving the security (NOJIMA, imai, Kobara, Morozov, Sendrier, Finaisz, Dallot, Vergnaut, VÉron, ...

E H. Dinh, C. Moore, and A. Russell.
"The McEliece Cryptosystem Resists Quantum Fourier Sampling Attacks."
Crypto'11.

Outline

1 McEliece's Algebraic System

2 Linearizing McEliece's Algebraic System

3 Simplifying McEliece's Algebraic System

4 Bi-Homogeneous Structure of McEliece's System

Alternant Codes

Consider two fields \mathbb{F}_{q} and $\mathbb{F}_{q^{m}}$ with $q=2^{s}(s \geq 1)$ and $m \geq 1$
$\square \boldsymbol{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{F}_{q^{m}}^{n}$ such that $x_{i} \neq x_{j}$, if $i \neq j$.
$\square \boldsymbol{y}=\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{F}_{q^{m}}^{n}$ with $y_{i} \neq 0$.
For any $t<n$, we set:

$$
\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y})=\left(\begin{array}{llll}
y_{0} & y_{1} & \cdots & y_{n-1} \\
y_{0} x_{0} & y_{1} x_{1} & \cdots & y_{n-1} x_{n-1} \\
\vdots & \vdots & & \vdots \\
y_{0} x_{0}^{t-1} & y_{1} x_{1}^{t-1} & \cdots & y_{n-1} x_{n-1}^{t-1}
\end{array}\right)
$$

Definition

An alternant code $\mathcal{A}_{t}(\boldsymbol{x}, \boldsymbol{y})$ is the kernel of $\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y})$ in \mathbb{F}_{q}^{n}, i.e.

$$
\boldsymbol{v} \in \mathcal{A}_{t}(\boldsymbol{x}, \boldsymbol{y}) \Longleftrightarrow \boldsymbol{v} \in \mathbb{F}_{q}^{n} \text { and } \boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{v}^{T}=\mathbf{0}
$$

Can be efficiently decoded if $\boldsymbol{x}, \boldsymbol{y}$ are known.

Algebraic Cryptanalysis of McEliece - (I)

■ What we have: $\boldsymbol{G}=\left(g_{i, j}\right)$ is the public matrix
■ What is known: rows of \boldsymbol{G} belong to the kernel of $\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y})$
\Rightarrow The secret vectors \boldsymbol{x} and \boldsymbol{y} satisfy $\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{G}^{T}=\mathbf{0}_{t, k}$, i.e.

$$
\left(\begin{array}{llll}
Y_{0} & Y_{1} & \cdots & Y_{n-1} \\
Y_{0} X_{0} & Y_{1} X_{1} & \cdots & Y_{n-1} X_{n-1} \\
\vdots & \vdots & & \vdots \\
Y_{0} X_{0}^{t-1} & Y_{1} X_{1}^{t-1} & \cdots & Y_{n-1} X_{n-1}^{t-1}
\end{array}\right) \quad \boldsymbol{G}^{T}=\mathbf{0}_{t, k}
$$

Algebraic Cryptanalysis of McEliece - (II)

$\operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})=$
$\sum \vdots$

$$
g_{i, 0} Y_{0} X_{0}^{j}+\ldots+g_{i, n-1} Y_{n-1} X_{n-1}^{j}=0 \text { with }\left\{\begin{array}{l}
i \in\{0, \ldots, k-1\} \\
j \in\{0, \ldots, t-1\}
\end{array}\right.
$$

$\square g_{i, j}$'s are known coefficients in \mathbb{F}_{q} of the public matrix

- k is an integer $\geq n-t m$.

[Mceliece, 1978

$q=2, m=10, n=1024, t=50 \Rightarrow k \geqslant 524$ - Public key has 250Kbits (60-bit security) - \#variables

Algebraic Cryptanalysis of McEliece - (II)

$\operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})=$

$$
\left\{\begin{array}{l}
\vdots \\
g_{i}, \\
\vdots
\end{array}\right.
$$

$$
g_{i, 0} Y_{0} X_{0}^{j}+\ldots+g_{i, n-1} Y_{n-1} X_{n-1}^{j}=0 \text { with }\left\{\begin{array}{l}
i \in\{0, \ldots, k-1\} \\
j \in\{0, \ldots, t-1\}
\end{array}\right.
$$

■ $g_{i, j}$'s are known coefficients in \mathbb{F}_{q} of the public matrix

- k is an integer $\geq n-t m$.

[McEliece, 1978]

$q=2, m=10, n=1024, t=50 \Rightarrow k \geqslant 524$

- Public key has 250Kbits (60-bit security)

■ \#variables \approx 2048, \#equations ≈ 26200.

Outline

1 McEliece's Algebraic System

2 Linearizing McEliece's Algebraic System

3 Simplifying McEliece's Algebraic System

4 Bi-Homogeneous Structure of McEliece's System

Systematic Form of the Public Matrix

■ $k=n-m \cdot t$.
■ Let $\mathbf{P}=\left(p_{i j}\right)_{\substack{1 \leq i \leq k \\ k+1 \leq j \leq n}}$ be the sub-matrix of \boldsymbol{G} formed by its last $m t$ columns.

Systematic Form of the System

■ Let $\mathbf{P}=\left(p_{i j}\right)_{\substack{1 \leq i \leq k \\ k+1 \leq j \leq n}}^{\substack{1\\}}$ be the submatrix of G formed by its last $m t$ columns.
$\operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})=$

$$
\left\{\begin{array}{lll}
\mathbf{Y}_{\mathbf{i}} & = & \sum_{\mathbf{j}=\mathbf{k}+\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}, \mathbf{j}} \mathbf{Y}_{\mathbf{j}}, \\
\mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}} & = & \sum_{\mathbf{j}=\mathbf{k}+\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}, \mathbf{j}} \mathbf{Y}_{\mathbf{j}} \cdot \mathbf{X}_{\mathbf{j}}, \text { for all } i \in\{0, \ldots, k-1\} \\
\mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}^{2} & = & \sum_{\mathbf{j}=\mathbf{k}+1}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}, \mathbf{j}} \mathbf{Y}_{\mathbf{j}} \cdot \mathbf{X}_{\mathbf{j}}^{2}, \text { for all } i \in\{0, \ldots, k-1\} \\
& \cdots & \\
Y_{i} X_{i}^{t-1} & = & \sum_{j=k+1}^{n} p_{i, j} Y_{j} \cdot X_{j}^{t-1}, \text { for all } i \in\{0, \ldots, k-1\}
\end{array}\right.
$$

[MCELIECE, 1978$]$

$q=2, m=10, n=1024, t=50 \Rightarrow k=524$
■ Public key has 250Kbits (60-bit security)
■ \#variables ≈ 2048, \#equations ≈ 26200.

Systematic Form of the System

■ Let $\mathbf{P}=\left(p_{i j}\right)_{\substack{1 \leq i \leq k \\ k+1 \leq j \leq n}}$ be the submatrix of \boldsymbol{G} formed by its last $m t$ columns.
$\operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})=$

$$
\left\{\begin{array}{lll}
\mathbf{Y}_{\mathbf{i}} & = & \sum_{\mathbf{j}=\mathbf{k}+\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}, \mathbf{j}} \mathbf{Y}_{\mathbf{j}}, \text { for all } i \in\{0, \ldots, k-1\} \\
\mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}} & = & \sum_{\mathbf{j}=\mathbf{k}+\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}, \mathbf{j}} \mathbf{Y}_{\mathbf{j}} \cdot \mathbf{X}_{\mathbf{j}}, \text { for all } i \in\{0, \ldots, k-1\} \\
\mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}^{2} & = & \sum_{\mathbf{j}=\mathbf{k}+\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}, \mathbf{j}} \mathbf{Y}_{\mathbf{j}} \cdot \mathbf{X}_{\mathbf{j}}^{2}, \text { for all } i \in\{0, \ldots, k-1\} \\
& \cdots & \\
Y_{i} X_{i}^{t-1} & = & \sum_{j=k+1}^{n} p_{i, j} Y_{j} \cdot X_{j}^{t-1}, \text { for all } i \in\{0, \ldots, k-1\}
\end{array}\right.
$$

■ Consider the trivial identity $\mathbf{Y}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}^{\mathbf{2}}=\left(\mathbf{Y}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}\right)^{\mathbf{2}}$ i.e. $\operatorname{Rows}(1) \times \operatorname{Rows}(3)=\operatorname{Rows}(2)^{2}$

Linearization of McEliece

$$
\begin{aligned}
\operatorname{Rows}(1) \times \operatorname{Rows}(3) & =\operatorname{Rows}(2)^{2} \\
\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j}\right)\left(\sum_{j^{\prime}=k+1}^{n} p_{i, j^{\prime}} Y_{j^{\prime}} X_{j^{\prime}}^{2}\right) & =\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j} X_{j}\right)^{2} \\
\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j}\right)\left(\sum_{j^{\prime}=k+1}^{n} p_{i, j^{\prime}} Y_{j^{\prime}} X_{j^{\prime}}^{2}\right) & =\sum_{j=k+1}^{n} p_{i, j}^{2} Y_{j}^{2} X_{j}^{2} \quad \text { [Char. 2] }
\end{aligned}
$$

Linearization of McEliece

$$
\begin{aligned}
\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j}\right)\left(\sum_{j^{\prime}=k+1}^{n} p_{i, j^{\prime}} Y_{j^{\prime}} X_{j^{\prime}}^{2}\right) & =\sum_{j=k+1}^{n} p_{i, j}^{2} Y_{j}^{2} X_{j}^{2} \\
\sum_{j=k+1}^{n} p_{i, j}^{2} Y_{j}^{2} X_{j}^{2}+\sum_{j=k+1}^{n} \sum_{j^{\prime} \neq j} p_{i, j} p_{i, j^{\prime}} Y_{j} Y_{j^{\prime}} X_{j^{\prime}}^{2} & =\sum_{j=k+1}^{n} p_{i, j}^{2} Y_{j}^{2} X_{j}^{2} \\
\sum_{j=k+1}^{n} \sum_{j^{\prime} \neq j} p_{i, j} p_{i, j^{\prime}} Y_{j} Y_{j^{\prime}} X_{j^{\prime}}^{2} & =0, \forall i \in\{0, \ldots, k-1\}, \\
\sum_{j=k+1}^{n} \sum_{j^{\prime}>j}^{n} p_{i, j} p_{i, j^{\prime}} Y_{j} Y_{j^{\prime}}\left(X_{j}^{2}+X_{j^{\prime}}^{2}\right) & =0, \forall i \in\{0, \ldots, k-1\} .
\end{aligned}
$$

Linearization of McEliece

$\sum_{j=k+1}^{n} \sum_{j^{\prime}>j}^{n} p_{i, j} p_{i, j^{\prime}} Y_{j} Y_{j^{\prime}}\left(X_{j}^{2}+X_{j^{\prime}}^{2}\right)=0$, for all $i \in\{0, \ldots, k-1\}$,

$$
\sum_{j=k+1}^{n} \sum_{j^{\prime}>j}^{n} p_{i, j} p_{i, j^{\prime}} z_{i j^{\prime}}=0, \text { for all } i \in\{0, \ldots, k-1\}
$$

with $Z_{j j^{\prime}}=Y_{j} Y_{j^{\prime}}\left(X_{j}^{2}+X_{j^{\prime}}^{2}\right)$.

- Number of equations k

■ Number of variables $\binom{m t}{2}$

Experiments [Binary case $(q=2)$ and $m=14$]

t	3	4	5	6	7	8	9	10	11	12
N	861	1540	2415	3486	4753	6216	7875	9730	11781	14028
k	16342	16328	16314	16300	16286	16272	16258	16244	16230	16216
$D_{\text {random }}$	0	0	0	0	0	0	0	0	0	0
$D_{\text {alternant }}$	42	126	308	560	882	1274	1848	2520	3290	4158
$D_{\text {Goppa }}$	252	532	980	1554	2254	3080	4158	5390	6776	8316

t	13	14	15	16
N	16471	19110	21945	24976
k	16202	16188	16174	16160
$D_{\text {random }}$	269	2922	5771	8816
$D_{\text {alternant }}$	5124	6188	7350	8816
$D_{\text {Goppa }}$	10010	11858	13860	16016

■ $N \stackrel{\text { def }}{=}\binom{m t}{2}$ the number of variables

- $D_{\text {random }}$, dimension of the vector space solution for a random code
- $D_{\text {alternant }}$, dimension of the vector space solution for a random alternant code of degree r
■ $D_{\text {Goppa }}$, dimension of the vector space solution for a random Goppa code of degree r.

Experiments [Binary case $(q=2)$ and $m=14$]

Rank of a Linearized McEliece system using a Goppa code vs Rank of a Linearized McEliece system using a random code.

Bounds

Table: Smallest order t of a binary Goppa code of length $n=2^{m}$ for which our distinguisher does not work.

m	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$t_{\text {min }}$	8	8	11	16	20	26	34	47	62	85	114	157	213	290	400

雷 M. Finiasz, and N. Sendrier.
"Security Bounds for the Design of Code-Based Cryptosystems." Asiacrypt'09.

Outline

1 McEliece's Algebraic System

2 Linearizing McEliece's Algebraic System

3 Simplifying McEliece's Algebraic System

4 Bi-Homogeneous Structure of McEliece's System

Cleaning McEliece's Algebraic System

■ For $j=0$, linear equations involving only the variables of \mathbf{Y} :

$$
\left\{\begin{array}{l}
\vdots \\
g_{i, 0} Y_{0}+\ldots+g_{i, n-1} Y_{n-1}=0, \quad i \in\{0, \ldots, k-1\} . \\
\vdots
\end{array}\right.
$$

■ For quasi-cyclic/dyadic alternant codes, we have additional linear equations involving the variables of \mathbf{Y} (resp. X).

击 T. Berger, P.-L. Gayrel, P. Gaborit, A. Otmani "Reducing Key Length of the McEliece Cryptosystem". AFRICACRYPT 2009.

R R. Misoczki, P. Barreto.
"Compact McEliece Keys from Goppa Codes". SAC 2009

Cleaning McEliece's Algebraic System

$■$ For $j=0$, linear equations involving only the variables of \mathbf{Y} :

$$
\left\{\begin{array}{l}
\vdots \\
g_{i, 0} Y_{0}+\ldots+g_{i, n-1} Y_{n-1}=0, \quad i \in\{0, \ldots, k-1\} . \\
\vdots
\end{array}\right.
$$

■ For quasi-cyclic/dyadic alternant codes, we have additional linear equations involving the variables of \mathbf{Y} (resp. X).

目 T. Berger, P.-L. Cayrel, P. Gaborit, A. Otmani. "Reducing Key Length of the McEliece Cryptosystem". AFRICACRYPT 2009.

目 R. Misoczki, P. Barreto.
" Compact McEliece Keys from Goppa Codes". SAC 2009.

BCGO Proposal (Africacrypt’09)

Assumption

Let $n=\ell n_{0}$ and let β be a public element of $\mathbb{F}_{q^{m}}$ of order ℓ.
■ Secret key.
■ $\left(x_{0}, \ldots, x_{n_{0}-1}\right)$ with $x_{i} \in \mathbb{F}_{q^{m}}$ such that $x_{i} \neq x_{j}$ if $i \neq j$
■ $\left(y_{0}, \ldots, y_{n_{0}-1}\right)$ with $y_{i} \neq 0\left(y_{i} \in \mathbb{F}_{q^{m}}\right)$
■ $e \in\{0, \ldots, \ell-1\}$

- Public key. A basis \boldsymbol{G} of $\operatorname{Ker}\left(\boldsymbol{H}_{t}(\boldsymbol{x}, \boldsymbol{y})\right) \cap \mathbb{F}_{q}^{n}$ with

BCGO Proposal (Africacrypt'09)

- We have the following linear relations for any $i \in\left\{0, \ldots, n_{0}-1\right\}$ and $j \in\{0, \ldots, \ell-1\}$:

$$
\left\{\begin{array}{c}
x_{i \ell+j}=\beta^{j} x_{i \ell} \\
y_{i \ell+j}=\beta^{e j} y_{i \ell}
\end{array}\right.
$$

■ The system is completely described by n_{0} variables Y_{i} and n_{0} variables X_{i} assuming that e is known $(0 \leq e \leq 100)$

MB Proposal (SAC'09)

- The public code is an alternant over \mathbb{F}_{q} with $q=2^{s}(s \geq 1)$ where for any $0 \leq j \leq n_{0}-1$ and $0 \leq i, i^{\prime} \leq \ell-1$, we have:

$$
\begin{cases}y_{j \ell+i} & =y_{j \ell} \\ x_{j \ell+i}+x_{j \ell} & =x_{i}+x_{0} \\ x_{j \ell+\left(i \oplus i^{\prime}\right)} & =x_{j \ell+i}+x_{j \ell+i^{\prime}}+x_{j \ell}\end{cases}
$$

■ For any $1 \leq i \leq \ell-1$, if we write the binary decomposition of $i=\sum_{j=0}^{\log _{2}(\ell-\overline{1})} \eta_{j} 2^{j}$ then:

$$
x_{i}=x_{0}+\sum_{j=0}^{\log _{2}(\ell-1)} \eta_{j}\left(x_{2 j}+x_{0}\right)
$$

$■$ Hence, the system is described by n_{0} variables Y_{i} and $n_{0}+\log _{2}(\ell)$ variables X_{i}

Summary

We have equivalent secret-keys.
■ some variables can be fixed.
Let $n_{Y}\left(\right.$ resp. $\left.n_{X}\right)$ be $\# \mathbf{Y}($ resp. $\# \mathbf{X})$
$■ \operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y}) . n_{Y}=n-1$ and $n_{X}=n-3 \quad$ (one Y_{i} and three X_{i} 's)
■ BCGO variant. $n_{Y}=n_{0}-1$ and $n_{X}=n_{0}-1 \quad$ (one Y_{i} and one X_{i})
\square MB variant. $n_{Y}=n_{0}-1$ and $n_{X}=n_{0}-2+\log _{2}(\ell)$ (one Y_{i} and two X_{i} 's)
[First step - Cleaning.] Reduce the number of variables by
removing all the linear equations involving the Y_{i} 's (resp. X_{j} 's)
\Rightarrow Let d be the remaining variables in the block \mathbf{Y}.

Summary

We have equivalent secret-keys.

- some variables can be fixed.

Let $n_{Y}\left(r e s p . n_{X}\right)$ be $\# \mathbf{Y}$ (resp. $\# \mathbf{X}$)
$■ \operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y}) . n_{Y}=n-1$ and $n_{X}=n-3 \quad$ (one Y_{i} and three X_{i} 's)
■ BCGO variant. $n_{Y}=n_{0}-1$ and $n_{X}=n_{0}-1 \quad$ (one Y_{i} and one X_{i})
■ MB variant. $n_{Y}=n_{0}-1$ and $n_{X}=n_{0}-2+\log _{2}(\ell)$ (one Y_{i} and two X_{i} 's)
[First step - Cleaning.] Reduce the number of variables by removing all the linear equations involving the Y_{i} 's (resp. X_{j} 's)
\Rightarrow Let d be the remaining variables in the block \mathbf{Y}.

Outline

1 McEliece's Algebraic System

2 Linearizing McEliece's Algebraic System

3 Simplifying McEliece's Algebraic System

4 Bi-Homogeneous Structure of McEliece's System

Solving the Algebraic System

■ Naive approach by applying directly a generic Gröbner basis algorithm (Magma)

■ It fails for almost all challenges
■ But, one challenge A_{20} (AfricaCrypt '09) was broken in 24 hours of computation using a non negligible amount of memory

- How to exploit the particular structure of the system?

Solving the Algebraic System

■ Naive approach by applying directly a generic Gröbner basis algorithm (Magma)

- It fails for almost all challenges

■ But, one challenge A_{20} (AfricaCrypt '09) was broken in 24 hours of computation using a non negligible amount of memory
■ How to exploit the particular structure of the system ?

Computing a Gröbner Basis

■ Buchberger's algorithm (1965)
■ $\mathrm{F}_{4} / \mathrm{F}_{5}$ (J.-C. Faugère, 1999/2002)
\Rightarrow For a zero-dimensional (i.e. finite number of solutions) system of n variables:

$$
\mathcal{O}\left(n^{3 \cdot D_{\text {reg }}}\right),
$$

$D_{\text {reg }}$ being the maximum degree reached during the computation.

- Behavior on random systems of equations
- $D_{\text {reg }}$ is generically equal to $n+1$ (If \#eq. $=n$).

■ $\# \mathcal{S O l} \leq \prod_{i=1}^{n}$ degree $_{i}$ (Bezout's bound)

Bi-Homogeneous Structure of $\mathrm{Mc}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$

$\operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})=$
$\left\{\begin{array}{l}\vdots \\ g_{i, 0} Y_{0} X_{0}^{j}+\ldots+g_{i, n-1} Y_{n-1} X_{n-1}^{j}=0 \text { with } \\ \vdots\end{array}\right.$
\square The only monomials occurring are $Y_{i} X_{i}^{j}$

Definition

$f \in \mathbb{F}_{q^{m}}[\mathbf{X}, \mathbf{Y}]$ is bi-homogeneous of bi-degree $\left(d_{1}, d_{2}\right)$ if:

$$
\forall \alpha, \mu \in \mathbb{F}_{q^{m}}, f(\alpha \mathbf{X}, \mu \mathbf{Y})=\alpha^{d_{1}} \mu^{d_{2}} f(\mathbf{X}, \mathbf{Y})
$$

f is bilinear if it is bi-homogeneous of bi-degree $(1,1)$.

Bi-Homogeneous Structure of $\mathrm{Mc}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$

$\operatorname{McE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})=$
$\left\{\begin{array}{l}\vdots \\ g_{i, 0} \\ \vdots\end{array}\right.$

$$
g_{i, 0} Y_{0} X_{0}^{j}+\ldots+g_{i, n-1} Y_{n-1} X_{n-1}^{j}=0 \text { with }\left\{\begin{array}{l}
i \in\{0, \ldots, k-1\} \\
j \in\{0, \ldots, t-1\}
\end{array}\right.
$$

■ Each block of k equations is bi-homogeneous of bi-degree $(1, j)$

Definition

$f \in \mathbb{F}_{q^{m}}[\mathbf{X}, \mathbf{Y}]$ is bi-homogeneous of bi-degree $\left(d_{1}, d_{2}\right)$ if:

$$
\forall \alpha, \mu \in \mathbb{F}_{q^{m}}, f(\alpha \mathbf{X}, \mu \mathbf{Y})=\alpha^{d_{1}} \mu^{d_{2}} f(\mathbf{X}, \mathbf{Y})
$$

f is bilinear if it is bi-homogeneous of bi-degree $(1,1)$.

Complexity of Solving Bilinear Systems

© J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. "Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity". arXiv:1001.4004v1 [cs.SC], 2010.

■ Dedicated version of F_{5} for such systems (avoiding reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear 0 -dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

$$
\mathrm{D}_{\text {reg }} \leqslant \min \left(n_{X}, n_{Y}\right)+1
$$

Complexity of Solving Bilinear Systems

© J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. "Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity". arXiv:1001.4004v1 [cs.SC], 2010.

■ Dedicated version of F_{5} for such systems (avoiding reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear 0 -dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

$$
\mathrm{D}_{\text {reg }} \leqslant \min \left(n_{X}, n_{Y}\right)+1\left[\text { vs. } n_{X}+n_{Y}+1 \text { for a rand. system }\right] .
$$

Polynomial time complexity for computing the Gröbner basis

Complexity of Solving Bilinear Systems

© J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. "Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity". arXiv:1001.4004v1 [cs.SC], 2010.
$■$ Dedicated version of F_{5} for such systems (avoiding reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear 0 -dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

$$
\mathrm{D}_{\text {reg }} \leqslant \min \left(n_{X}, n_{Y}\right)+1\left[\text { vs. } n_{X}+n_{Y}+1 \text { for a rand. system }\right] .
$$

Polynomial time complexity for computing the Gröbner basis if the min is constant.

Extracting a Bilinear Subsystem

■ [Second step - Extracting a Bilinear Subsystem.] We keep only the exponents of X_{i} that are powers of 2:
$\operatorname{biMcE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y}) \stackrel{\text { def }}{=}\left\{\begin{array}{l}\vdots \\ g_{i, 0} Y_{0} X_{0}^{2^{\ell}}+\ldots+g_{i, n-1} Y_{n-1} X_{n-1}^{2^{\ell}}=0 \\ \vdots\end{array}\right.$
with $i \in\{0, \ldots, k-1\}$ and $\ell \in\left\{0, \ldots, \log _{2}(t-1)\right\}$.
■ The system is "quasi" bilinear, precisely bi-homogeneous of bi-degree $\left(1,2^{\ell}\right)\left(\operatorname{Char}\left(\mathbb{F}_{q}\right)=2\right)$

Solving biMcE $\mathrm{E}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$

1 [First step - Cleaning.] Let d be the number of free variables in \mathbf{Y}.
2 [Second step - Extracting a Bilinear Subsystem.]

"Naive Approach"

■ If d is very small then perform an exhaustive search in $\mathbb{F}_{q^{m}}$

- Solve the remaining linear system with the X_{i} 's
- Time complexity $\mathcal{O}\left(q^{m d}\left(m n_{X}\right)^{3}\right)$

■ Challenge A_{20} (BCGO variant):

- $q=2^{10}, m=2, d=3 \longrightarrow \geqslant 2^{60}$

Solving biMcE $\mathrm{E}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$

1 [First step - Cleaning.] Let d be the number of free variables in \mathbf{Y}.
2 [Second step - Extracting a Bilinear Subsystem.]

"Naive Approach"

■ If d is very small then perform an exhaustive search in $\mathbb{F}_{q^{m}}$

- Solve the remaining linear system with the X_{i} 's
- Time complexity $\mathcal{O}\left(q^{m d}\left(m n_{X}\right)^{3}\right)$

■ Challenge A_{20} (BCGO variant):
■ $q=2^{10}, m=2, d=3 \longrightarrow \geqslant 2^{60}\left(\right.$ here $\left.2^{15.8}\right)$

Complexity of Solving biMcE ${ }_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$

$\operatorname{biMcE}_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$

Let d be the number of free variables in \mathbf{Y}.
\square For biMcE $E_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$, it holds that $\mathrm{D}_{\text {reg }} \leqslant d+1$.
■ Computing a Gröbner basis of biMcE ${ }_{n, k, t}(\boldsymbol{X}, \boldsymbol{Y})$ can be done with a tweaked version of F_{5} in:

$$
\mathcal{O}\left(n_{X}^{\omega(d+1)}\right)
$$

$2 \leq \omega \leq 3$ being the linear algebra constant.

Practical results - BCGO Variant

	q	ℓ	n_{0}	d	Sec. (log)	n_{X}	\#Eq		
A_{16}	2^{8}	51	9	3	80	8	510	$0.06 \mathrm{sec}\left(2^{18.9} \mathrm{op}, 115 \mathrm{Meg}\right)$	2^{17}
B_{16}	2^{8}	51	10	3	90	9	612	$0.03 \mathrm{sec}\left(2^{17.1} \mathrm{op}, 116 \mathrm{Meg}\right)$	2^{18}
C_{16}	2^{8}	51	12	3	100	11	816	$0.05 \mathrm{sec}\left(2^{16.2} \mathrm{op}, 116 \mathrm{Meg}\right)$	2^{20}
D_{16}	2^{8}	51	15	4	120	14	1275	$0.02 \mathrm{sec}\left(2^{14.7} \mathrm{op}, 113 \mathrm{Meg}\right)$	2^{26}
A_{20}	2^{10}	75	6	2	80	5	337	$0.05 \mathrm{sec}\left(2^{15.8} \mathrm{op}, 115 \mathrm{Meg}\right)$	2^{10}
B_{20}	2^{10}	93	6	2	90	5	418	$0.05 \mathrm{sec}\left(2^{17.1} \mathrm{op}, 115 \mathrm{Meg}\right)$	2^{10}
C_{20}	2^{10}	93	8	2	110	7	697	$0.02 \mathrm{sec}\left(2^{14.5} \mathrm{op}, 115 \mathrm{Meg}\right)$	2^{11}
QC_{600}	2^{8}	255	15	3	600	14	6820	$0.08 \mathrm{sec}\left(2^{16.6} \mathrm{op}, 116 \mathrm{Meg}\right)$	2^{21}

■ The solutions always belong to $\mathbb{F}_{q^{m}}$ with $m=2$ (BCGO constraint)

- We also proposed the parameter QC_{600} to show the influence of d

Practical Results - MB Variant

	q	d	ℓ	n_{0}	Sec. (log)	n_{X}	\#Equ	Time (Op., Me.)	$T_{\text {theo }}$
T. 2	2^{2}	7	64	56	128	59	193,584	$1,776.3 \sec \left(2^{34.2} \mathrm{op}, 360 \mathrm{Meg}\right)$	2^{65}
T. 2	2^{4}	3	64	32	128	36	112,924	$0.50 \sec \left(2^{22.1} \mathrm{op}, 118 \mathrm{M}\right)$	2^{29}
T. 2	2^{8}	1	64	12	128	16	40,330	$0.03 \sec \left(2^{16.7} \mathrm{op}, 35 \mathrm{M}\right)$	2^{8}
T. 3	2^{8}	1	64	10	102	14	32,264	$0.03 \sec \left(2^{15.9} \mathrm{op}, 113 \mathrm{M}.\right)$	2^{8}
T. 3	2^{8}	1	128	6	136	11	65,028	$0.02 \sec \left(2^{15.4} \mathrm{op}, 113 \mathrm{M}.\right)$	2^{7}
T. 3	2^{8}	1	256	4	168	10	130,562	$0.11 \sec \left(2^{19.2} \mathrm{op}, 113 \mathrm{M}.\right)$	2^{7}
T. 5	2^{8}	1	128	4	80	9	32,514	$0.06 \sec \left(2^{17.7} \mathrm{op}, 35 \mathrm{M}.\right)$	2^{6}
T. 5	2^{8}	1	128	5	112	10	48,771	$0.02 \sec \left(2^{14.5} \mathrm{op}, 35 \mathrm{M}.\right)$	2^{7}
T. 5	2^{8}	1	128	6	128	11	65,028	$0.01 \sec \left(2^{16.6} \mathrm{op}, 35 \mathrm{M}.\right)$	2^{7}
T. 5	2^{8}	1	256	5	192	11	195,843	$0.05 \sec \left(2^{17.5} \mathrm{op}, 35 \mathrm{M}.\right)$	2^{7}
T. 5	2^{8}	1	256	6	256	12	261,124	$0.06 \sec \left(2^{17.8} \mathrm{op}, 35 \mathrm{M}.\right)$	2^{7}
D $_{256}$	2^{4}	3	128	32	256	37	455,196	$7.1 \sec \left(2^{26.1} \mathrm{op}, 131 \mathrm{M}.\right)$	2^{29}
D $_{512}$	2^{8}	1	512	6	512	13	$1,046,532$	$0.15 \sec \left(2^{19.7} \mathrm{op}, 38 \mathrm{M}.\right)$	2^{8}

■ Binary challenges are not solved (work in progress)
■ We proposed the challenges D_{256} and D_{512}

Conclusion

McEliece scheme is a challenging public key cryptosystem
■ Little is known about key-recovery attacks

- We introduced an algebraic framework for tackling this issue focusing on a bilinear subsystem
This approach gave successful results for variants with compact keys

■ The proposed parameters were too optimistic (key should be larger)

- An unbalanced number of variables does not improve the security

Conclusion

囦 J.-C. Faugère, V. Gauthier, A. Otmani, L. Perret and J-P. Tillich.
"A Distinguisher for High Rate McEliece Cryptosystems".
ITW'11.
■ Explain the defect of Rank
■ Formalize the advantage (prob. of success)
R. Dallot.
"Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme." WeWorc'07.

■ Algebraic techniques vs Quantum?
H. Dinh, C. Moore, and A. Russell.
"The McEliece Cryptosystem Resists Quantum Fourier Sampling Attacks."

