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MCELIECE’s Cryptosystem [R.J. MCELIECE, 1978]

m One of the oldest public-key cryptosystems
m based on coding theory

m Principle is to mask a structured code in such a way that it
looks like random

m Trapdoor = H;(x, y) [parity-check matrix of a
Goppa/alternant code Gg]

m Public key = Random basis G of Ker(Ht(x7 y)) N7




Generation of (pk, sk)

Choose a generator matrix Gs of a Goppa (or alternant)
code Cs randomly chosen
Pick at random:
®m n x n permutation matrix P
B Kk x k non-singular matrix S
Compute G=8x Gs x P

Output
pk =(G,t) and sk =(S,Gs,P)



Encrypt/Decrypt

¢ cF) — Encrypt(mc ]Flz()
Draw at random e € I of Hamming weight at most ¢
Outputc=mx G e

m € F§ «— Decrypt(c’ € F3)
Let vg, : F§ — & be a decoding algorithm associated to G
Computez=¢'x P //z=(mxS8x Gs)® (ex P

Compute y = vg,(2) ly=mxS8
Output m’ =y x §~' //m =m



Security of McEliece — Message-recovery

m Related to the difficulty of inverting Encrypt:
c~>(m,e) suchthat c=mxGae.
Given (n, k, t) and a random k x n matrix G, we set:

far : TF5xBn(0,t) — TFJ
(x,e) — mxGaoe

where B,(0,t) = {z € F} : wt(z) < t}.

Inverting fg ; is NP-Hard (BERLEKAMP - MCELIECE - VAN

TILBORG '78)

Best algorithms are based on Information Set Decoding
m MCELIECE ('78), LEE - BRICKELL (’88), LEON (’88), STERN (’93), ...

m Binary codes : CANTEAUT-CHABAUD ('98), SENDRIER-FINIASZ'08, BERNSTEIN
- LANGE - PETERS (’08,’11), MAY - MEURER - THOMAE (’11) ...



Security of McEliece — Key-recovery (l)

m Related to the difficulty of extracting the secret matrices:
G~ (S,Gs,P) suchthat G=8x Gs x P.

m Finding the (S, P) is not hard in practice if Gs is known
(SENDRIER '00)

m No real structural attack against McEliece’s scheme ...

Goppa Code Distinguishing (GD) [COURTOIS, FINIASZ, AND

SENDRIER, 2001
Let G = S x G5 x P be the public matrix of McEliece’s scheme.

m GD is the problem of distinguishing G from a random
matrix of the same type.



Security of McEliece — Key-recovery (ll)

Goppa Code Distinguishing (GD) [CFS’01]

Let G = S x G5 x P be the public matrix of McEliece’s scheme.
m GD is the problem of distinguishing G from a random
matrix of the same form.

m standard assumption for proving the security (NOJIMA,
IMAI, KOBARA, MOROZOV, SENDRIER, FINAISZ, DALLOT,

VERGNAUT, VERON, ...

[ H. Dinh, C. Moore, and A. Russell.
“The McEliece Cryptosystem Resists Quantum Fourier

Sampling Attacks."
Crypto’11.
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Alternant Codes

Consider two fields Fq and Fqm with g = 2% (s > 1) and m > 1
® X = (X0,...,Xp-1) € Fgm such that x; # x;, if i # /.
my=0U0--Yn1)E }Fgm with y; # 0.

For any t < n, we set:

Yo Y1 o Yn

Hi(x.y) = %/oxo ¥1 X4 %’n—1Xn—1

1 t—1

t—1
ynfdl Xn_‘]

YoX, Y1 Xff
Definition
An alternant code A:(x, y) is the kernel of Hi(x,y) in IFg, i.e.

veA(x,y) < VveF] and Hi(x,y)vT =0.

Can be efficiently decoded if x, y are known.



Algebraic Cryptanalysis of McEliece — (I)

m What we have: G = (g;;) is the public matrix
m What is known: rows of G belong to the kernel of H;(x, y)

= The secret vectors x and y satisfy Hy(x,y) GT = 0:, i.e.

Yo Yi o Yo
YoXo  YiXi o Yo 1 X0
. . : ! 5 GT - ot’k.

YoXt vixET o vy Xt]



Algebraic Cryptanalysis of McEliece — (ll)

McE,  +(X, Y)=

ic{0,....k—1}

9i0YoXy + -+ Gin1 Yn1X),_; = O with { je{0,...,t—1}

m g;;'s are known coefficients in g of the public matrix
m kisaninteger > n—tm.



Algebraic Cryptanalysis of McEliece — (ll)

McE,  +(X, Y)=

ic{0,....k—1}

g,70Y0X6+...+g,-,n—1 Yn—1X{;71 = 0 with { je{0,...;t—1}

m g;;'s are known coefficients in g of the public matrix
m kisaninteger > n—tm.

[McEliece, 1978]

g=2,m=10,n=1024,t =50 = k > 524
m Public key has 250Kbits (60-bit security)
m #variables ~ 2048, #equations ~ 26200.
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Systematic Form of the Public Matrix

k n—k=mr

mBk=n—m-t.

m Let P = (p;j) 1<i<k be the sub-matrix of G formed by its
k+1<j<n
last mt columns.



Systematic Form of the System

m Let P = (pj) 1<i<k be the submatrix of G formed by its
k+1<j<n
last mt columns.

McE, k+(X, Y)=

Y; = > itk PijYj, forallie {0,... .k -1}
YiXi = Z —k+1 PijYj X,, forallie {0,...,k—1}
YiX2 = Zl ki1 PijYj- X2, forallic{0,... .k -1}
yx- = Z}’:k+1p,-,ij-)(jt’1,forallie{O,...,k—1}

g=2,m=10,n=1024,t =50 = k = 524
m Public key has 250Kbits (60-bit security)
m #variables ~ 2048, #equations ~ 26200.




Systematic Form of the System

m Let P = (pj) 1<i<k be the submatrix of G formed by its
k+1<j<n
last mt columns.

MCEn,k,t(X> Y)=

Y; = Z]n:k-H Pi,ija forallj e {0, cey Kk — 1}
YiX; = Z'i‘:k-ﬂ pi,jYi . Xi’ forall i € {0, oo k= 1}
Y|X|2 = Zi:k-‘r‘l pi,iYi . Xlz, forall i € {0, oo k= 1}
YiX{Tt = YlepiY;- Xl forallie {0, k—1}

m Consider the trivial identity Y;Y;X2 = (Y;X;)?
i.e. Rows(1)xRows(3)=Rows(2)?



Linearization of McEliece

Rows(1)xRows(3) = Rows(2)?

2
n n n
YooYl X o ppiX | = | D pyYiX
j=k+1 j'=k+1 j=k+1

n n
(Z Pi,jyj) ( Z pij Yy X) = Z 'DI'Z,/'Y/2X/'2 [Char. 2]
j

j=k+1 =k+1 j—kt1



Linearization of McEliece

n n
> o] [ X mmxg) = X s
j=k+1 J'=k+1 j=k+1

n n n
YoPYEXEE YD Y PP iy Xp = >0 phYEXE
J=k+1 J=k+1 ' #) j=k+1
n
YD pipiyViYpX; = 0,vie{0,... . k—1},
j=k+1

Z Zp,,p,,yv( +X2) — 0.Vie{0,... k—1}

j=k+1j'>j



Linearization of McEliece

n n
> Y pupy Yy (XF+X2) = o, forallic{0,.... k— 1},
j=k+1j'>]

n n
Z Zp,-Jp,-,j/ij/ = 0, forallj e {0,,k— 1},
j=k+1j'>j
with Zyy = Y;¥y (X2 + X2).
m Number of equations k
m Number of variables (')



Experiments [Binary case (g = 2) and m = 14]

I t [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 T 11 T 12 7]
N 861 7540 | 2415 | 3486 | 4753 | 6216 | 7875 | 9730 | 11781 | 14028
k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216
Drandom 0 0 0 0 0 0 0 0 0 0
Datiernant ) 26 308 560 882 1274 | 1848 | 2520 | 3290 | 4158
™ Dooppa 252 532 980 1554 | 2254 | 3080 | 4158 | 5390 | 6776 | 8316
I t [ 138 [ 14 [ 15 [ 16 ]
N 76471 | 19110 | 21945 | 24976
K 76202 | 16188 | 16174 | 16160
Drandom 269 2922 | 5771 | 8816
Daernant | 5124 | 6188 | 7350 | 8816
Dgoppa | 10010 | 11858 | 13860 | 16016

a N ("2) the number of variables

® D.andom, dimension of the vector space solution for a
random code

B Daernant; dimension of the vector space solution for a
random alternant code of degree r

B Dgoppa, dimension of the vector space solution for a
random Goppa code of degree r.



Experiments [Binary case (g = 2) and m = 14]

Rank of a Linearized McEliece system using a Goppa code vs
Rank of a Linearized McEliece system using a random code.



Bounds

Table: Smallest order t of a binary Goppa code of length n = 2 for
which our distinguisher does not work.

[ m [ 910172 13 14 15 16 [ 17 [ 18 [ 19 | 20 | 21 | 22 | 23 ||
[ fmn || 8| 8 | 71 | 16 | 20 | 26 | 34 | 47 | 62 | 85 | 114 | 157 | 213 | 290 | 400 ||

[ M. Finiasz, and N. Sendrier.
“Security Bounds for the Design of Code-Based
Cryptosystems.”
Asiacrypt’09.
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Cleaning McEliece’s Algebraic System

m For j =0, linear equations involving only the variables of Y:

gi,0Y0+--~+gi,nf1Ynf1 =0, 16{077K_1}



Cleaning McEliece’s Algebraic System

m For j =0, linear equations involving only the variables of Y:

gioYo+ ... +Gin-1Yn1=0, ie{0,....k—1}.

m For quasi-cyclic/dyadic alternant codes, we have additional
linear equations involving the variables of Y (resp. X).

[§ T. Berger, P-L. Cayrel, P. Gaborit, A. Otmani.
“Reducing Key Length of the McEliece Cryptosystem”.
AFRICACRYPT 2009.

[3 R. Misoczki, P. Barreto.

“Compact McEliece Keys from Goppa Codes". SAC
2009.



BCGO Proposal (Africacrypt’09)

Let n = ¢ny and let 5 be a public element of Fgm of order ¢.

m Secret key.
W (Xo,...,Xp,—1) With X; € Fgn such that x; # x; if i # j
B (Yo, .., Yn—1) With y; # 0 (y; € Fgn)
mec{0,....0—1}

m Public key. A basis G of Ker<H,(x, y)) N g with

L L

—1 (—1
.X:(XO,/BXO...,ﬁe XO)"'aXnof‘hﬁXnuf'la---76 Xn071)

uy=
L L

(y07ﬁey07 e 7ﬁe(l_1)}/07 et a}/nofhﬁe}/n()%w . 7ﬁe(e_1)yno—1)



BCGO Proposal (Africacrypt’09)

m We have the following linear relations for any
ie{0,...,np—1}andje{0,...,0—1}:
{ Xierj = Xt
Yierj = BYYi

m The system is completely described by ng variables Y; and
ng variables X; assuming that e is known (0 < e < 100)



MB Proposal (SAC’09)

m The public code is an alternant over Fq with g = 2% (s > 1)
where forany 0 <j<ng—1and0 <i,i' </¢—1, we have:

Yijevi = Yije
Xjeri + Xje = X + Xo
Xie+(ioiry = Xjevi T Xjerir + Xje
m Forany 1 </ < /-1, if we write the binary decomposition
of i = Z}fg“_” ;2 then:

log,(¢—1)
X=X+ > n(Xy+ X)
j=0

m Hence, the system is described by ng variables Y; and
ng + log,(¢) variables X;



Summary

We have equivalent secret-keys.
m some variables can be fixed.
Let ny (resp. nx) be #Y (resp. #X)
m McE,,+(X,Y).ny=n—1andny =n-3 (one Y; and
three X’s)
m BCGO variant. ny =ny—1andny =ny—1 (one Y;and
one Xj)
m MB variant. ny = ny — 1 and nxy = ny — 2 +log,(¢) (one Y;
and two X;’s)



Summary

We have equivalent secret-keys.
m some variables can be fixed.
Let ny (resp. nx) be #Y (resp. #X)
m McE,,+(X,Y).ny=n—1andny =n-3 (one Y; and

three X’s)

m BCGO variant. ny =ny—1andny =ny—1 (one Y;and
one Xj)

m MB variant. ny = ny — 1 and nxy = ny — 2 +log,(¢) (one Y;
and two X;’s)

[First step — Cleaning.] Reduce the number of variables by
removing all the linear equations involving the Y;’s (resp. X;’s)

= Let d be the remaining variables in the block Y.
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Solving the Algebraic System

m Naive approach by applying directly a generic Grébner
basis algorithm (Magma)
m |t fails for almost all challenges
m But, one challenge Ay (AfricaCrypt '09) was broken in 24
hours of computation using a non negligible amount of
memory



Solving the Algebraic System

m Naive approach by applying directly a generic Grébner
basis algorithm (Magma)
m |t fails for almost all challenges
m But, one challenge Ay (AfricaCrypt '09) was broken in 24
hours of computation using a non negligible amount of
memory

m How to exploit the particular structure of the system ?



Computing a Grobner Basis

m Buchberger’s algorithm (1965)
m F4/F5 (J.-C. Faugére, 1999/2002)

= For a zero-dimensional (i.e. finite number of solutions)
system of n variables:

o (),

Dreg being the maximum degree reached during the
computation.

m Behavior on random systems of equations
m D, is generically equal to n+ 1 ( If #eq.= n).
m #Sol <[], degree; (Bezout's bound)



Bi-Homogeneous Structure of McE, « (X, Y)

McE, x +(X,Y) =

ic{0,....k—1}

9i0YoXb + ...+ Gin—1 Yno1 X, = O with { je{o,... t—1}

m The only monomials occurring are Y;X!

f € Fgm[X, Y] is bi-homogeneous of bi-degree (dy, db) if:

Vo, i € Fgm, f(aX,uY) = a® u®2f(X,Y).

f is bilinear if it is bi-homogeneous of bi-degree (1,1).



Bi-Homogeneous Structure of McE, « (X, Y)

McE, x +(X,Y) =

ic{0,....k—1}

g/70Y0Xé+...+gi,nf1 Ynf1X{771 = 0 with { je{0,...;t—1}

m Each block of k equations is bi-homogeneous of bi-degree

(1.)

f € Fgn[X, Y] is bi-homogeneous of bi-degree (dy, db) if:

Vo, p € Fgm, f(aX,pY) = % % f(X,Y).

f is bilinear if it is bi-homogeneous of bi-degree (1,1).



Complexity of Solving Bilinear Systems

H J.-C. Faugeére, M. Safey El Din, and P.-J. Spaenlehauer.
“Grébner Bases of Bihomogeneous Ideals Generated by
Polynomials of Bidegree (1,1): Algorithms and Complexity".
arXiv:1001.4004v1 [cs.SC], 2010.

m Dedicated version of F5 for such systems (avoiding
reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear
0-dimensional system over K[ X, Y] is upper bounded by
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Complexity of Solving Bilinear Systems

H J.-C. Faugeére, M. Safey El Din, and P.-J. Spaenlehauer.
“Grébner Bases of Bihomogeneous Ideals Generated by
Polynomials of Bidegree (1,1): Algorithms and Complexity".
arXiv:1001.4004v1 [cs.SC], 2010.

m Dedicated version of F5 for such systems (avoiding
reductions to zeros/specific structure of the matrices)

Complexity of Bilinear System

The degree of regularity of a generic affine bilinear
0-dimensional system over K[ X, Y] is upper bounded by

Dreg < min(nx, ny) +1 [vs. nx + ny + 1 for a rand. system].

Polynomial time complexity for computing the Grébner basis if
the min is constant.



Extracting a Bilinear Subsystem

m [Second step — Extracting a Bilinear Subsystem.] We keep
only the exponents of X; that are powers of 2:

BIMCE 4 +(X, ¥) ' { g0 YoX2 + ...+ Gipt Yn1 X2, =0

withie{o,...,k—1}andee {O,...,Iogz(t—1)}.

m The system is “quasi” bilinear, precisely bi-homogeneous of
bi-degree (1,2) (Char(Fq) = 2)



Solving biMcE, x (X, Y)

[First step — Cleaning.] Let d be the number of free
variables in Y.

[Second step — Extracting a Bilinear Subsystem.]

“Naive Approach”

m If d is very small then perform an exhaustive search in Fgm

m Solve the remaining linear system with the Xj’s

m Time complexity O (g™9(mnyx)3)

m Challenge Ay (BCGO variant):
Bg=2""m=2d=3——>2%




Solving biMcE, x (X, Y)

[First step — Cleaning.] Let d be the number of free
variables in Y.

[Second step — Extracting a Bilinear Subsystem.]

“Naive Approach”

m If d is very small then perform an exhaustive search in Fgm

m Solve the remaining linear system with the Xj’s

m Time complexity O (g™9(mnyx)3)

m Challenge Ay (BCGO variant):
Bg=2""m=2d=38—> 25 (here 2'°9)




Complexity of Solving biMcE, x (X, Y)

BIMCE 4 +(X, Y)

Let d be the number of free variables in Y.
m For biMcE, x (X, Y), it holds that Dyeg < d + 1.

m Computing a Grébner basis of biMcE,  +(X, Y) can be
done with a tweaked version of F5 in:

O (nﬁ(dﬂ )) 7

2 < w < 3 being the linear algebra constant.



Practical results — BCGO Variant

d | Sec.(log) | ny [ #Eq | Time (Op., M.)
3 80 8 510 | 0.06sec (2729 op, 115 Meg)
Big | 28 51 | 10 | 3 90 9 | 612 | 0.03sec(2'7"" op, 116 Meg) 2!8
Cig | 28 51 | 12 | 3 100 | 11 816 | 0.05sec (2'® 2 p, 116 Meg) 220
Dig 28 51 | 15 | 4 120 | 14 | 1275 | 0.02sec (2'* 7 p, 113 Meg) 2%
A | 20 75 6] 2 80 5 | 337 [ 0.05sec(2™®op, 115Meg) | 270
2 ( )
2 ( )
3 ( )

l T(heo ”
217

Ats 28 51 9

By | 2" 93 | 6 90 5 | 418 | 0.05sec (2'7"" op, 115 Meg 210
110 7 697 | 0.02sec (245 op, 115 Meg 2!

[ 600 | 14 | 6820 [ 0.08sec(2™Fop, 116Meg) [ 2% ||

Coy | 2'° 93 8
[ QCeoo [ 2° [ 255 [ 15 |

m The solutions always belong to Fqm with m =2 (BCGO
constraint)

m We also proposed the parameter QCggg to show the
influence of d



Practical Results — MB Variant

I [ g1 d] £ [ ng | Sec.(log) T nx | #Equ | Time (Op., Me.) T Tiheo ||
[ T2[22] 77 6456 ] 128 | 59 | 193,584 | 1,776.3sec (2%*Zop, 360 Meg) | 2% ||
T2 [ 2] 3 64 | 32 128 | 36 112,924 0.50 sec (2227 op, 118M) 2
T2 | 28 | 1 64 | 12 128 | 16 40, 330 0.03 sec (2167 op, 35M) 28
T3 [ 221 64 | 10 102 | 14 32,264 0.03 sec (279 op, 113M.) 28
T3 | 28 | 1 | 128 6 136 | 11 65, 028 0.02 sec (2'5+4 op, 113 M.) 27
T3 | 28 | 1 | 256 4 168 | 10 130, 562 0.11 sec (2'9-2 op, 113M.) 27
T5 | 28] 1] 128 4 80 9 32,514 0.06 sec (2777 op, 35M.) 28
T5 | 28 | 1 | 128 5 112 | 10 48,771 0.02 sec (2'*5 op, 35M.) 27
T5 | 28 | 1 | 128 6 128 | 11 65,028 0.01 sec (2'6-6 op, 35 M.) 27
T5 | 28 | 1 | 256 5 192 | 11 195, 843 0.05 sec (275 op, 35M.) 27
T5 | 28 | 1 | 256 6 256 | 12 261, 124 0.06 sec (2'7-8 op, 35M.) 27
Dosg | 25 [ 3 [ 128 | 32 256 | 37 455,196 7.1sec (2% T op, 131M.) 229
Dsip | 28 | 1 | 512 6 512 | 13 | 1,046,532 0.15 sec (297 op, 38M.) o8

m Binary challenges are not solved (work in progress)

m We proposed the challenges Dosg and Dsqo



Conclusion

MCELIECE scheme is a challenging public key cryptosystem
m Little is known about key-recovery attacks

m We introduced an algebraic framework for tackling this
issue focusing on a bilinear subsystem

This approach gave successful results for variants with
compact keys
m The proposed parameters were foo optimistic (key should
be larger)
m An unbalanced number of variables does not improve the
security



Conclusion

[{ J.-C. Faugere, V. Gauthier, A. Otmani, L. Perret and J-P.
Tillich.

“A Distinguisher for High Rate McEliece Cryptosystems”.
ITW'11.

m Explain the defect of Rank

m Formalize the advantage (prob. of success)

3 L. Dallot.
“Towards a concrete security proof of Courtois, Finiasz and
Sendrier signature scheme.” WeWorc’07.

m ALGEBRAIC TECHNIQUES vs QUANTUM ?

[@ H. Dinh, C. Moore, and A. Russell.
“The McEliece Cryptosystem Resists Quantum Fourier
Sampling Attacks.”
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