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Motivation

Try to develop algorithms that directly work on compressed data.

Goal: Beat straightforward decompress and analyze strategy.

In this talk: focus on compressed strings

◮ Algorithms for analyzing compressed strings/trees

◮ Lower complexity bounds for algorithmic problems on compressed
strings/trees.

Applications:

◮ all domains, where massive string/tree data arise and have to be
processed, e.g. bioinformatics, XML

◮ large (and highly compressible) data often occur as intermediate data
structures.

Examples in: combinatorial group theory, computational topology,
program analysis, verification, . . .
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Compressed strings and straight-line programs

Dictionary-based compression (LZ77, LZ78) exploits text repetition.
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Dictionary-based compression (LZ77, LZ78) exploits text repetition.

Straight-line programs are a general representation for compressed strings,
which covers most dictionary-based algorithms.

Definition (Straight-line program (SLP))

An SLP over the alphabet Γ is a sequence of definitions

A = 〈Ai := αi 〉0≤i≤n,

where either αi ∈ Γ or αi = AjAk for some j , k > i .
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Compressed strings and straight-line programs

Dictionary-based compression (LZ77, LZ78) exploits text repetition.

Straight-line programs are a general representation for compressed strings,
which covers most dictionary-based algorithms.

Definition (Straight-line program (SLP))

An SLP over the alphabet Γ is a sequence of definitions

A = 〈Ai := αi 〉0≤i≤n,

where either αi ∈ Γ or αi = AjAk for some j , k > i .

Alternatively: a context-free grammar that generates exactly one string.
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Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.
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= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi )1≤i≤n is |A| = n.

◮ One may have |val(A)| = 2|A|.

◮ An SLP A can be seen as a compressed representation of val(A).

Relationship to dictionary-based compression (Rytter 2003):

◮ From an SLP A one can compute in polynomial time LZ77(val(A)).

◮ From LZ77(w) one can compute in polynomial time an SLP A with
val(A) = w .
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Algorithms on SLP-compressed strings

The mother of all algorithms on SLP -compressed strings:
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Algorithms on SLP-compressed strings

The mother of all algorithms on SLP -compressed strings:

Plandowski 1994

The following problem can be solved in polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

Note: The decompress-and-compare strategy does not work here.
We cannot compute val(A) and val(B) in polynomial time.

Plandowski’s algorithm uses combinatorics on words, in particular the
Periodicity Lemma of Fine and Wilf.
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Improvements of Plandowski’s result

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara,
Takeda (mid 90’s)

The following problem can be solved in polynomial time
(fully compressed pattern matching):

INPUT: SLPs P, T

QUESTION: Is val(P) a factor of val(T), i.e., ∃u, v : val(T) = u val(P) v?
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Improvements of Plandowski’s result

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara,
Takeda (mid 90’s)

The following problem can be solved in polynomial time
(fully compressed pattern matching):

INPUT: SLPs P, T

QUESTION: Is val(P) a factor of val(T), i.e., ∃u, v : val(T) = u val(P) v?

The best known algorithm has a running time of O(|P| · |T|2)
(Lifshits 2006).
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Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?
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The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.
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Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.

Proof:

The automaton A can be represented by Boolean matrices Aa ∈ {0, 1}s×s

for each input letter a.

Evaluate SLP B over {0, 1}s×s .

Ã v multiplications in {0, 1}s×s .
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Parsing compressed strings: compressed finite automata

A compressed automata is an ordinary finite automaton, where every
transition is labelled with an SLP.
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accepts all words that have val(A) as a factor.
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Parsing compressed strings: compressed finite automata

A compressed automata is an ordinary finite automaton, where every
transition is labelled with an SLP.

Example: The compressed automaton

q qA

Σ Σ

accepts all words that have val(A) as a factor.

The size |A| of the compressed automaton A is

|A| =
∑

p
A
→q

|A|.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 8 / 17



Parsing compressed strings: compressed finite automata

Compressed membership for compressed automata:

INPUT: A compressed automaton A and an SLP B.

QUESTION: val(B) ∈ L(A)?
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Parsing compressed strings: compressed finite automata

Compressed membership for compressed automata:

INPUT: A compressed automaton A and an SLP B.

QUESTION: val(B) ∈ L(A)?

Plandowski, Rytter 1999

◮ Compressed membership for compressed automata is in PSPACE.

◮ Compressed membership for compressed automata over a unary
alphabet is NP-complete.
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Parsing compressed strings: compressed finite automata

Conjecture (Plandowski, Rytter 1999)

◮ Compressed membership for compressed automata is NP-complete
(for every alphabet size).

◮ Compressed membership for compressed deterministic automata
belongs to P.

A compressed automaton A is deterministic, if for all transitions

p
A
→ q, p

B
→ r that start in the same state p, neither val(A) is a prefix

of val(B) nor val(B) is a prefix of val(A).
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Parsing compressed strings: pushdown automata

Theorem (L 2010)

The following problem is PSPACE-complete:

INPUT: A pushdown automaton A and an SLP B.

QUESTION: Does A accept val(B)?
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Parsing compressed strings: pushdown automata

Theorem (L 2010)

The following problem is PSPACE-complete:

INPUT: A pushdown automaton A and an SLP B.

QUESTION: Does A accept val(B)?

PSPACE-hardness holds already for the special case that A is a fixed
deterministic pushdown automaton.

The proof uses a characterization of PSPACE based on leaf languages
(Hertrampf, Lautemann, Schwentick, Vollmer, Wagner; 1993).
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Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .
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Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

The following problems are hard for the complexity class PP (probabilistic
polynomial time) (and belong to PSPACE).

◮ Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Given SLPs A, B and n ∈ N, do val(A) and val(B) have a common
subsequence of length at least n?

◮ Given SLPs A, B and n ∈ N, are val(A) and val(B) subsequences of a
string of length at most n?

PP is the class of all problems A for which there exists a probabilitstic
polynomial time machine M such that

∀x : x ∈ A ⇐⇒ Prob[M accepts x ] > 1/2

Toda 1991: PPP contains the polynomial time hierarchy.
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Application in computational group theory
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Application in computational group theory

Let G be a group, finitely generated by A.

The compressed word problem for G is the following problem:

INPUT: SLP A over A ∪ A−1.

QUESTION: val(A) = 1 in G?

Why is the compressed word problem interesting in group theory?
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Why is the compressed word problem interesting in group theory?

Observation

Assume that the compressed word problem for G can be solved in
polynomial time.
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Application in computational group theory

Let G be a group, finitely generated by A.

The compressed word problem for G is the following problem:

INPUT: SLP A over A ∪ A−1.

QUESTION: val(A) = 1 in G?

Why is the compressed word problem interesting in group theory?

Observation

Assume that the compressed word problem for G can be solved in
polynomial time.

Then, for every finitely generated subgroup of Aut(G ) the (standard) word
problem can be solved in polynomial time.
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Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)
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Application in computational group theory
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Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Closure properties of the class of groups with polynomial time CWP:

◮ going to f.g. subgroups

◮ finite extensions

◮ graph products (in particular free and direct products)

◮ HNN-extensions and amalgamated free products over finite groups
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Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
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Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

◮ The word search problem for Q can be solved in polynomial time.

Then, the (standard) word problem for G can be solved in polynomial time.

Classes of groups with (i) polynomial Dehn function and (ii) polynomial
time word search problem:

◮ automatic groups

◮ nilpotent groups
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Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?
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Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Compressed word problem for finitely generated linear groups

The standard word problem for a f.g. linear groups can be solved in
deterministic logspace (and hence polynomial time).

The CWP for a f.g. linear group belongs to coRP, i.e., the
complementary problem can be solved in randomized polynomial time.

There is some evidence from complexity theory that RP= coRP = P.

◮ Compressed word problem for braid groups, polycyclic groups, and
finitely generated metabelian groups
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