
Algorithmic problems on compressed words

Markus Lohrey

Universität Leipzig

October 11, 2011

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 1 / 17

Motivation

Try to develop algorithms that directly work on compressed data.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 2 / 17

Motivation

Try to develop algorithms that directly work on compressed data.

Goal: Beat straightforward decompress and analyze strategy.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 2 / 17

Motivation

Try to develop algorithms that directly work on compressed data.

Goal: Beat straightforward decompress and analyze strategy.

In this talk: focus on compressed strings

◮ Algorithms for analyzing compressed strings/trees

◮ Lower complexity bounds for algorithmic problems on compressed
strings/trees.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 2 / 17

Motivation

Try to develop algorithms that directly work on compressed data.

Goal: Beat straightforward decompress and analyze strategy.

In this talk: focus on compressed strings

◮ Algorithms for analyzing compressed strings/trees

◮ Lower complexity bounds for algorithmic problems on compressed
strings/trees.

Applications:

◮ all domains, where massive string/tree data arise and have to be
processed, e.g. bioinformatics, XML

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 2 / 17

Motivation

Try to develop algorithms that directly work on compressed data.

Goal: Beat straightforward decompress and analyze strategy.

In this talk: focus on compressed strings

◮ Algorithms for analyzing compressed strings/trees

◮ Lower complexity bounds for algorithmic problems on compressed
strings/trees.

Applications:

◮ all domains, where massive string/tree data arise and have to be
processed, e.g. bioinformatics, XML

◮ large (and highly compressible) data often occur as intermediate data
structures.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 2 / 17

Motivation

Try to develop algorithms that directly work on compressed data.

Goal: Beat straightforward decompress and analyze strategy.

In this talk: focus on compressed strings

◮ Algorithms for analyzing compressed strings/trees

◮ Lower complexity bounds for algorithmic problems on compressed
strings/trees.

Applications:

◮ all domains, where massive string/tree data arise and have to be
processed, e.g. bioinformatics, XML

◮ large (and highly compressible) data often occur as intermediate data
structures.

Examples in: combinatorial group theory, computational topology,
program analysis, verification, . . .

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 2 / 17

Compressed strings and straight-line programs

Dictionary-based compression (LZ77, LZ78) exploits text repetition.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 3 / 17

Compressed strings and straight-line programs

Dictionary-based compression (LZ77, LZ78) exploits text repetition.

Straight-line programs are a general representation for compressed strings,
which covers most dictionary-based algorithms.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 3 / 17

Compressed strings and straight-line programs

Dictionary-based compression (LZ77, LZ78) exploits text repetition.

Straight-line programs are a general representation for compressed strings,
which covers most dictionary-based algorithms.

Definition (Straight-line program (SLP))

An SLP over the alphabet Γ is a sequence of definitions

A = 〈Ai := αi 〉0≤i≤n,

where either αi ∈ Γ or αi = AjAk for some j , k > i .

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 3 / 17

Compressed strings and straight-line programs

Dictionary-based compression (LZ77, LZ78) exploits text repetition.

Straight-line programs are a general representation for compressed strings,
which covers most dictionary-based algorithms.

Definition (Straight-line program (SLP))

An SLP over the alphabet Γ is a sequence of definitions

A = 〈Ai := αi 〉0≤i≤n,

where either αi ∈ Γ or αi = AjAk for some j , k > i .

Alternatively: a context-free grammar that generates exactly one string.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 3 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi)1≤i≤n is |A| = n.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi)1≤i≤n is |A| = n.

◮ One may have |val(A)| = 2|A|.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi)1≤i≤n is |A| = n.

◮ One may have |val(A)| = 2|A|.

◮ An SLP A can be seen as a compressed representation of val(A).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi)1≤i≤n is |A| = n.

◮ One may have |val(A)| = 2|A|.

◮ An SLP A can be seen as a compressed representation of val(A).

Relationship to dictionary-based compression (Rytter 2003):

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi)1≤i≤n is |A| = n.

◮ One may have |val(A)| = 2|A|.

◮ An SLP A can be seen as a compressed representation of val(A).

Relationship to dictionary-based compression (Rytter 2003):

◮ From an SLP A one can compute in polynomial time LZ77(val(A)).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Example: A = 〈Ai := Ai+1Ai+2 for 0 ≤ i ≤ 3, A4 := b, A5 := a〉.

A0 = A1A2

= A2A3A3A4

= A3A4A4A5A4A5b

= A4A5bbabab

= babbabab = val(A)

Grammar-based compression:

◮ The size of an SLP A = (Ai := αi)1≤i≤n is |A| = n.

◮ One may have |val(A)| = 2|A|.

◮ An SLP A can be seen as a compressed representation of val(A).

Relationship to dictionary-based compression (Rytter 2003):

◮ From an SLP A one can compute in polynomial time LZ77(val(A)).

◮ From LZ77(w) one can compute in polynomial time an SLP A with
val(A) = w .

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 4 / 17

Algorithms on SLP-compressed strings

The mother of all algorithms on SLP -compressed strings:

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 5 / 17

Algorithms on SLP-compressed strings

The mother of all algorithms on SLP -compressed strings:

Plandowski 1994

The following problem can be solved in polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 5 / 17

Algorithms on SLP-compressed strings

The mother of all algorithms on SLP -compressed strings:

Plandowski 1994

The following problem can be solved in polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

Note: The decompress-and-compare strategy does not work here.
We cannot compute val(A) and val(B) in polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 5 / 17

Algorithms on SLP-compressed strings

The mother of all algorithms on SLP -compressed strings:

Plandowski 1994

The following problem can be solved in polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

Note: The decompress-and-compare strategy does not work here.
We cannot compute val(A) and val(B) in polynomial time.

Plandowski’s algorithm uses combinatorics on words, in particular the
Periodicity Lemma of Fine and Wilf.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 5 / 17

Improvements of Plandowski’s result

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara,
Takeda (mid 90’s)

The following problem can be solved in polynomial time
(fully compressed pattern matching):

INPUT: SLPs P, T

QUESTION: Is val(P) a factor of val(T), i.e., ∃u, v : val(T) = u val(P) v?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 6 / 17

Improvements of Plandowski’s result

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara,
Takeda (mid 90’s)

The following problem can be solved in polynomial time
(fully compressed pattern matching):

INPUT: SLPs P, T

QUESTION: Is val(P) a factor of val(T), i.e., ∃u, v : val(T) = u val(P) v?

The best known algorithm has a running time of O(|P| · |T|2)
(Lifshits 2006).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 6 / 17

Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 7 / 17

Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 7 / 17

Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.

Proof:

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 7 / 17

Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.

Proof:

The automaton A can be represented by Boolean matrices Aa ∈ {0, 1}s×s

for each input letter a.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 7 / 17

Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.

Proof:

The automaton A can be represented by Boolean matrices Aa ∈ {0, 1}s×s

for each input letter a.

Evaluate SLP B over {0, 1}s×s .

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 7 / 17

Parsing compressed strings: finite automata

Plandowski, Rytter 1999

The following problem can be solved in polynomial time:

INPUT: A nondeterministic automaton A and an SLP B.

QUESTION: Does A accept val(B)?

The precise time bound is O(v · s3), where:

◮ v = |B|, and

◮ s is the number of states of A.

Proof:

The automaton A can be represented by Boolean matrices Aa ∈ {0, 1}s×s

for each input letter a.

Evaluate SLP B over {0, 1}s×s .

Ã v multiplications in {0, 1}s×s .
Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 7 / 17

Parsing compressed strings: compressed finite automata

A compressed automata is an ordinary finite automaton, where every
transition is labelled with an SLP.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 8 / 17

Parsing compressed strings: compressed finite automata

A compressed automata is an ordinary finite automaton, where every
transition is labelled with an SLP.

Example: The compressed automaton

q qA

Σ Σ

accepts all words that have val(A) as a factor.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 8 / 17

Parsing compressed strings: compressed finite automata

A compressed automata is an ordinary finite automaton, where every
transition is labelled with an SLP.

Example: The compressed automaton

q qA

Σ Σ

accepts all words that have val(A) as a factor.

The size |A| of the compressed automaton A is

|A| =
∑

p
A
→q

|A|.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 8 / 17

Parsing compressed strings: compressed finite automata

Compressed membership for compressed automata:

INPUT: A compressed automaton A and an SLP B.

QUESTION: val(B) ∈ L(A)?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 9 / 17

Parsing compressed strings: compressed finite automata

Compressed membership for compressed automata:

INPUT: A compressed automaton A and an SLP B.

QUESTION: val(B) ∈ L(A)?

Plandowski, Rytter 1999

◮ Compressed membership for compressed automata is in PSPACE.

◮ Compressed membership for compressed automata over a unary
alphabet is NP-complete.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 9 / 17

Parsing compressed strings: compressed finite automata

Conjecture (Plandowski, Rytter 1999)

◮ Compressed membership for compressed automata is NP-complete
(for every alphabet size).

◮ Compressed membership for compressed deterministic automata
belongs to P.

A compressed automaton A is deterministic, if for all transitions

p
A
→ q, p

B
→ r that start in the same state p, neither val(A) is a prefix

of val(B) nor val(B) is a prefix of val(A).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 10 / 17

Parsing compressed strings: pushdown automata

Theorem (L 2010)

The following problem is PSPACE-complete:

INPUT: A pushdown automaton A and an SLP B.

QUESTION: Does A accept val(B)?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 11 / 17

Parsing compressed strings: pushdown automata

Theorem (L 2010)

The following problem is PSPACE-complete:

INPUT: A pushdown automaton A and an SLP B.

QUESTION: Does A accept val(B)?

PSPACE-hardness holds already for the special case that A is a fixed
deterministic pushdown automaton.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 11 / 17

Parsing compressed strings: pushdown automata

Theorem (L 2010)

The following problem is PSPACE-complete:

INPUT: A pushdown automaton A and an SLP B.

QUESTION: Does A accept val(B)?

PSPACE-hardness holds already for the special case that A is a fixed
deterministic pushdown automaton.

The proof uses a characterization of PSPACE based on leaf languages
(Hertrampf, Lautemann, Schwentick, Vollmer, Wagner; 1993).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 11 / 17

Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 12 / 17

Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

The following problems are hard for the complexity class PP (probabilistic
polynomial time) (and belong to PSPACE).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 12 / 17

Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

The following problems are hard for the complexity class PP (probabilistic
polynomial time) (and belong to PSPACE).

◮ Given SLPs A, B, is val(A) a subsequence of val(B)?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 12 / 17

Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

The following problems are hard for the complexity class PP (probabilistic
polynomial time) (and belong to PSPACE).

◮ Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Given SLPs A, B and n ∈ N, do val(A) and val(B) have a common
subsequence of length at least n?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 12 / 17

Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

The following problems are hard for the complexity class PP (probabilistic
polynomial time) (and belong to PSPACE).

◮ Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Given SLPs A, B and n ∈ N, do val(A) and val(B) have a common
subsequence of length at least n?

◮ Given SLPs A, B and n ∈ N, are val(A) and val(B) subsequences of a
string of length at most n?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 12 / 17

Other hard problems for compressed strings

A string a1a2 · · · am is a subsequence of a string b1b2 · · · bn if there exist
i1 < i2 < · · · < im with a1 = bi1 , a2 = bi2 , . . . , am = bim .

The following problems are hard for the complexity class PP (probabilistic
polynomial time) (and belong to PSPACE).

◮ Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Given SLPs A, B and n ∈ N, do val(A) and val(B) have a common
subsequence of length at least n?

◮ Given SLPs A, B and n ∈ N, are val(A) and val(B) subsequences of a
string of length at most n?

PP is the class of all problems A for which there exists a probabilitstic
polynomial time machine M such that

∀x : x ∈ A ⇐⇒ Prob[M accepts x] > 1/2

Toda 1991: PPP contains the polynomial time hierarchy.
Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 12 / 17

Application in computational group theory

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 13 / 17

Application in computational group theory

Let G be a group, finitely generated by A.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 14 / 17

Application in computational group theory

Let G be a group, finitely generated by A.

The compressed word problem for G is the following problem:

INPUT: SLP A over A ∪ A−1.

QUESTION: val(A) = 1 in G?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 14 / 17

Application in computational group theory

Let G be a group, finitely generated by A.

The compressed word problem for G is the following problem:

INPUT: SLP A over A ∪ A−1.

QUESTION: val(A) = 1 in G?

Why is the compressed word problem interesting in group theory?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 14 / 17

Application in computational group theory

Let G be a group, finitely generated by A.

The compressed word problem for G is the following problem:

INPUT: SLP A over A ∪ A−1.

QUESTION: val(A) = 1 in G?

Why is the compressed word problem interesting in group theory?

Observation

Assume that the compressed word problem for G can be solved in
polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 14 / 17

Application in computational group theory

Let G be a group, finitely generated by A.

The compressed word problem for G is the following problem:

INPUT: SLP A over A ∪ A−1.

QUESTION: val(A) = 1 in G?

Why is the compressed word problem interesting in group theory?

Observation

Assume that the compressed word problem for G can be solved in
polynomial time.

Then, for every finitely generated subgroup of Aut(G) the (standard) word
problem can be solved in polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 14 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Closure properties of the class of groups with polynomial time CWP:

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Closure properties of the class of groups with polynomial time CWP:

◮ going to f.g. subgroups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Closure properties of the class of groups with polynomial time CWP:

◮ going to f.g. subgroups

◮ finite extensions

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Closure properties of the class of groups with polynomial time CWP:

◮ going to f.g. subgroups

◮ finite extensions

◮ graph products (in particular free and direct products)

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Classes of groups, where CWP can be solved in polynomial time:

◮ graph groups (in particular free groups)

◮ nilpotent groups

◮ fully residually-free groups (Macdonald 2010)

◮ Coxeter groups

Closure properties of the class of groups with polynomial time CWP:

◮ going to f.g. subgroups

◮ finite extensions

◮ graph products (in particular free and direct products)

◮ HNN-extensions and amalgamated free products over finite groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 15 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

◮ The word search problem for Q can be solved in polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

◮ The word search problem for Q can be solved in polynomial time.

Then, the (standard) word problem for G can be solved in polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

◮ The word search problem for Q can be solved in polynomial time.

Then, the (standard) word problem for G can be solved in polynomial time.

Classes of groups with (i) polynomial Dehn function and (ii) polynomial
time word search problem:

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

◮ The word search problem for Q can be solved in polynomial time.

Then, the (standard) word problem for G can be solved in polynomial time.

Classes of groups with (i) polynomial Dehn function and (ii) polynomial
time word search problem:

◮ automatic groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Application in computational group theory

Theorem

Assume that K ⊳ G , Q = G/K (with K , Q, G finitely generated).
Moreover, assume that:

◮ CWP for K can be solved in polynomial time.

◮ Q has polynomial Dehn function.

◮ The word search problem for Q can be solved in polynomial time.

Then, the (standard) word problem for G can be solved in polynomial time.

Classes of groups with (i) polynomial Dehn function and (ii) polynomial
time word search problem:

◮ automatic groups

◮ nilpotent groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 16 / 17

Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 17 / 17

Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Compressed word problem for finitely generated linear groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 17 / 17

Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Compressed word problem for finitely generated linear groups

The standard word problem for a f.g. linear groups can be solved in
deterministic logspace (and hence polynomial time).

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 17 / 17

Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Compressed word problem for finitely generated linear groups

The standard word problem for a f.g. linear groups can be solved in
deterministic logspace (and hence polynomial time).

The CWP for a f.g. linear group belongs to coRP, i.e., the
complementary problem can be solved in randomized polynomial time.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 17 / 17

Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Compressed word problem for finitely generated linear groups

The standard word problem for a f.g. linear groups can be solved in
deterministic logspace (and hence polynomial time).

The CWP for a f.g. linear group belongs to coRP, i.e., the
complementary problem can be solved in randomized polynomial time.

There is some evidence from complexity theory that RP= coRP = P.

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 17 / 17

Open problems

◮ Is the following problem PSPACE-complete:
Given SLPs A, B, is val(A) a subsequence of val(B)?

◮ Compressed word problem for finitely generated linear groups

The standard word problem for a f.g. linear groups can be solved in
deterministic logspace (and hence polynomial time).

The CWP for a f.g. linear group belongs to coRP, i.e., the
complementary problem can be solved in randomized polynomial time.

There is some evidence from complexity theory that RP= coRP = P.

◮ Compressed word problem for braid groups, polycyclic groups, and
finitely generated metabelian groups

Markus Lohrey (Universität Leipzig) Algorithmic problems on compressed words October 11, 2011 17 / 17

