Random Self-Reducibility of Learning Problems over Burnside Groups

William Skeith

CCNY and Graduate Center CAISS

Joint work with Nelly Fazio, Kevin Iga, Antonio Nicolosi and Ludovic Perret
(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction
- Interesting mathematical problem on its own...
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Hardness of order-finding at the heart of most popular public-key cryptosystems (RSA, DH, ECDH)
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Hardness of order-finding at the heart of most popular public-key cryptosystems (RSA, DH, ECDH)
\therefore If quantum computing becomes practical, we'll need alternative crypto platforms
Quantum computing aside:
seems prudent
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Hardness of order-finding at the heart of most popular public-key cryptosystems (RSA, DH, ECDH)
\therefore If quantum computing becomes practical, we'll need alternative crypto platforms
- Quantum computing aside, diversifying assumptions still seems prudent

Prior Work in NonCommutative Cryptography

Challenging computational problems abound in group theory, however...

- Many hard problems are based on infinite groups
- This makes probabilistic modeling difficult
- Average-case hardness for many problems seems to be not well-understood

Prior Work in NonCommutative Cryptography

Challenging computational problems abound in group theory, however...

- Many hard problems are based on infinite groups
- This makes probabilistic modeling difficult
- Average-case hardness for many problems seems to be not well-understood

Main Results

In this work we demonstrate a
 property for a new group-theoretic problem put forth in the work
 of Baumslag et al. [BFNSS11].

In particular, we show a worst-aseraverasereduction
for the B_{n}-LHN problem (more on that later...)

Main Results

- In this work we demonstrate a random self-reducibility property for a new group-theoretic problem put forth in the work of Baumslag et al. [BFNSS11].
for the B_{n}-LHN problem (more on that later...)

Main Results

- In this work we demonstrate a random self-reducibility property for a new group-theoretic problem put forth in the work of Baumslag et al. [BFNSS11].
- In particular, we show a worst-case to average-case reduction for the B_{n}-LHN problem (more on that later...)
(1) Motivation \& Background
- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

Random self-reducibility

Random self-reducibility makes a statement about the average case complexity of a problem. In particular, it says that
instance is not any easier than solving an

Random self-reducibility

Random self-reducibility makes a statement about the average case complexity of a problem. In particular, it says that

Random self-reducibility

Solving a random instance is not any easier than solving an arbitrary instance.

Random Self-Reducibility

- Random self-reducibility has been a hallmark of every successful cryptographic assumption to-date.

Random Self-Reducibility

- Random self-reducibility has been a hallmark of every successful cryptographic assumption to-date.
- This is not so surprising:

Random Self-Reducibility

- Random self-reducibility has been a hallmark of every successful cryptographic assumption to-date.
- This is not so surprising:
- Any cryptosystem implementation must include an algorithm which samples hard instances of a computational problem.
- Random self-reducibility has been a hallmark of every successful cryptographic assumption to-date.
- This is not so surprising:
- Any cryptosystem implementation must include an algorithm which samples hard instances of a computational problem.
- RSR ensures that hard instances are not difficult to find: a random instance will suffice.

The B_{n}-LHN Problem

$B_{n}-\mathrm{LHN}$

> The problem is a generalization of LWE, moving from vector spaces and inner products to the setting of groups and homomorphisms.

As shown in [BFNSS11], this assumption suffices for some basic cryptographic tasks, e.g., symmetric encryption.

B_{n}-LHN

- The problem is a generalization of LWE, moving from vector spaces and inner products to the setting of groups and homomorphisms.
cryptographic tasks, e.g., symmetric encryption. We'll start with a quick review of LWE.

B_{n}-LHN

- The problem is a generalization of LWE, moving from vector spaces and inner products to the setting of groups and homomorphisms.
- As shown in [BFNSS11], this assumption suffices for some basic cryptographic tasks, e.g., symmetric encryption.

B_{n}-LHN

- The problem is a generalization of LWE, moving from vector spaces and inner products to the setting of groups and homomorphisms.
- As shown in [BFNSS11], this assumption suffices for some basic cryptographic tasks, e.g., symmetric encryption.
- We'll start with a quick review of LWE.

Outline

1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

Learning With Errors [Reg05]

Let $\mathbf{s} \in \mathbb{F}_{p}^{n}$. The picture is as follows:

Learning With Errors [Reg05]

Let $\mathbf{s} \in \mathbb{F}_{p}^{n}$. The picture is as follows:

Learning With Errors [Reg05]

Let $\mathbf{s} \in \mathbb{F}_{p}^{n}$. The picture is as follows:

LWE, Informally

Roughly, the Learning With Errors problem is to recover s by sampling preimage-image pairs in the presence of some small "noise"

Learning With Errors [Reg05]

More precisely, let

Learning With Errors [Reg05]

More precisely, let
$\circ \mathbf{s} \in \mathbb{F}_{p}^{n}$
Ψ be a discrete gaussian distribution over \mathbb{F}_{0} centered at 0

Learning With Errors [Reg05]

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0

Define a distribution $\mathbb{A}_{s, \psi}$ on $\mathbb{F}_{0}^{n} \times \mathbb{F}_{p}$ whose samples are pairs

Definition (LWE Search)

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0
- Define a distribution $\mathbf{A}_{\mathbf{s}, \psi}$ on $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a} \leftarrow_{\leftarrow} \mathbb{F}_{p}^{n}, b=\mathbf{s} \cdot \mathbf{a}+e, e{ }_{\leftarrow}{ }^{\varsigma} \psi$

Definition (LWE Decision)
Distinauish the distribution $\mathbf{A}_{\mathbf{s}}$ u from the uniform distribution

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0
- Define a distribution $\mathbf{A}_{\mathbf{s}, \psi}$ on $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a} \leftarrow_{\leftarrow}^{\leftarrow} \mathbb{F}_{p}^{n}, b=\mathbf{s} \cdot \mathbf{a}+e, e{ }_{\leftarrow}{ }^{s} \psi$

Definition (LWE Search)

The Learning With Errors problem is to recover s by sampling the distribution $\mathbf{A}_{\mathbf{s}, \psi}$.

Learning With Errors [Reg05]

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0
- Define a distribution $\mathbf{A}_{\mathbf{s}, \psi}$ on $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a} \leftarrow_{\leftarrow}^{\leftarrow} \mathbb{F}_{p}^{n}, b=\mathbf{s} \cdot \mathbf{a}+e, e{ }_{\leftarrow}{ }^{\mathfrak{s}} \psi$

Definition (LWE Search)

The Learning With Errors problem is to recover s by sampling the distribution $\mathbf{A}_{\mathbf{s}, \boldsymbol{\psi}}$.

Definition (LWE Decision)

Distinguish the distribution $\mathbf{A}_{\mathbf{s}, \psi}$ from the uniform distribution $\mathbf{U}\left(\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}\right)$.

Outline

1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:
Expressed in terms of homomorphisms
Complexity reductions (worst case to average case, search to
decision) also algebraic

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
Complexity reductions (worst case to average case, search to decision) also algebraic

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
- Complexity reductions (worst case to average case, search to decision) also algebraic

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
- Complexity reductions (worst case to average case, search to decision) also algebraic

This motivates the following
 based on group theory?

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
- Complexity reductions (worst case to average case, search to decision) also algebraic

This motivates the following

Question

Can similar learning problems yield viable intractability assumptions based on group theory?

Vector Spaces

Groups

Learning Homomorphisms from Images with Errors

Setup

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups

Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
Let Φ_{n} be a distribution on the set of all homomorphisms,

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.

Let Φ_{n} be a distribution on the set of all homomorphisms,

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{\leftarrow}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{\leftarrow}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

- $a \stackrel{\&}{\leftarrow} \Gamma_{n}$;

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{\leftarrow}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

- $a \leftarrow_{\leftarrow}^{\leftarrow} \Gamma_{n} ;$
- $e \stackrel{\leftarrow}{\leftarrow} \Psi_{n}$;

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{\leftarrow}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

- $a \leftarrow_{\leftarrow}^{\leftarrow} \Gamma_{n} ;$
- $e \stackrel{\leftarrow}{\leftarrow} \Psi_{n}$;
- $b=\varphi(a) e$

Learning Homomorphisms from Images with Errors

Search Problem
 Given $\mathbf{A}_{\varphi, \psi_{n}}$, recover φ.

Hardness Assumption (Decision Version)

Learning Homomorphisms from Images with Errors

Search Problem

Given $\mathbf{A}_{\varphi, \psi_{n}}$, recover φ.

Decision Problem

Given samples from an unknown distribution $\mathbf{R} \in\left\{\mathbf{A}_{\varphi, \Psi_{n}}, \mathbf{U}\left(G_{n} \times P_{n}\right)\right\}$, determine \mathbf{R}.

Learning Homomorphisms from Images with Errors

Search Problem

Given $\mathbf{A}_{\varphi, \psi_{n}}$, recover φ.

Decision Problem

Given samples from an unknown distribution
$\mathbf{R} \in\left\{\mathbf{A}_{\varphi, \psi_{n}}, \mathbf{U}\left(G_{n} \times P_{n}\right)\right\}$, determine \mathbf{R}.

Hardness Assumption (Decision Version)

$$
\mathbf{A}_{\varphi, \psi_{n}} \approx \mathbf{~} \mathbf{U}\left(G_{n} \times P_{n}\right)
$$

Outline

1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

Question

For which groups (if any) does the abstract problem make sense?

The authors of [BFNS11] suggested the use of free Burnside groups.
 We'll review some of the intuition for this choice, as well as some of the key facts about these groups below.

Instantiation: Free Burnside Groups

Question

For which groups (if any) does the abstract problem make sense?

- The authors of [BFNS11] suggested the use of free Burnside groups.
We'll review some of the intuition for this choice, as well as some of the key facts about these groups below.

Instantiation: Free Burnside Groups

Question

For which groups (if any) does the abstract problem make sense?

- The authors of [BFNS11] suggested the use of free Burnside groups.
- We'll review some of the intuition for this choice, as well as some of the key facts about these groups below.

Varieties of Groups

The free Burnside groups can be thought of as living in a certain variety of groups.

Example

Varieties of Groups

The free Burnside groups can be thought of as living in a certain variety of groups.

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose elements satisfy a certain set of equations.
\square

Varieties of Groups

The free Burnside groups can be thought of as living in a certain variety of groups.

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose elements satisfy a certain set of equations.

Example

Abelian groups can be seen as the variety corresponding to the equation

$$
X Y=Y X
$$

Varieties of Groups

The free Burnside groups can be thought of as living in a certain variety of groups.

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose elements satisfy a certain set of equations.

Example

Abelian groups can be seen as the variety corresponding to the equation

$$
X Y=Y X
$$

The Burnside groups live in the variety defined by the equation $X^{m}=1$.

Varieties of Groups

Via the usual "abstract nonsense", it is easy to see that varieties of groups contain free objects-just take a free group and factor out the normal subgroup resulting from all the "equations"...

Via the usual "abstract nonsense", it is easy to see that varieties of groups contain free objects-just take a free group and factor out the normal subgroup resulting from all the "equations"...

Sets
Groups

Varieties of Groups

Question

Which varieties of groups contain finite free objects???
then the free objects are exactly \mathbb{Z}_{p}^{n}, which are the objects of study in LWE (if p is prime).

Varieties of Groups

Question

Which varieties of groups contain finite free objects???
If the equations are say,

$$
\begin{aligned}
{[X, Y] } & =1 \\
X^{p} & =1
\end{aligned}
$$

then the free objects are exactly \mathbb{Z}_{p}^{n}, which are the objects of study in LWE (if p is prime).

Question

\qquad

Varieties of Groups

Question

Which varieties of groups contain finite free objects???
If the equations are say,

$$
\begin{aligned}
{[X, Y] } & =1 \\
X^{p} & =1
\end{aligned}
$$

then the free objects are exactly \mathbb{Z}_{p}^{n}, which are the objects of study in LWE (if p is prime).

Question

What happens if the $[X, Y]=1$ equation is removed? ${ }^{a}$ In general, the answer is not so simple...

$$
{ }^{\text {a }} \text { Note: }[X, Y]=X^{-1} Y^{-1} X Y
$$

Burnside Groups

Notation

For the variety of groups defined by the equation $X^{m}=1$, denote the free group on n generators in this variety by $B(n, m)$.

Burnside Groups

Notation

For the variety of groups defined by the equation $X^{m}=1$, denote the free group on n generators in this variety by $B(n, m)$.

Determining the finiteness of $B(n, m)$ is known as the Bounded Burnside Problem.

For $n>1$ and for sufficiently large m, it is known that $|B(n, m)|=\infty$, yet for small m, our understanding is far from complete:

$$
\begin{aligned}
& B(n, 2) \\
& B(n, 3) \\
& B(n, 4) \\
& B(n, 5) \\
& B(n, 6) \\
& B(n, 7)
\end{aligned}
$$

Finite (also abelian)
Finite
Finite
Unknown
Finite
Unknown

- The authors of [BFNSS11] chose to use $B(n, 3)$ to instantiate the abstract LHN problem.
B_{n}-LHN Problem
- The authors of [BFNSS11] chose to use $B(n, 3)$ to instantiate the abstract LHN problem.
- It's finite

B_{n}-LHN Problem

- The authors of [BFNSS11] chose to use $B(n, 3)$ to instantiate the abstract LHN problem.
- It's finite
- It's the smallest non-abelian case

B_{n}-LHN Problem

- The authors of [BFNSS11] chose to use $B(n, 3)$ to instantiate the abstract LHN problem.
- It's finite
- It's the smallest non-abelian case
- The structure of $B(3, n)$ is fairly well understood

B_{n}-LHN Problem

- The authors of [BFNSS11] chose to use $B(n, 3)$ to instantiate the abstract LHN problem.
- It's finite
- It's the smallest non-abelian case
- The structure of $B(3, n)$ is fairly well understood
- From here out, we'll denote $B(3, n)$ by B_{n} for brevity.

The B_{n}-LHN Problem

This is simply the LHN problem, instantiated with free Burnside groups.

The B_{n}-LHN Problem

This is simply the LHN problem, instantiated with free Burnside groups.

- The homomorphisms are sampled uniformly from hom $\left(B_{n}, B_{r}\right)$.

The B_{n}-LHN Problem

This is simply the LHN problem, instantiated with free Burnside groups.

- The homomorphisms are sampled uniformly from hom $\left(B_{n}, B_{r}\right)$.
- We'll ignore the error distribution for the moment, since those details are not important to the reduction.
(1) Motivation \& Background
- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

High Level / Intuition

We can break the argument into 3 easy steps:
Start with a simple observation for a partial randomizaiton.

High Level / Intuition

We can break the argument into 3 easy steps:
(1) Start with a simple observation for a partial randomizaiton.

Show this randomization is complete for a restricted version of the problem.
Show that the restricted version is statistically equivalent to the original problem.

High Level / Intuition

We can break the argument into 3 easy steps:
(1) Start with a simple observation for a partial randomizaiton.
(2) Show this randomization is complete for a restricted version of the problem.

High Level / Intuition

We can break the argument into 3 easy steps:
(1) Start with a simple observation for a partial randomizaiton.
(2) Show this randomization is complete for a restricted version of the problem.
(3) Show that the restricted version is statistically equivalent to the original problem.

High Level / Intuition

We can break the argument into 3 easy steps:
(1) Start with a simple observation for a partial randomizaiton.
(2) Show this randomization is complete for a restricted version of the problem.
(3) Show that the restricted version is statistically equivalent to the original problem.

- Hence the reduction applies to the original problem as well

High Level / Intuition

We can break the argument into 3 easy steps:
(1) Start with a simple observation for a partial randomizaiton.
(2) Show this randomization is complete for a restricted version of the problem.
(3) Show that the restricted version is statistically equivalent to the original problem.

- Hence the reduction applies to the original problem as well
- Any efficient algorithm that solves the modified problem would solve the original- no efficient procedure can do anything substantially different on one versus the other.

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

Lemma

Let $(a, b=\varphi(a) \cdot e) \in G_{n} \times P_{n}$ be an instance of LHN sampled according to $\mathbf{A}_{\varphi}^{\psi_{n}}$, and α be a permutation of G_{n}. It holds that $\left(a^{\prime}, b\right)=(\alpha(a), b) \in G_{n} \times P_{n}$ is sampled according to $\mathbf{A}_{\varphi \circ \alpha^{-1}}^{\psi_{n}}$.

Lemma

Let $(a, b=\varphi(a) \cdot e) \in G_{n} \times P_{n}$ be an instance of LHN sampled according to $\mathbf{A}_{\varphi}^{\psi_{n}}$, and α be a permutation of G_{n}. It holds that $\left(a^{\prime}, b\right)=(\alpha(a), b) \in G_{n} \times P_{n}$ is sampled according to $\mathbf{A}_{\varphi \circ \alpha^{-1}}^{\psi_{n}}$.

Proof.

Observe that

$$
\begin{aligned}
\left(a^{\prime}=\alpha(a), b\right) & =(\alpha(a), \varphi(a) \cdot \boldsymbol{e}) \\
& =\left(\alpha(a), \varphi \circ \alpha^{-1}(\alpha(a)) \cdot \boldsymbol{e}\right) \\
& =\left(\boldsymbol{a}^{\prime}, \varphi \circ \alpha^{-1}\left(a^{\prime}\right) \cdot \boldsymbol{e}\right)
\end{aligned}
$$

- So, we can take instances from any $\mathbf{A}_{\varphi}^{\psi_{n}}$ and transform them to instances from $\mathbf{A}_{\varphi \circ \alpha}^{\Psi_{n}}$ for some bijection α, giving at least a partial randomization.
- So, we can take instances from any $\mathbf{A}_{\varphi}^{\Psi_{n}}$ and transform them to instances from $\mathbf{A}_{\varphi \circ \alpha}^{\psi_{n}}$ for some bijection α, giving at least a partial randomization.
- Next, we show that this randomization is complete for a subset of homomorphisms...

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3 The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction

Completeness of the Randomization

Observation

Right-composition by an automorphism will not change the image of φ.

> Okay, so the technique from the lemma will not suffice to randomize all instances, but what about

Completeness of the Randomization

Observation

Right-composition by an automorphism will not change the image of φ.

- Okay, so the technique from the lemma will not suffice to randomize all instances, but what about surjective homomorphisms???

Lemma
The action of $\mathrm{Aut}\left(B_{n}\right)$ on Epi($\left.B_{n}, B_{r}\right)$ is transitive

Completeness of the Randomization

Observation

Right-composition by an automorphism will not change the image of φ.

- Okay, so the technique from the lemma will not suffice to randomize all instances, but what about surjective homomorphisms???
- The following would be ideal:

The action of $\operatorname{Aut}\left(B_{n}\right)$ on $\mathrm{Epi}\left(B_{n}, B_{r}\right)$ is transitive

This is true, but requires some work

Completeness of the Randomization

Observation

Right-composition by an automorphism will not change the image of φ.

- Okay, so the technique from the lemma will not suffice to randomize all instances, but what about surjective homomorphisms???
- The following would be ideal:

Lemma

The action of $\operatorname{Aut}\left(B_{n}\right)$ on $\operatorname{Epi}\left(B_{n}, B_{r}\right)$ is transitive.

This is true, but requires some work
Wait- what's this about "work", you say? I know... but still, $\frac{2}{3}$ easy steps isn't so bad

Completeness of the Randomization

Observation

Right-composition by an automorphism will not change the image of φ.

- Okay, so the technique from the lemma will not suffice to randomize all instances, but what about surjective homomorphisms???
- The following would be ideal:

Lemma

The action of $\operatorname{Aut}\left(B_{n}\right)$ on $\operatorname{Epi}\left(B_{n}, B_{r}\right)$ is transitive.

- This is true, but requires some work...

Completeness of the Randomization

Observation

Right-composition by an automorphism will not change the image of φ.

- Okay, so the technique from the lemma will not suffice to randomize all instances, but what about surjective homomorphisms???
- The following would be ideal:

Lemma

The action of $\operatorname{Aut}\left(B_{n}\right)$ on $\operatorname{Epi}\left(B_{n}, B_{r}\right)$ is transitive.

- This is true, but requires some work...
- Wait- what's this about "work", you say? I know... but still, $\frac{2}{3}$ easy steps isn't so bad :)

Consider the following commutative diagram, where ρ is the projection on to the commutator factor, taking $B_{n} \longrightarrow B_{n} /\left[B_{n}, B_{n}\right] \cong\left(\mathbb{F}_{3}^{n},+\right)$:

Consider the following commutative diagram, where ρ is the projection on to the commutator factor, taking $B_{n} \longrightarrow B_{n} /\left[B_{n}, B_{n}\right] \cong\left(\mathbb{F}_{3}^{n},+\right)$:

The main technical lemma used to prove transitivity is the following:

Lemma
Surjecions from Bn Br are precisely the mapswhose
abelianization is also surjective.

Consider the following commutative diagram, where ρ is the projection on to the commutator factor, taking $B_{n} \longrightarrow B_{n} /\left[B_{n}, B_{n}\right] \cong\left(\mathbb{F}_{3}^{n},+\right)$:

The main technical lemma used to prove transitivity is the following:

Lemma

Surjections from $B_{n} \longrightarrow B_{r}$ are precisely the maps whose abelianization is also surjective.

- The proof is somewhat involved, and makes use of some specific details of the structure of free Burnside groups.
- However, some of the details can be abstracted away by a few invocations of the Five Lemma.

Consider the following commutative diagram, where the rows are exact.

Lemma (Five Lemma)
The fire Iamma states that if e is surjective and is injective, then if f and h are isomorphisms, so is g. Furthermore, if i is injective and f and h are surjective, then g is also surjective. ${ }^{\text {a }}$

Dually, if e is surjective and f, h injective, then g is also injective.

Consider the following commutative diagram, where the rows are exact.

Lemma (Five Lemma)

The five lemma states that if e is surjective and i is injective, then if f and h are isomorphisms, so is g. Furthermore, if i is injective and f and h are surjective, then g is also surjective. ${ }^{a}$

[^0]
Proving the Lemma

We'll apply the lemma to the following diagram:

By the Five Lemma, proving $\hat{\varphi}$ is onto would suffice to prove our lemma, since then φ would be onto as well.
Intuitively, dealing with the restriction to $\left\lceil B_{n}, B_{n}\right\rceil$ should be easier than the original map φ.

We'll apply the lemma to the following diagram:

- By the Five Lemma, proving $\hat{\varphi}$ is onto would suffice to prove our lemma, since then φ would be onto as well.
than the original map φ

We'll apply the lemma to the following diagram:

- By the Five Lemma, proving $\hat{\varphi}$ is onto would suffice to prove our lemma, since then φ would be onto as well.
- Intuitively, dealing with the restriction to $\left[B_{n}, B_{n}\right]$ should be easier than the original map $\varphi .^{1}$

[^1]We proceed in a straightforward manner:
Goal
Given an arbitrary epimorphism φ and a target epimorphism φ^{*} we want to find an automorphism α such that

Now Back to Transitivity...

We proceed in a straightforward manner:

Goal

Given an arbitrary epimorphism φ and a target epimorphism φ^{*} we want to find an automorphism α such that

$$
\varphi^{*}=\varphi \circ \alpha .
$$

We'd like to find an automorphism α so that the following diagram commutes:

Idea

- The idea is simple-after all, B_{n} is free!
- This allows us to define α to explicitly send basis elements where they need to go to make the composition work.

- From the fact that B_{n} is free, we know that such an α exists. always a way to choose α to be bijective.
- From the fact that B_{n} is free, we know that such an α exists.
- With the help of the previous lemma, we can show there is always a way to choose α to be bijective.

One More Lemma...

All that remains to show RSR for our restricted problem is to show the following

One More Lemma...

All that remains to show RSR for our restricted problem is to show the following

Lemma

Let G be a finite group, and S a set on which G acts transitively. Let $s \in S$ be an arbitrary element, and consider the distribution A_{s} on S whose samples are $g \cdot s$ where $g \stackrel{\leftarrow}{\leftarrow} \mathbf{U}(G)$. Then $A_{s}=\mathbf{U}(S)$.

One More Lemma...

All that remains to show RSR for our restricted problem is to show the following

Lemma

Let G be a finite group, and S a set on which G acts transitively. Let $s \in S$ be an arbitrary element, and consider the distribution A_{s} on S whose samples are $g \cdot s$ where $g \stackrel{\leftarrow}{\leftarrow} \mathbf{U}(G)$. Then $A_{s}=\mathbf{U}(S)$.

Proof.

A simple counting argument (say, using the orbit-stabilizer theorem) suffices to show that each element $t \in S$ has the same number of preimages under the map from $G \longrightarrow S$ defined by $g \mapsto g \cdot s$.

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Random self-reducibility

2. Learning Problems Over Burnside Groups

- Background: LWE
- LHN Problem
- Burnside Groups and B_{n}-LHN

3) The Reduction, in 3 Easy Steps

- Step 1: An Observation
- Step 2: Completeness for Surjections
- Step 3: Irrelevance of the Restriction
- Most homomorphisms $\varphi: B_{n} \longrightarrow B_{r}$ are surjective.

In fact, if there is just a superlogarithmic gap between r and n then non-surjective maps comprise only a negligible fraction of the set of all homomorphisms.

Even a crude estimate gives a 3^{r-n} fraction of all
homomorphisms being non-surjective.

- Most homomorphisms $\varphi: B_{n} \longrightarrow B_{r}$ are surjective.
- In fact, if there is just a superlogarithmic gap between r and n then non-surjective maps comprise only a negligible fraction of the set of all homomorphisms.
- Most homomorphisms $\varphi: B_{n} \longrightarrow B_{r}$ are surjective.
- In fact, if there is just a superlogarithmic gap between r and n then non-surjective maps comprise only a negligible fraction of the set of all homomorphisms.
- Even a crude estimate gives a 3^{r-n} fraction of all homomorphisms being non-surjective.

Observation

As a result, the altered distribution of instances (coming from sampling uniform surjective maps) is statistically close to the uniform distribution $\mathbf{U}\left(\right.$ hom $\left(B_{n}, B_{r}\right)$). In general,

Observation

For any $X_{n} \subset S_{n}$,

$$
\Delta\left(\mathbf{U}\left(X_{n}\right), \mathbf{U}\left(S_{n}\right)\right)=\frac{\left|S_{n} \backslash X_{n}\right|}{\left|S_{n}\right|}
$$

Hence
case),
$\mathbf{U}\left(S_{n}\right)$

As a result, the altered distribution of instances (coming from sampling uniform surjective maps) is statistically close to the uniform distribution $\mathbf{U}\left(\right.$ hom $\left(B_{n}, B_{r}\right)$). In general,

Observation
For any $X_{n} \subset S_{n}$,

$$
\Delta\left(\mathbf{U}\left(X_{n}\right), \mathbf{U}\left(S_{n}\right)\right)=\frac{\left|S_{n} \backslash X_{n}\right|}{\left|S_{n}\right|}
$$

Hence, whenever $\nu(n)=\left|S_{n} \backslash X_{n}\right| /\left|S_{n}\right|$ is negligible in n (as in our case), then the ensemble of distributions $\mathbf{U}\left(X_{n}\right)$ is statistically close to $\mathbf{U}\left(S_{n}\right)$.

- The modified problem is no different than the original from a computational perspective
Any efficient algorithm breaking the modified scheme could be used to break the original scheme (and vice versa)
- The modified problem is no different than the original from a computational perspective
- Any efficient algorithm breaking the modified scheme could be used to break the original scheme (and vice versa).
- The modified problem is no different than the original from a computational perspective
- Any efficient algorithm breaking the modified scheme could be used to break the original scheme (and vice versa).
- This proves the random self reducibility of the B_{n}-LHN problem.

Work in Progress / Open Questions

- Upper bounds on complexity of $B_{n}-\mathrm{LHN}$? More complexity reductions: Search to decision?

Work in Progress / Open Questions

- Upper bounds on complexity of B_{n}-LHN?
- More complexity reductions: Search to decision?

Questions?

[^0]: ${ }^{\text {a }}$ Dually, if e is surjective and f, h injective, then g is also injective.

[^1]: ${ }^{1}$ We actually invoke the five lemma yet again to show that $\hat{\varphi}$ is surjective...

