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Motivation

Interesting mathematical problem on its own . . .
Tackling crypto challenges of post-quantum era [Sh’94]

Shor’s algorithm: Efficient quantum procedure to compute the
order of any element in a cyclic group
Hardness of order-finding at the heart of most popular public-key
cryptosystems (RSA, DH, ECDH)

∴ If quantum computing becomes practical, we’ll need alternative
crypto platforms

Quantum computing aside, diversifying assumptions still
seems prudent
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Prior Work in Non-
Commutative Cryptography

Challenging computational problems abound in group theory,
however...

Many hard problems are based on infinite groups
This makes probabilistic modeling difficult
Average-case hardness for many problems seems to be not
well-understood
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In this Work

Main Results
In this work we demonstrate a random self-reducibility
property for a new group-theoretic problem put forth in the work
of Baumslag et al. [BFNSS11].
In particular, we show a worst-case to average-case reduction
for the Bn-LHN problem (more on that later...)
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Random self-reducibility

Random self-reducibility makes a statement about the average case
complexity of a problem. In particular, it says that

Random self-reducibility

Solving a random instance is not any easier than solving an
arbitrary instance.
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Random Self-Reducibility

Random self-reducibility has been a hallmark of every successful
cryptographic assumption to-date.
This is not so surprising:

Any cryptosystem implementation must include an algorithm which
samples hard instances of a computational problem.
RSR ensures that hard instances are not difficult to find: a random
instance will suffice.
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The Bn-LHN Problem

Bn-LHN
The problem is a generalization of LWE, moving from vector
spaces and inner products to the setting of groups and
homomorphisms.
As shown in [BFNSS11], this assumption suffices for some basic
cryptographic tasks, e.g., symmetric encryption.
We’ll start with a quick review of LWE.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



The Bn-LHN Problem

Bn-LHN
The problem is a generalization of LWE, moving from vector
spaces and inner products to the setting of groups and
homomorphisms.
As shown in [BFNSS11], this assumption suffices for some basic
cryptographic tasks, e.g., symmetric encryption.
We’ll start with a quick review of LWE.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



The Bn-LHN Problem

Bn-LHN
The problem is a generalization of LWE, moving from vector
spaces and inner products to the setting of groups and
homomorphisms.
As shown in [BFNSS11], this assumption suffices for some basic
cryptographic tasks, e.g., symmetric encryption.
We’ll start with a quick review of LWE.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



The Bn-LHN Problem

Bn-LHN
The problem is a generalization of LWE, moving from vector
spaces and inner products to the setting of groups and
homomorphisms.
As shown in [BFNSS11], this assumption suffices for some basic
cryptographic tasks, e.g., symmetric encryption.
We’ll start with a quick review of LWE.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



Outline

1 Motivation & Background
Why Group-Theoretic Cryptography?
Random self-reducibility

2 Learning Problems Over Burnside Groups
Background: LWE
LHN Problem
Burnside Groups and Bn-LHN

3 The Reduction, in 3 Easy Steps
Step 1: An Observation
Step 2: Completeness for Surjections
Step 3: Irrelevance of the Restriction

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



Learning With Errors [Reg05]

Let s ∈ Fn
p. The picture is as follows:

Fn
p 3 a

Fp

s ·

?
3 b

≈ s · a

?
= s · a + e

LWE, Informally

Roughly, the Learning With Errors problem is to recover s by
sampling preimage-image pairs in the presence of some small “noise”
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Learning With Errors [Reg05]

More precisely, let
s ∈ Fn

p

Ψ be a discrete gaussian distribution over Fp centered at 0
Define a distribution As,Ψ on Fn

p × Fp whose samples are pairs
(a,b) where a $← Fn

p,b = s · a + e,e $← Ψ

Definition (LWE Search)

The Learning With Errors problem is to recover s by sampling the
distribution As,Ψ.

Definition (LWE Decision)

Distinguish the distribution As,Ψ from the uniform distribution
U(Fn

p × Fp).
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Learning Homomorphisms
With Errors

Observation
LWE’s formulation was mainly algebraic:

Expressed in terms of homomorphisms
Complexity reductions (worst case to average case, search to
decision) also algebraic

This motivates the following

Question
Can similar learning problems yield viable intractability assumptions
based on group theory?
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LWE Over Groups [BFNSS11]

Vector Spaces Groups

Fn
p 3 a Gn 3 a

Fp

s ·

?
3 b

≈ s · a

?
Pn

ϕ

?
3 b

≈ ϕ(a)

?

‖ ‖

s · a + e ϕ(a)e
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Learning Homomorphisms
from Images with Errors

Setup

Let Gn and Pn be groups
Set Γn, Ψn, distributions on Gn, Pn, resp.
Let Φn be a distribution on the set of all homomorphisms,
hom(Gn,Pn)

The Distribution Aϕ,Ψn

For ϕ $← Φn, define the analogous distribution Aϕ,Ψn on Gn × Pn
whose samples are (a,b) where

a $← Γn;
e $← Ψn;
b = ϕ(a)e
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Learning Homomorphisms
from Images with Errors

Search Problem
Given Aϕ,Ψn , recover ϕ.

Decision Problem
Given samples from an unknown distribution
R ∈ {Aϕ,Ψn ,U(Gn × Pn)}, determine R.

Hardness Assumption (Decision Version)

Aϕ,Ψn ≈
PPT

U(Gn × Pn)
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Instantiation:
Free Burnside Groups

Question
For which groups (if any) does the abstract problem make sense?

The authors of [BFNS11] suggested the use of free Burnside
groups.
We’ll review some of the intuition for this choice, as well as some
of the key facts about these groups below.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



Instantiation:
Free Burnside Groups

Question
For which groups (if any) does the abstract problem make sense?

The authors of [BFNS11] suggested the use of free Burnside
groups.
We’ll review some of the intuition for this choice, as well as some
of the key facts about these groups below.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



Instantiation:
Free Burnside Groups

Question
For which groups (if any) does the abstract problem make sense?

The authors of [BFNS11] suggested the use of free Burnside
groups.
We’ll review some of the intuition for this choice, as well as some
of the key facts about these groups below.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



Varieties of Groups

The free Burnside groups can be thought of as living in a certain
variety of groups.

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose
elements satisfy a certain set of equations.

Example

Abelian groups can be seen as the variety corresponding to the
equation

XY = YX .

The Burnside groups live in the variety defined by the equation
X m = 1.
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Varieties of Groups

Via the usual “abstract nonsense”, it is easy to see that varieties of
groups contain free objects—just take a free group and factor out the
normal subgroup resulting from all the “equations”...

S
i - UF (S) F (S)

p - F (S)/E

UG

Uf ′

?

f
-

G

f ′

?�
f′
′

Sets Groups
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Varieties of Groups

Question
Which varieties of groups contain finite free objects???

If the equations are say,

[X ,Y ] =1
X p =1

then the free objects are exactly Zn
p, which are the objects of study in

LWE (if p is prime).

Question
What happens if the [X ,Y ] = 1 equation is removed?a In general, the
answer is not so simple...

aNote: [X ,Y ] = X−1Y−1XY .
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Burnside Groups

Notation
For the variety of groups defined by the equation X m = 1, denote the
free group on n generators in this variety by B(n,m).

Determining the finiteness of B(n,m) is known as the Bounded
Burnside Problem.
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Bounded Burnside Problem

For n > 1 and for sufficiently large m, it is known that |B(n,m)| =∞,
yet for small m, our understanding is far from complete:

B(n,2) Finite (also abelian)
B(n,3) Finite
B(n,4) Finite
B(n,5) Unknown
B(n,6) Finite
B(n,7) Unknown

...
...
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Bn-LHN Problem

The authors of [BFNSS11] chose to use B(n,3) to instantiate the
abstract LHN problem.

It’s finite
It’s the smallest non-abelian case
The structure of B(3, n) is fairly well understood

From here out, we’ll denote B(3,n) by Bn for brevity.
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Bn-LHN Problem

The Bn-LHN Problem
This is simply the LHN problem, instantiated with free Burnside
groups.

The homomorphisms are sampled uniformly from hom(Bn,Br ).
We’ll ignore the error distribution for the moment, since those
details are not important to the reduction.
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Outline

1 Motivation & Background
Why Group-Theoretic Cryptography?
Random self-reducibility

2 Learning Problems Over Burnside Groups
Background: LWE
LHN Problem
Burnside Groups and Bn-LHN

3 The Reduction, in 3 Easy Steps
Step 1: An Observation
Step 2: Completeness for Surjections
Step 3: Irrelevance of the Restriction

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



High Level / Intuition

We can break the argument into 3 easy steps:
1 Start with a simple observation for a partial randomizaiton.
2 Show this randomization is complete for a restricted version of

the problem.
3 Show that the restricted version is statistically equivalent to the

original problem.
Hence the reduction applies to the original problem as well
Any efficient algorithm that solves the modified problem would
solve the original- no efficient procedure can do anything
substantially different on one versus the other.
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An Observation

Lemma

Let
(
a,b = ϕ(a) · e

)
∈ Gn × Pn be an instance of LHN sampled

according to AΨn
ϕ , and α be a permutation of Gn. It holds that

(a′,b) =
(
α(a),b

)
∈ Gn × Pn is sampled according to AΨn

ϕ◦α−1 .

Proof.
Observe that

(a′ = α(a),b) =
(
α(a), ϕ(a) · e

)
=
(
α(a), ϕ ◦ α−1(α(a)) · e

)
=
(
a′, ϕ ◦ α−1(a′) · e

)
.
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An Observation

So, we can take instances from any AΨn
ϕ and transform them to

instances from AΨn
ϕ◦α for some bijection α, giving at least a partial

randomization.
Next, we show that this randomization is complete for a subset of
homomorphisms...
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Completeness of the
Randomization

Observation
Right-composition by an automorphism will not change the image of
ϕ.

Okay, so the technique from the lemma will not suffice to
randomize all instances, but what about surjective
homomorphisms???
The following would be ideal:

Lemma
The action of Aut(Bn) on Epi(Bn,Br ) is transitive.

This is true, but requires some work...
Wait- what’s this about “work”, you say? I know... but still, 2

3 easy
steps isn’t so bad : )
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Proving Transitivity

Consider the following commutative diagram, where ρ is the projection
on to the commutator factor, taking Bn - Bn/[Bn,Bn] ∼= (Fn

3,+):

Bn
ρ - Fn

3

Br

ϕ

? ρ - Fr
3

ϕ

?

The main technical lemma used to prove transitivity is the following:

Lemma
Surjections from Bn - Br are precisely the maps whose
abelianization is also surjective.
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Proving the Lemma

The proof is somewhat involved, and makes use of some specific
details of the structure of free Burnside groups.
However, some of the details can be abstracted away by a few
invocations of the Five Lemma.
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The Five Lemma

Consider the following commutative diagram, where the rows are
exact.

A - B - C - D - E

A′

e

?
- B′

f

?
- C′

g

?
- D′

h

?
- E ′

i

?

Lemma (Five Lemma)

The five lemma states that if e is surjective and i is injective, then if f
and h are isomorphisms, so is g. Furthermore, if i is injective and f
and h are surjective, then g is also surjective.a

aDually, if e is surjective and f , h injective, then g is also injective.
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Proving the Lemma

We’ll apply the lemma to the following diagram:

0 - [Bn,Bn]
i - Bn

ρ - Fn
3

- 0

0 - [Br ,Br ]

ϕ̂

? i - Br

ϕ

? ρ - Fr
3

ϕ

?
- 0

(1)

By the Five Lemma, proving ϕ̂ is onto would suffice to prove our
lemma, since then ϕ would be onto as well.
Intuitively, dealing with the restriction to [Bn,Bn] should be easier
than the original map ϕ.1

1We actually invoke the five lemma yet again to show that ϕ̂ is surjective...
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Now Back to Transitivity...

We proceed in a straightforward manner:

Goal
Given an arbitrary epimorphism ϕ and a target epimorphism ϕ∗ we
want to find an automorphism α such that

ϕ∗ = ϕ ◦ α.
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Proving Transitivity

We’d like to find an automorphism α so that the following diagram
commutes:

Bn
ϕ∗

- Br

0 - K -

ρ

Bn
ϕ -

α -
ρ

Br - 0

1
Br
-

Fn
3

?
ϕ∗
- Fr

3

?

0 - K

ρ

?
- Fn

3

ρ

?
ϕ -

α -

Fr
3

ρ

?
- 0

1
F r
3
-

(2)
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The Idea

Idea
The idea is simple—after
all, Bn is free!
This allows us to define α
to explicitly send basis
elements where they need
to go to make the
composition work.
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Proving Transitivity

From the fact that Bn is free, we know that such an α exists.
With the help of the previous lemma, we can show there is
always a way to choose α to be bijective.
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One More Lemma...

All that remains to show RSR for our restricted problem is to show the
following

Lemma
Let G be a finite group, and S a set on which G acts transitively. Let
s ∈ S be an arbitrary element, and consider the distribution As on S
whose samples are g · s where g $← U(G). Then As = U(S).

Proof.
A simple counting argument (say, using the orbit-stabilizer theorem)
suffices to show that each element t ∈ S has the same number of
preimages under the map from G - S defined by g 7→ g · s.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



One More Lemma...

All that remains to show RSR for our restricted problem is to show the
following

Lemma
Let G be a finite group, and S a set on which G acts transitively. Let
s ∈ S be an arbitrary element, and consider the distribution As on S
whose samples are g · s where g $← U(G). Then As = U(S).

Proof.
A simple counting argument (say, using the orbit-stabilizer theorem)
suffices to show that each element t ∈ S has the same number of
preimages under the map from G - S defined by g 7→ g · s.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



One More Lemma...

All that remains to show RSR for our restricted problem is to show the
following

Lemma
Let G be a finite group, and S a set on which G acts transitively. Let
s ∈ S be an arbitrary element, and consider the distribution As on S
whose samples are g · s where g $← U(G). Then As = U(S).

Proof.
A simple counting argument (say, using the orbit-stabilizer theorem)
suffices to show that each element t ∈ S has the same number of
preimages under the map from G - S defined by g 7→ g · s.

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



Outline

1 Motivation & Background
Why Group-Theoretic Cryptography?
Random self-reducibility

2 Learning Problems Over Burnside Groups
Background: LWE
LHN Problem
Burnside Groups and Bn-LHN

3 The Reduction, in 3 Easy Steps
Step 1: An Observation
Step 2: Completeness for Surjections
Step 3: Irrelevance of the Restriction

William Skeith Random Self-Reducibility of Learning Problems over Burnside Groups



How Many Surjective Maps?

Most homomorphisms ϕ : Bn - Br are surjective.
In fact, if there is just a superlogarithmic gap between r and n
then non-surjective maps comprise only a negligible fraction of
the set of all homomorphisms.
Even a crude estimate gives a 3r−n fraction of all
homomorphisms being non-surjective.
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Observation

As a result, the altered distribution of instances (coming from
sampling uniform surjective maps) is statistically close to the uniform
distribution U(hom(Bn,Br )). In general,

Observation
For any Xn ⊂ Sn,

∆(U(Xn),U(Sn)) =
|Sn \ Xn|
|Sn|

Hence, whenever ν(n) = |Sn \ Xn| / |Sn| is negligible in n (as in our
case), then the ensemble of distributions U(Xn) is statistically close to
U(Sn).
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Irrelevance of the Restriction

The modified problem is no different than the original from a
computational perspective
Any efficient algorithm breaking the modified scheme could be
used to break the original scheme (and vice versa).
This proves the random self reducibility of the Bn-LHN problem.
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Work in Progress /
Open Questions

Upper bounds on complexity of Bn-LHN?
More complexity reductions: Search to decision?
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Fin.

Questions?
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