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Homomorphic Encryption I

I From an algebraic perspective, homomorphic encryption can be seen
as the ability to evaluate multivariate (Boolean) polynomials over
ciphertexts.

I Hence, an instantiation of homomorphic encryption over the ring of
multivariate polynomials itself is perhaps the most natural.



Homomorphic Encryption II

I Let I ⊂ P = F[x0, . . . , xn−1] be some ideal and denote by Encode()
an injective function, with inverse Decode(), that maps bits to
elements in the quotient ring P/I.

I Assume that Decode(Encode(m0) ◦ Encode(m1)) = m0 ◦ m1 for
◦ ∈ {+, ·}.

I We can encrypt a message m as

c = f + Encode(m) for f ∈ I.

I Decryption is performed by computing remainders modulo I.



Homomorphic Encryption III

I This construction is somewhat homomorphic

c0 + c1 = f0 + Encode(m0) + f1 + Encode(m1)

= f + Encode(m0) + Encode(m1) for some f ∈ I.

c0 · c1 = (f0 + Encode(m0)) · (f1 + Encode(m1))

= f0 · f1 + f0 · Encode(m1) + f1 · Encode(m0)

+Encode(m0) · Encode(m1)

= f + Encode(m0) · Encode(m1) for some f ∈ I.

I This construction is Polly Cracker.



Homomorphic Encryption IV

I However, our confidence in Polly Cracker-style schemes has been
shaken as almost all such proposals are broken.

I It is a long standing open research challenge to propose a secure
Polly Cracker-style encryption scheme,

I . . . even better if we can make it somewhat homomorphic.

Boo Barkee, Deh Cac Can, Julia Ecks, Theo Moriarty, and R. F. Ree.

Why you cannot even hope to use Gröbner bases in Public Key
Cryptography: An open letter to a scientist who failed and a challenge to
those who have not yet failed.

Journal of Symbolic Computations, 18(6):497–501, 1994.
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Notation I

I P = F[x0, . . . , xn−1] with some ordering on monomials.

I P≤b elements in P of degree at most b.

I LM(f ) is the leading monomial appearing in f ∈ P.

I LC(f ) is the coefficient corresponding to LM(f ) in f .

I LT(f ) is LC(f )LM(f ).



Notation II

An example in F[x , y , z ] with term ordering deglex:

f = 3yz + 2x + 1

I LM(f ) = yz ,

I LC(f ) = 3 and

I LT(f ) = 3yz .



Notation III

Definition (Generated Ideal)

Let f0, . . . , fm−1 be polynomials in P. Define the set

〈f0, . . . , fm−1〉 :=

{
m−1∑
i=0

hi fi : h0, . . . , hm−1 ∈ P

}
.

This set I is an ideal called the ideal generated by f0, . . . , fm−1.



Notation IV

Definition (Gröbner Basis)

Let I be an ideal of F[x0, . . . , xn−1] and fix a monomial ordering. A finite
subset

G = {g0, . . . , gm−1} ⊂ I

is said to be a Gröbner basis of I if for any f ∈ I there exists gi ∈ G
with

LM(gi ) | LM(f ).

For each ideal I and monomial ordering there is a unique reduced
Gröbner basis which can be computed in polynomial time from any
Gröbner basis.

Gröbner bases allow to compute remainders modulo I: r = f
mod I = f mod G .



Characterisation of Gröbner bases I

Definition (S-Polynomial)

The S-polynomial of f and g is defined as

S(f , g) =
xγ

LT(f )
· f − xγ

LT(g)
· g .

where
xγ = LCM(LM(f ),LM(g)).



Characterisation of Gröbner bases II

Definition (t-Representation)

Fix a monomial order and let F = {f0, . . . , fm−1} ⊂ P be an unordered
set of polynomials and let t be a monomial. Given a polynomial f ∈ P,
we say that f has a t-representation if f can be written in the form

f = h0f0 + · · ·+ hm−1fm−1,

such that whenever hi fi 6= 0, we have hi fi ≤ t.

Furthermore, we write that f −→
F

0 if and only if f has an

LM(f )-representation with respect to F .



Characterisation of Gröbner bases III

Theorem

A basis G = {g0, . . . , gs−1} for an ideal I is a Gröbner basis if and only if

S(gi , gj) −→
G

0

for all i 6= j .
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Generating Gröbner bases

begin1

for 0 ≤ i < n do2

for 0 ≤ j < M<xd
i
do3

cij ←$ Fq;4

gi ← xdi +
∑

j cijmj ;5

return (g0, . . . , gn−1);6

end7

Algorithm 1: GBGendense(1λ,P, d)

Theorem

Let f , g ∈ F[x0, . . . , xn−1] with
a = LM(f ) and b = LM(g) and

LCM(a, b) = a · b.

Then
S(f , g) −→

{f ,g}
0.



Formalising the Problems I

proc. Initialize(1λ,P, d):

begin
P ←$ Pλ;
G ←$ GBGen(1λ,P, d);
return (1λ,P);

end

proc. Sample():

begin
f ←$ P≤b;
f ← f − (f mod G );
return f ;

end

proc. Finalize(G ′):

begin
return (G = G ′);

end

Figure: Game GBP,GBGen(·),d,b,m. An adversary is valid if it calls the Sample
oracle at most m(λ) times.



Formalising the Problems II

Definition (Gröbner Basis (GB) Problem)

The advantage of a ppt algorithm A in solving the Gröbner basis problem
with respect to basis generation algorithm GBGen(·) is defined by

AdvgbP,GBGen(·),d,b,m(·),A(λ) := Pr
[
GBAP,GBGen(·),d,b,m(·)(λ)⇒ T

]
,

where game GBP,GBGen(·),d,b,m(·) is shown in Figure 1.



Formalising the Problems III

proc. Initialize(1λ,P, d):

begin
P ←$ Pλ;
G ←$ GBGen(1λ,P, d);
return (1λ,P);

end

proc. Sample():

begin
f ←$ P≤b;
f ← f − (f mod G );
return f ;

end

proc. Challenge():

begin
f ←$ P≤b;
return f ;

end

proc. Finalize(r ′):

begin
return (r ′ = f mod G );

end

Figure: Game IRP,GBGen(·),d,b,m. An adversary is valid if it calls the Sample
oracle at most m(λ) times.



Formalising the Problems IV

Definition (Ideal Remainder (IR) Problem)

The advantage of a ppt algorithm A in solving the ideal remainder
problem is defined by

AdvirP,GBGen(·),d,b,m(·),A(λ) := Pr
[
IRAP,GBGen(·),d,b,m(·)(λ)⇒ T

]
− 1/C (λ),

where game IRP,GBGen(·),d,b,m(·) is shown in Figure 2.



Formalising the Problems V
proc. Initialize(1λ,P, d):

begin
P ←$ Pλ;
G ←$ GBGen(1λ,P, d);
c ←$ {0, 1};
return (1λ,P);

end

proc. Sample():

begin
f ←$ P≤b;
f ← f − (f mod G );
return f ;

end

proc. Challenge():

begin
f ←$ P≤b;
if c =1 then

f ← f −(f mod G );
return f ;

end

proc. Finalize(c ′):

begin
return (c = c ′);

end

Figure: Game IMP,GBGen(·),d,b,m. An adversary is valid if it calls the Sample
oracle at most m(λ) times.



Formalising the Problems VI

Definition (Ideal Membership (IM) Problem)

The advantage of a ppt algorithm A in solving the ideal membership
problem is defined by

AdvimP,GBGen(·),d,b,m(·),A(λ) := 2 · Pr
[
IMAP,GBGen(·),d,b,m(·)(λ)⇒ T

]
− 1,

where game IMP,GBGen(·),d,b,m(·) is shown in Figure 3.

Note

We can view the IM problem as the decisional version of the IR problem.



Hardness I

Lemma (IR <=> GB)

For any ppt adversary A against the IR problem, there exists a ppt
adversary B against the GB problem such that

AdvirP,GBGen(·),d,b,m,A(λ)poly(λ) ≤ AdvgbP,GBGen(·),d,b,m,B(λ).

Conversely, for any ppt adversary B against the GB problem, there exists
a ppt adversary A against the IR problem such that

AdvgbP,GBGen(·),d,b,m,B(λ) = AdvirP,GBGen(·),d,b,m,A(λ).



Hardness II

Proof for first direction.

Consider an arbitrary element gi in the Gröbner basis G . We can write gi
as mi + g̃i for some g̃i < gi and mi = LM(gi ).

Now, assume the normal form of mi is ri and suppose that ri < mi . This
implies that mi =

∑n−1
j=0 hjgj + ri for some hi ∈ P. Hence, we have

mi − ri ∈ 〈G 〉: an element ∈ 〈G 〉 with leading monomial mi .

Repeat this process for all monomials up to and including degree d and
accumulate the results mi − ri in a list G̃ .

The list G̃ is a list of elements ∈ 〈G 〉 with LM(G̃ ) ⊇ LM(G ) which
implies G̃ is a Gröbner basis.

We cannot amplify our confidence since we only have a limited number
of samples.



Hardness III

IR <=> IM

When the search space of remainders is poly(λ), the IM and IR problems
are equivalent, since the attacker can exhaustively search for the
remainder using the IM oracle.

Thus, we have decision to search reduction for some parameters.



Hardness IV

Assuming that f0, . . . , fm−1 is a random system, the complexity of
currently best known algorithms (i.e. with F5) to solve the GB problem is
given by

O
((

n + D

D

)ω)
= O

(
(nD)ω

)
where 2 ≤ ω < 3 is the linear algebra constant, and D is given by the
index of the first non-positive coefficient of:

∑
k≥0

ckz
k =

(1− zb)m

(1− z)n
.

Thus Gröbner bases are exponential in n, if D is polynomial in n.



Hardness V

Corollary

Let c ≥ 0. Then for m(λ) = c · n(λ) or m(λ) = c · n(λ)b polynomials of
degree b in some ideal I, the Gröbner basis of I can be computed in
exponential or polynomial time in n(λ) respectively.

Definition (GB/IR/IM Assumption)

Let P be such that n(λ) = Ω(λ). Assume b − d > 0, b > 1, and that
m(λ) = c · n(λ) for a constant c ≥ 1. Then the advantage of any ppt
algorithm in solving the GB/IR/IM problem is negligible as function of λ.
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Symmetric PollyCracker I

Algo. GenP,GBGen(·),d,b(1
λ)

begin
P ←$ Pλ;
G ←$ GBGen(1

λ,P, d);
SK← (G ,P, b);
PK← (P, b);
return (SK,PK);

end

Algo. Enc(m, SK):

begin
f ←$ P≤b;
← f − (f mod G);
c ← m + f ;
return c;

end

Algo. Dec(c, SK):

begin
m← c mod G ;
return m;

end

Algo. Eval(c0, . . . , ct−1,C ,PK):

begin
apply the Add and Mult
gates of C over P;

return the result;
end

Figure: The noise-free symmetric Polly Cracker scheme SPCP,GBGen(·),d,b.



Security I

The m(·)-time IND-CPA security of a (homomorphic) symmetric-key
encryption scheme is defined in the usual way by requiring that the
advantage of any probabilistic polynomial-time adversary A

Advind-bcpam(·),SKE,A(λ) := 2 · Pr
[
IND-BCPAAm(·),SKE(λ)⇒ T

]
− 1

is negligible as a function of the security parameter λ. The difference
with the usual CPA security is that the adversary can query the
encryption oracle at most m(λ) times.



Security II

Theorem

Let A be a ppt adversary against the m-time IND-BCPA security of the
scheme described in Figure 4. Then there exists a ppt adversary B
against the IM problem such that for all λ ∈ N we have

Advind-bcpam,SPC,A(λ) = 2 · AdvimP,GBGen(·),d,b,m,B(λ).

Conversely, let A be a ppt adversary against the IM problem. Then there
exists a ppt adversary B against the m-time IND-BCPA security of the
scheme described in Figure 4 such that for all λ ∈ N we have

AdvimP,GBGen(·),d,b,m,A(λ) = Advind-bcpam,SPC,B(λ).
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Conversions in the Literature

I There are a few techniques in the literature, which convert an
IND-CPA symmetric additive homomorphic scheme to an IND-CPA
public-key additive homomorphic scheme.

I One such conversion is to publish N encryptions of zero f0, . . . , fN−1
and to encrypt as

c =
∑
s∈S

fs + m

where S is a subset of {0, . . . ,N − 1}.

While PollyCracker is additive homomorphic and secure up to some
bound, none of the proposed conversions give a secure scheme.



Impossibility Result I

Theorem (Dickenstein, Fitchas, Giusti, and Sessa)

Let I = 〈f0, . . . , fm−1〉 be an ideal in P = F[x0, . . . , xn−1], h be such that
deg(h) ≤ D, and

h − (h mod I) =
m−1∑
i=0

hi fi ,

where hi ∈ P and deg(hi fi ) ≤ D.

Let G be the output of some Gröbner basis computation algorithm up to
degree D (i.e. all computations with degree greater than D are ignored
and dropped). Then h mod I can be computed by polynomial reduction
of h via G.



Impossibility Result II

Theorem

Let I = 〈f0, . . . , fm−1〉 be an ideal in P = F[x0, . . . , xn−1]. If there is a
ppt algorithm A which samples elements from I uniformly given only
(f0, . . . , fm−1) ∈ I, then there exists a ppt algorithm B which computes a
Gröbner basis for I.

Proof.

We can compute the normal forms of any f produced by A in polynomial
time since we know f0, . . . , fm−1. If f is arbitrary in the ideal I, we know
that normals forms are equivalent to Gröbner basis computations. Thus,
we have a polynomial time algorithm for computing Gröbner bases.
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Discrete Gaussian

A noise distribution χ will parametrise various games below. The discrete
Gaussian distribution is of particular interest to us.

Definition (Discrete Gaussian Distribution)

Let α > 0 be a real number and q ∈ N. The discrete Gaussian
distribution χα,q, is a Gaussian distribution rounded to the nearest
integer and reduced modulo q with mean zero and standard deviation αq.



Gröbner Bases with Noise I

proc. Initialize(1λ,P, d):

begin
P ←$ Pλ;
G ←$ GBGen(1λ,P, d);
return (1λ,P);

end

proc. Sample():

begin
f ←$ P≤b;
e ←$ χ;
f ← f − (f mod G ) + e;
return f ;

end
proc. Finalize(G ′):

begin
G̃ ← reduced GB of G ;

G̃ ′ ← reduced GB of G ′;

return G̃ = G̃ ′;
end

Figure: Game GBNP,GBGen(·),d,b,χ.



Gröbner Bases with Noise II

Definition (Gröbner Basis with Noise (GBN) Problem)

The Gröbner Basis with Noise Problem is defined through game
GBNP,GBGen(·),d,b,χ as shown in Figure 5. The advantage of a ppt
algorithm A in solving the GBN problem is

AdvgbnP,GBGen(·),d,b,χ,A(λ) := Pr
[
GBNAP,GBGen(·),d,b,χ(λ)⇒ T

]
.

Note that we do not impose a restriction on the number of samples any
more.



Ideal Remainders with Noise I

proc. Initialize(1λ,P, d):

begin
P ←$ Pλ;
G ←$ GBGen(1λ,P, d);
return (1λ,P);

end

proc. Sample():

begin
f ←$ P≤b;
e ←$ χ;
f ← f − (f mod G ) + e;
return f ;

end

proc. Challenge():

begin
f ←$ P≤b;
return f ;

end

proc. Finalize(r ′):

begin
return (r ′ = f mod G );

end

Figure: Game IRNP,GBGen(·),d,b,χ.



Ideal Remainders with Noise II

Definition (Ideal Remainder with Noise (IRN) Problem)

The Ideal Remainder with Noise Problem is defined through game
IRNP,GBGen(·),d,b,χ as shown in Figure 6. The advantage of a ppt
algorithm A in solving the IRN problem is

AdvirnP,GBGen(·),d,b,χ,A(λ) := Pr
[
IRNAP,GBGen(·),d,b,χ(λ)⇒ T

]
− 1/C (λ).

Lemma (IRN Hard ⇔ GBN Hard)

For any ppt adversary A against the IRN problem, there exists a ppt
adversary B against the GBN problem such that

AdvirnP,GBGen(·),d,b,χ,A(λ) ≤ AdvgbnP,GBGen(·),d,b,χ,B(λ).

. . . and vice versa.



Ideal Membership with Noise (Ideal Coset) I

proc. Initialize(1λ,P, d):

begin
P ←$ Pλ;
G ←$ GBGen(1λ,P, d);
c ←$ {0, 1};
return (1λ,P);

end

proc. Sample():

begin
f ←$ P≤b;
e ←$ χ;
f ← f − (f mod G ) + e;
return f ;

end

proc. Challenge():

begin
f ,e ←$ P≤b, χ;
if c = 0 then
f ← f − (f mod G ) + e;
return f ;

end

proc. Finalize(c ′):

begin
return (c ′ = c);

end

Figure: Game IMNP,GBGen(·),d,b,χ.



Ideal Membership with Noise (Ideal Coset) II

Definition (Ideal Membership with Noise (IMN) Problem)

The Ideal Membership with Noise (IMN) Problem is defined as a game,
denoted IMNP,GBGen(·),d,b,χ, shown in Figure 7. The advantage of a ppt
algorithm A in solving the ideal membership with noise problem is
defined by

Advimn
P,GBGen(·),d,b,χ,A(λ) := 2 · Pr

[
IMNAP,GBGen(·),d,b,χ(λ)⇒ T

]
− 1.

Lemma (IMN Hard ⇔ IRN Hard)

For any ppt adversary A against the IMN problem, there exists a ppt
adversary B against the IRN problem such that

Advimn
P,GBGen(·),d,b,χ,A(λ) ≤ AdvirnP,GBGen(·),d,b,χ,B(λ),

if q(λ)dimFq (P(λ)/GBGen(·)) is polynomial in λ.

. . . and vice versa.



Security I

Lemma (LWE Hard ⇒ GBN Hard for d = 1, b = 1)

Let q be a prime number. Then for any ppt adversary A against the
GBN problem with b = d = 1, there exists a ppt adversary B against the
LWE problem such that

AdvgbnP,GBGen(·),1,1,χ,A(λ) = Advlwen,q,χ,B(λ).

Proof.

Whenever A calls its Sample oracle, B queries its own Sample oracle to
obtain (a, b) where a = (a0, . . . , an−1). It returns

∑
aixi − b to A. When

A calls its Finalize on G , since d = 1, we may assume that G is of the
form [x0 − s0, . . . , xn−1 − sn−1] with si ∈ Fq. Algorithm B terminates by
calling its Finalize oracle on s = (s0, . . . , sn−1).



Security II

Lemma (GBN Hard for 2b ⇒ GBN Hard for b)

For any ppt adversary A against the GBN problem at degree b with noise
χα,q, there exists a ppt adversary B against the GBN problem at degree
2b with noise χ√Nα2q,q such that

AdvgbnP,GBGen(·),d,b,χα,q,A(λ) = AdvgbnP,GBGen(·),d,2b,χ√
Nα2q,q,B

(λ)

for N =
(
n+b
b

)
.

Proof.

Multiply samples fi , fj to get fi,j = fi · fj . To ensure sufficient randomness,
sum up N such products.



Security III

Approximate GCD:

I The GBN problem for n = 1 is the approx. GCD problem over Fq[x ].

I This problem has not yet received much attention, and hence it is
unclear under which parameters it is hard.

I However, the notion of a Gröbner basis can been extended to
Z[x0, . . . , xn−1].

I This implies a version of the GBN problem over Z.

I This can be seen as a direct generalisation of the approximate GCD
problem in Z.



Security IV

GBN over F2:

I For d = 1 and q = 2 we can reduce Max-3SAT instances to GBN
instances by translating each clause individually to a Boolean
polynomial.

I The Gröbner basis returned by an arbitrary algorithm A solving GBN
using a bounded number of samples will provide a solution to the
Max-3SAT problem.

I Vice versa, we may convert a GBN problem for d = 1 to a Max-SAT
problem (more precisely Partial Max-Sat) by running an ANF to
CNF conversion algorithm.



Security V

Best known attack (for d = 1):

I We reduce GBN to a larger LWE instance.

I Denote by N =
(
n+b
b

)
the number of monomials up to degree b.

I Let M : P → FN
q be a function which maps polynomials in P to

vectors in FN
q by assigning the i-th component of the image vector

the coefficient of the i-th monomial ∈ M≤b.

I Reply to each Sample query by the LWE oracle by calling the GBN
Sample oracle to retrieve f , compute v =M(f ) and return (a, b)
with a = (vN−1, . . . , v1) and b = −v0.

I When the LWE oracle queries its Finalize with s query the GBN
Finalize with [x0 − s0, . . . , xn−1 − sn−1].



Polly Cracker with Noise

I GBN/IRN/IMN allow to construct a noisy version of our symmetric
Polly Cracker scheme: SPCN .

I SPCN is IND-CPA under the GBN assumption.

I Using any symmetric-to-asymmetric conversion from literature this
leads to a public-key Polly Cracker scheme.

I This scheme is somewhat homomorphic and can support a fixed but
arbitrary number of multiplications.

I This also implies that Regev’s public-key scheme based on LWE is
multiplicative homomorphic under some choice of parameters.

Remark

We implemented a toy version of this scheme.



Thank you for your attention

Questions?
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