New Algorithms for Learning

 in Presence of Errors
Sanjeev Arora, Rong Ge Princeton University

Hard(?) Problems

Hard(?) Problems

Treasure shall be found at u
$u \cdot(0,1,0,1,1)=0$
$u \cdot(1,1,0,1,0)=1$
$u \cdot(0,1,1,0,0)=1$

Hard(?) Problems

Treasure shall be found at u
$u \cdot(0,1,0,1,1)=0$
$u \cdot(1,1,0,1,0)=1$
$u \cdot(0,1,1,0,0)=1$

At least 90\% of above are satisfied

Hard(?) Problems

Treasure shall be found at u
$u \cdot(0,1,0,1,1)=0$
$u \cdot(1,1,0,1,0)=1$
$u \cdot(0,1,1,0,0)=1$

At least 90\% of above are satisfied

Hard(?) Problems

Treasure shall be found at u
$u \cdot(0,1,0,1,1)=0$
$u \cdot(1,1,0,1,0)=1$
$u \cdot(0,1,1,0,0)=1$

There might be 1 mistake in every 3 lines.

Hard(?) Problems

Treasure shall be found at u
$u \cdot(0,1,0,1,1)=0$
$u \cdot(1,1,0,1,0)=1$
$u \cdot(0,1,1,0,0)=1$

There might be 1 mistake in every 3 lines.

Learning Parities with Noise

Learning Parities with Noise

Secret $u=(1,0,1,1,1)$

Learning Parities with Noise

Secret $u=(1,0,1,1,1)$

Learning Parities with Noise

Secret $u=(1,0,1,1,1)$

Learning Parities with Noise

$$
\text { Secret } u=(1,0,1,1,1) \quad u \cdot(0,1,0,1,1)=0
$$

Learning Parities with Noise

Secret $u=(1,0,1,1,1)$

$$
\begin{aligned}
& u \cdot(0,1,0,1,1)=0 \\
& u \cdot(1,1,1,0,1)=1
\end{aligned}
$$

Learning Parities with Noise

$$
\begin{array}{ll}
\text { Secret } u=(1,0,1,1,1) & u \cdot(0,1,0,1,1)=0 \\
& u \cdot(1,1,1,0,1)=1 \\
u \cdot(0,1,1,1,0)=1
\end{array}
$$

Learning Parities with Noise

Learning Parities with Noise

\square Secret vector u in GF(2) ${ }^{\mathrm{n}}$

Learning Parities with Noise

\square Secret vector u in GF(2) ${ }^{\mathrm{n}}$
\square Oracle returns random a and $b \approx u \cdot a$

Learning Parities with Noise

\square Secret vector u in GF(2) ${ }^{\mathrm{n}}$
\square Oracle returns random a and $\mathrm{b} \approx \mathrm{u} \cdot \mathrm{a}$
$\square u \cdot a$ is incorrect with probability p

Learning Parities with Noise

\square Secret vector u in GF(2) ${ }^{\mathrm{n}}$
\square Oracle returns random a and $\mathrm{b} \approx \mathrm{u} \cdot \mathrm{a}$
$\square u \cdot a$ is incorrect with probability p
\square Best known algorithm: $2^{\mathrm{O}(\mathrm{n} / \log \mathrm{n})}\left[\mathrm{BKW}{ }^{\prime} 03\right]$

Learning Parities with Noise

\square Secret vector u in GF(2) ${ }^{\mathrm{n}}$
\square Oracle returns random a and $b \approx u \cdot a$
$\square u \cdot a$ is incorrect with probability p
\square Best known algorithm: $2^{\mathrm{O}(\mathrm{n} / \log \mathrm{n})}$ [BKW'03]
\square Used in designing public-key crypto [Alekhnovich'03]

Learning Parities with Structured Noise

Learning Parities with Structured Noise

Secret $u=(1,0,1,1,1)$

Learning Parities with Structured Noise

Secret $u=(1,0,1,1,1)$

Learning Parities with Structured Noise

$$
\begin{array}{ll}
\text { Secret } u=(1,0,1,1,1) & u \cdot(0,1,0,1,1)=0 \\
& u \cdot(1,1,0,1,0)=1 \\
& u \cdot(0,1,1,0,0)=1
\end{array}
$$

Learning Parities with Structured Noise

$$
\text { Secret } u=(1,0,1,1,1) \begin{gathered}
u \cdot(0,1,0,1,1)=0 \\
\hline u \cdot(1,1,0,1,0)=1 \\
\hline u \cdot(0,1,1,0,0)=1
\end{gathered}
$$

Learning Parities with Structured Noise

Learning Parities with Structured Noise

\square Secret vector u

Learning Parities with Structured Noise

\square Secret vector u
\square Oracle returns random $a^{1}, a^{2}, \ldots, a^{m}$ and $b_{1} \approx u \cdot a^{1}$, $b_{2} \approx u \cdot a^{2}, \ldots, b_{m} \approx u \cdot a^{m}$

Learning Parities with Structured Noise

\square Secret vector u
\square Oracle returns random $a^{1}, a^{2}, \ldots, a^{m}$ and $b_{1} \approx u \cdot a^{1}$, $b_{2} \approx u \cdot a^{2}, \ldots, b_{m} \approx u \cdot a^{m}$
\square "Not all inner-products are incorrect"

Learning Parities with Structured Noise

\square Secret vector u
\square Oracle returns random $a^{1}, a^{2}, \ldots, a^{m}$ and $b_{1} \approx u \cdot a^{1}$, $b_{2} \approx u \cdot a^{2}, \ldots, b_{m} \approx u \cdot a^{m}$
\square The error has a certain structure

Learning Parities with Structured Noise

\square Secret vector u
\square Oracle returns random $a^{1}, a^{2}, \ldots, a^{m}$ and $b_{1} \approx u \cdot a^{1}$, $b_{2} \approx u \cdot a^{2}, \ldots, b_{m} \approx u \cdot a^{m}$
\square The error has a certain structure

Our Results

Our Results

\square Learning parities with structured noise
$\square \mathrm{n}^{\mathrm{O}}$ (d) time, adversarial noise

Our Results

\square Learning parities with structured noise

- $\mathrm{n}^{\mathrm{O}(\mathrm{d})}$ time, adversarial noise
\square Learning With Errors
- Subexp algorithm when noise $<\mathrm{n}^{1 / 2}$
- Open problem since [Regev'05]

Our Results

\square Learning parities with structured noise

- $\mathrm{n}^{\mathrm{O}(\mathrm{d})}$ time, adversarial noise
\square Learning With Errors
- Subexp algorithm when noise < $\mathrm{n}^{1 / 2}$
- Open problem since [Regev'05]
\square Majority of 3 parities
- Can inverse with $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ queries.
- Pseudorandom generator purposed in [ABW'10]

Structures as Polynomials

Structures as Polynomials

$\square \mathrm{c}_{\mathrm{i}}=1 \mathrm{iff} \mathrm{i}$-th inner-product is incorrect
$-b_{i}=a^{i} \cdot u+c_{i}$

Structures as Polynomials

$\square \mathrm{c}_{\mathrm{i}}=1$ iff i -th inner-product is incorrect
$-b_{i}=a^{i} \cdot u+c_{i}$
$\square \mathrm{P}(\mathrm{c})=0$ if an answer pattern is allowed

Structures as Polynomials

$\square \mathrm{c}_{\mathrm{i}}=1 \mathrm{iff} \mathrm{i}$-th inner-product is incorrect
$-b_{i}=a^{i} \cdot u+c_{i}$
$\square \mathrm{P}(\mathrm{c})=0$ if an answer pattern is allowed
\square "At least one of the inner-products is correct"
$\square P(c)=c_{1} c_{2} c_{3} \ldots c_{m}=0$

Structures as Polynomials

$\square \mathrm{c}_{\mathrm{i}}=1$ iff i -th inner-product is incorrect
$-b_{i}=a^{i} \cdot u+c_{i}$
$\square \mathrm{P}(\mathrm{c})=0$ if an answer pattern is allowed
\square "At least one of the inner-products is correct"
$\square P(c)=c_{1} c_{2} c_{3} \ldots c_{m}=0$
\square "No 3 consecutive wrong inner-products"
$\square \mathrm{P}(\mathrm{c})=\mathrm{C}_{1} \mathrm{c}_{2} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{c}_{4}+\ldots+\mathrm{c}_{\mathrm{m}-2} \mathrm{c}_{\mathrm{m}-1} \mathrm{c}_{\mathrm{m}}=0$

Notations

\square Subscripts are used for indexing vectors
$-u_{i}, c_{i}$
\square Superscripts are used for a list of vectors

- a^{i}
\square High dimensional vectors are indexed like $\mathrm{Z}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}$
$\square \mathrm{a}, \mathrm{b}$ are known constants, u, c are unknown constants used in analysis, x, y, Z are variables in equations.

Main Result

Main Result

\square For ANY non-trivial structure P of degree d , the secret can be learned using $\mathrm{n}^{\mathrm{O}(\mathrm{d})}$ queries and $\mathrm{n}^{\mathrm{O}(\mathrm{d})}$ time.

Main Result

\square For ANY non-trivial structure P of degree d, the secret can be learned using $\mathrm{n}^{\mathrm{O}(\mathrm{d})}$ queries and $\mathrm{n}^{\mathrm{O}(\mathrm{d})}$ time.

The Algorithm

The Algorithm

\square Query the Oracle

The Algorithm

\square Query the Oracle
\square Write out polynomial equations over x
■ Solution in mind: $x=u$

The Algorithm

\square Query the Oracle
\square Write out polynomial equations over x

- Solution in mind: $x=u$
\square Linearize all equations to get equations over y

The Algorithm

\square Query the Oracle
\square Write out polynomial equations over x

- Solution in mind: $x=u$
\square Linearize all equations to get equations over y
\square Solve the equations for y (Gaussian Elimination)

The Algorithm

\square Query the Oracle
\square Write out polynomial equations over x

- Solution in mind: $x=u$
\square Linearize all equations to get equations over y
\square Solve the equations for y (Gaussian Elimination)
\square The unique solution will recover secret u

The Algorithm

\square Query the Oracle
\square Write out polynomial equations over x

- Solution in mind: $x=u$
\square Linearize all equations to get equations over y
\square Solve the equations for y (Gaussian Elimination)
\square The unique solution will recover secret u

Linearization

Linearization

Answers

$$
b_{i}=c_{i}+a^{i} \cdot x
$$

$$
\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=0
$$

Linearization

Answers

$$
b_{i}=\underbrace{c_{i}+a^{i} \cdot x}_{\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right)} c_{1}^{c_{2} c_{3}}=0
$$

Linearization

Answers

$$
\mathrm{b}_{\mathrm{i}}=\underbrace{\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}}_{\left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right)}=0
$$

Degree 3 polynomial over x

Linearization

Answers

$$
\mathrm{b}_{\mathrm{i}}=\underbrace{\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}}_{\left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right)}=0
$$

Degree 3 polynomial over x
Linearization $\mathrm{y}_{1}=\mathrm{x}_{1}, \mathrm{y}_{2}=\mathrm{x}_{2}, \ldots, \mathrm{y}_{1,2}=\mathrm{x}_{1} \mathrm{x}_{2}, \ldots, \mathrm{y}_{1,2,3}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}$

Linearization

Answers

$$
\mathrm{b}_{\mathrm{i}}=\underbrace{\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}}_{\left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right)}=0
$$

Degree 3 polynomial over x
Linearization $y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{1,2}=x_{1} x_{2}, \ldots, y_{1,2,3}=x_{1} x_{2} x_{3}$

$$
\mathrm{a}^{1}{ }_{1} \mathrm{a}^{2} \mathrm{a}^{3}{ }_{3} \mathrm{y}_{1,2,3}+\ldots+\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}=0 \quad(* *)
$$

Linearization

Answers

$$
\mathrm{b}_{\mathrm{i}}=\underbrace{\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}}_{\left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right)}=0
$$

Degree 3 polynomial over x
Linearization $y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{1,2}=x_{1} x_{2}, \ldots, y_{1,2,3}=x_{1} x_{2} x_{3}$

$$
\mathrm{a}^{1}{ }_{1} \mathrm{a}^{2}{ }_{2} \mathrm{a}_{3}{ }_{3} \mathrm{y}_{1,2,3}+\ldots+\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}=0 \quad\left({ }^{* *}\right)
$$

Linear Equations over y

$$
\left({ }^{* *}\right)=L\left(\left(^{*}\right)\right)
$$

Canonical Solution

Canonical Solution

$\square\left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right)$

- Always satisfied when $x_{i}=u_{i}$

Canonical Solution

$\square\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left({ }^{*}\right)$

- Always satisfied when $x_{i}=u_{i}$
$\square \mathrm{a}^{1}{ }_{1} \mathrm{a}^{2}{ }_{2} \mathrm{a}^{3}{ }_{3} \mathrm{y}_{1,2,3}+\ldots+\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}=0\left({ }^{* *}\right)$
\square Always satisfied when $\mathrm{y}_{1}=\mathrm{u}_{1}, \mathrm{y}_{2}=\mathrm{u}_{2}, \ldots, \mathrm{y}_{1,2,3}=\mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3}$

Canonical Solution

$\square\left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right)$

- Always satisfied when $x_{i}=u_{i}$
$\square \mathrm{a}_{1}^{1} \mathrm{a}^{2}{ }_{2} \mathrm{a}^{3}{ }_{3} \mathrm{y}_{1,2,3}+\ldots+\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}=0$ (** $\left.^{*}\right)$
- Always satisfied when $\mathrm{y}_{1}=\mathrm{u}_{1}, \mathrm{y}_{2}=\mathrm{u}_{2}, \ldots, \mathrm{y}_{1,2,3}=\mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3}$
\square Canonical Solution: $\mathrm{y}_{1}=\mathrm{u}_{1}, \mathrm{y}_{2}=\mathrm{u}_{2}, \ldots, \mathrm{y}_{1,2,3}=\mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3}$

Canonical Solution

$\square\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left({ }^{*}\right)$

- Always satisfied when $x_{i}=u_{i}$
$\square \mathrm{a}^{1}{ }_{1} \mathrm{a}^{2}{ }_{2} \mathrm{a}^{3}{ }_{3} \mathrm{y}_{1,2,3}+\ldots+\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}=0\left({ }^{* *}\right)$
- Always satisfied when $\mathrm{y}_{1}=\mathrm{u}_{1}, \mathrm{y}_{2}=\mathrm{u}_{2}, \ldots, \mathrm{y}_{1,2,3}=\mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3}$
\square Canonical Solution: $\mathrm{y}_{1}=\mathrm{u}_{1}, \mathrm{y}_{2}=\mathrm{u}_{2}, \ldots, \mathrm{y}_{1,2,3}=\mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3}$
\square Coming up: This is the only solution to the system of linear equations

Proof Outline

Proof Outline

\square Express (*) and (**) in a special form

- Tensor-Expansion

Proof Outline

\square Express (*) and (**) in a special form

- Tensor-Expansion
\square Change view: treat y as constants, a as variables

Proof Outline

\square Express (*) and (**) in a special form

- Tensor-Expansion
\square Change view: treat y as constants, a as variables
$\square \operatorname{Pr}[f i x$ y sat. all equations] = extremely small

Proof Outline

\square Express (*) and (**) in a special form

- Tensor-Expansion
\square Change view: treat y as constants, a as variables
$\square \operatorname{Pr}[f i x$ y sat. all equations] = extremely small
\square Union bound over all "non-canonical" solutions.

Tensor-expansion

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right)$

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \quad$ Problem: b depends on a

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \quad$ Problem: b depends on a
$\left(\mathrm{a}^{1} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{3}\right)=0$

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \quad$ Problem: b depends on a
$\left(\mathrm{a}^{1} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{3}\right)=0$
$\left(a^{1} \cdot X+c_{1}\right)\left(a^{2} \cdot X+c_{2}\right)\left(a^{3} \cdot X+c_{3}\right)=0$

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \quad$ Problem: b depends on a
$\left(\mathrm{a}^{1} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{3}\right)=0$
$\left(a^{1} \cdot X+c_{1}\right)\left(a^{2} \cdot X+c_{2}\right)\left(a^{3} \cdot X+c_{3}\right)=0 \quad a, c:$ numbers; X : variable

Tensor-expansion

$$
\begin{aligned}
& \left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \text { Problem: } b \text { depends on } a \\
& \left(a^{1} \cdot(x+u)+c_{1}\right)\left(a^{2} \cdot(x+u)+c_{2}\right)\left(a^{3} \cdot(x+u)+c_{3}\right)=0 \\
& \left(a^{1} \cdot X+c_{1}\right)\left(a^{2} \cdot X+c_{2}\right)\left(a^{3} \cdot X+c_{3}\right)=0 \quad a, c \text { :numbers; } x \text { : variable } \\
& a^{1} a^{2} a^{3} \cdot x^{3}+c_{1} a^{2} a^{3} \cdot X^{2}+\ldots+c_{1} c_{2} c_{3}=0
\end{aligned}
$$

Tensor-expansion

$$
\begin{aligned}
& \left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \text { Problem: } b \text { depends on } a \\
& \left(a^{1} \cdot(x+u)+c_{1}\right)\left(a^{2} \cdot(x+u)+c_{2}\right)\left(a^{3} \cdot(x+u)+c_{3}\right)=0 \\
& \left(a^{1} \cdot X+c_{1}\right)\left(a^{2} \cdot X+c_{2}\right)\left(a^{3} \cdot X+c_{3}\right)=0 \quad a, c: \text { numbers; } x \text { : variable } \\
& \quad a^{1} a^{2} a^{3} \cdot X^{3}=0
\end{aligned}
$$

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left({ }^{*}\right)$
Problem: b depends on a
$\left(\mathrm{a}^{1} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{3}\right)=0$
$\left(a^{1} \cdot X+c_{1}\right)\left(a^{2} \cdot X+c_{2}\right)\left(a^{3} \cdot X+c_{3}\right)=0 \quad a, c:$ numbers; X : variable

$$
a^{1} a^{2} a^{3} \cdot X^{3}=0
$$

$$
\left(a^{1} \cdot x\right)\left(a^{2} \cdot x\right)=\left(a^{1} \otimes a^{2}\right)(x \otimes x)
$$

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left({ }^{*}\right)$
Problem: b depends on a
$\left(a^{1} \cdot(x+u)+c_{1}\right)\left(a^{2} \cdot(x+u)+c_{2}\right)\left(a^{3} \cdot(x+u)+c_{3}\right)=0$
$\left(a^{1} \cdot X+c_{1}\right)\left(a^{2} \cdot X+c_{2}\right)\left(a^{3} \cdot X+c_{3}\right)=0 \quad a, c:$ numbers; X : variable

$$
\mathrm{a}^{1} \mathrm{a}^{2} \mathrm{a}^{3} \cdot \mathrm{X}^{3}=0 \quad\left(a^{1} \cdot x\right)\left(a^{2} \cdot x\right)=\left(a^{1} \otimes a^{2}\right)(x \otimes x)
$$

Tensor-expansion

$\left(a^{1} \cdot x+b_{1}\right)\left(a^{2} \cdot x+b_{2}\right)\left(a^{3} \cdot x+b_{3}\right)=0\left(^{*}\right) \quad$ Problem: b depends on a
$\left(a^{1} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{3}\right)=0$
$\left(\mathrm{a}^{1} \cdot \mathrm{X}+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{X}+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{X}+\mathrm{c}_{3}\right)=0 \quad \mathrm{a}, \mathrm{c}:$ numbers; X : variable

$$
a^{1} a^{2} a^{3} \cdot x^{3}=0
$$

$$
\left(a^{1} \cdot x\right)\left(a^{2} \cdot x\right)=\left(a^{1} \otimes a^{2}\right)(x \otimes x)
$$

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0$

Tensor-expansion

$$
\begin{aligned}
& \left(\mathrm{a}^{1} \cdot \mathrm{x}+\mathrm{b}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{x}^{2}+\mathrm{b}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{x}+\mathrm{b}_{3}\right)=0\left(^{*}\right) \text { Problem: } \mathrm{b} \text { depends on } \mathrm{a} \\
& \left(\mathrm{a}^{1} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot(\mathrm{x}+\mathrm{u})+\mathrm{c}_{3}\right)=0 \\
& \left(\mathrm{a}^{1} \cdot \mathrm{X}+\mathrm{c}_{1}\right)\left(\mathrm{a}^{2} \cdot \mathrm{X}+\mathrm{c}_{2}\right)\left(\mathrm{a}^{3} \cdot \mathrm{X}+\mathrm{c}_{3}\right)=0 \quad \mathrm{a}, \mathrm{c}: \text { numbers; } \mathrm{X}: \text { variable } \\
& \mathrm{a}^{1} \mathrm{a}^{2} \mathrm{a}^{3} \cdot \mathrm{X}^{3}=0 \quad\left(a^{1} \cdot x\right)\left(a^{2} \cdot x\right)=\left(a^{1} \otimes a^{2}\right)(x \otimes x) \\
& \left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \\
& \mathrm{Z}^{3}=0 \Leftrightarrow \mathrm{y} \text { is the canonical solution }
\end{aligned}
$$

Change View

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \quad$ Linear Equation over y variables

Change View

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \quad$ Linear Equation over y variables
$Z^{3}\left(a^{1} \otimes a^{2} \otimes a^{3}\right)=0$

Change View

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \quad$ Linear Equation over y variables
$Z^{3}\left(a^{1} \otimes a^{2} \otimes a^{3}\right)=0 \quad$ Polynomial over a's

Change View

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \quad$ Linear Equation over y variables
$Z^{3}\left(a^{1} \otimes a^{2} \otimes a^{3}\right)=0 \quad$ Polynomial over a's
Uniformly random

Change View

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \quad$ Linear Equation over y variables
$Z^{3}\left(a^{1} \otimes a^{2} \otimes a^{3}\right)=0 \quad$ Polynomial over a's
Uniformly random
\square Lemma

- When $Z^{3} \neq 0$ (y non-canonical), the equation is a nonzero polynomial over a's

Change View

$\left(a^{1} \otimes a^{2} \otimes a^{3}\right) Z^{3}=0 \quad$ Linear Equation over y variables
$Z^{3}\left(a^{1} \otimes a^{2} \otimes a^{3}\right)=0 \quad$ Polynomial over a's
Uniformly random
\square Lemma

- When $Z^{3} \neq 0$ (y non-canonical), the equation is a nonzero polynomial over a's
\square Schwartz-Zippel
- The polynomial is non-zero w.p. at least 2^{-d}

Main Lemma \rightarrow Theorem

Main Lemma $\boldsymbol{\rightarrow}$ Theorem

Non-Canonical Solution

Main Lemma \rightarrow Theorem

Non-Canonical Solution

Non-zero Z^{3} vector, $\operatorname{Poly}(\mathrm{a})=0$ for all equations

Main Lemma $\boldsymbol{\rightarrow}$ Theorem

Non-Canonical Solution

Non-zero Z^{3} vector, Poly(a) $=0$ for all equations
Schwartz-Zippel
Union Bound

Main Lemma $\boldsymbol{\rightarrow}$ Theorem

Non-Canonical Solution

Non-zero Z^{3} vector, Poly(a) $=0$ for all equations

Union Bound

Low Probability

Main Lemma $\boldsymbol{\rightarrow}$ Theorem

Non-Canonical Solution

Non-zero Z^{3} vector, Poly(a) $=0$ for all equations
Schwartz-Zippel Union Bound

With High Probability

Main Lemma \rightarrow Theorem

No Non-Canonical Solutions

With High Probability

Main Lemma \rightarrow Theorem

No Non-Canonical Solutions

With High Probability

Adversarial Noise

Structure = "not all inner-products are incorrect"

Adversarial Noise

\square Structure = "not all inner-products are incorrect" Secret $u=(1,0,1,1,1)$

Adversarial Noise

\square Structure = "not all inner-products are incorrect" Secret $u=(1,0,1,1,1)$

Adversarial Noise

\square Structure = "not all inner-products are incorrect" Secret $u=(1,0,1,1,1) \quad u \cdot(0,1,0,1,1)=011$

Pretend $(0,1,1,0,0) \longrightarrow 3 u \cdot(0,1,1,0,0)=110$

Adversarial Noise

\square The adversary can fool ANY algorithm for some structures.

Adversarial Noise

\square The adversary can fool ANY algorithm for some structures.
\square Thm: If exists c that cannot be represented as
$c=c^{1}+c^{2}, P\left(c^{1}\right)=P\left(c^{2}\right)=0$, the secret can be learned in $\mathrm{n}^{\mathrm{O}(\mathrm{m})}$ time otherwise no algorithm can learn the secret

Handling Adversarial Noise

Handling Adversarial Noise

\square Compute polynomial R, $R(c)=0 \Leftrightarrow c=c_{1}+c_{2}, P\left(c_{1}\right)=P\left(c_{2}\right)=0$

Handling Adversarial Noise

\square Compute polynomial R , $R(c)=0 \Leftrightarrow c=c_{1}+c_{2}, P\left(c_{1}\right)=P\left(c_{2}\right)=0$
\square For each oracle answer (A,b), generate a group of oracle answers ($\mathrm{A}, \mathrm{b}+\mathrm{c}^{\prime}$) for all $\mathrm{P}\left(\mathrm{c}^{\prime}\right)=0$.

Handling Adversarial Noise

\square Compute polynomial R, $R(c)=0 \Leftrightarrow c=c_{1}+c_{2}, P\left(c_{1}\right)=P\left(c_{2}\right)=0$
\square For each oracle answer (A,b), generate a group of oracle answers (A, b+c') for all $P\left(c^{\prime}\right)=0$.
\square Apply the white-noise algorithm

Handling Adversarial Noise

$\square \mathrm{C}$

$$
\begin{gathered}
\mathrm{P}=\mathrm{c}_{1} \mathrm{C}_{2}+\mathrm{c}_{2} \mathrm{C}_{3}+\mathrm{C}_{3} \mathrm{C}_{1} \\
\mathrm{R}=\mathrm{c}_{1} \mathrm{C}_{2} \mathrm{c}_{3}
\end{gathered}
$$

\square For each oracle answer (A, b), generate a group of oracle answers $\left(A, b+c^{\prime}\right)$ for all $P\left(c^{\prime}\right)=0$.
\square Apply the white-noise algorithm

Handling Adversarial Noise

$\square \mathrm{C}$

$$
\begin{gathered}
\mathrm{P}=\mathrm{c}_{1} \mathrm{C}_{2}+\mathrm{c}_{2} \mathrm{C}_{3}+\mathrm{c}_{3} \mathrm{c}_{1} \\
\mathrm{R}=\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{c}_{3}
\end{gathered}
$$

\square For each oracle answer (A,b), generate a group of oracle answers $\left(A, b+c^{\prime}\right)$ for all $P\left(c^{\prime}\right)=0$.

$$
\begin{gathered}
b=(1,0,1) \\
b=(0,0,1),(1,0,1),(1,1,1),(1,0,0)
\end{gathered}
$$

\square Apply the white-noise algorithm

Handling Adversarial Noise

$\square \mathrm{C}$

$$
\begin{gathered}
\mathrm{P}=\mathrm{c}_{1} \mathrm{C}_{2}+\mathrm{c}_{2} \mathrm{C}_{3}+\mathrm{C}_{3} \mathrm{C}_{1} \\
\mathrm{R}=\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{C}_{3}
\end{gathered}
$$

\square For each oracle answer (A,b), generate a group of oracle answers $\left(A, b+c^{\prime}\right)$ for all $P\left(c^{\prime}\right)=0$.

$$
\begin{gathered}
b=(1,0,1) \\
b=(0,0,1),(1,0,1),(1,1,1),(1,0,0)
\end{gathered}
$$

\square Apply the white-noise algorithm
Canonical Solution: still satisfied
Non-Canonical: cannot be satisfied because noise $c=(0,0,0)$ is always present

Learning With Errors

Learning With Errors

\square Used in designing new crypto systems

Learning With Errors

\square Used in designing new crypto systems
\square Resistant to "side channel attacks"

Learning With Errors

\square Used in designing new crypto systems
\square Resistant to "side channel attacks"

Learning With Errors

\square Used in designing new crypto systems
\square Resistant to "side channel attacks"

\square Provable reduction from worst case lattice problems

Learning With Errors

Learning With Errors

\square Secret u in $Z_{q}{ }^{n}$

Learning With Errors

\square Secret u in $\mathrm{Z}_{\mathrm{q}}{ }^{n}$
\square Oracle returns random a and $a \cdot u+c$

Learning With Errors

\square Secret u in $\mathrm{Z}_{\mathrm{q}}{ }^{\text {n }}$
\square Oracle returns random a and $a \cdot u+c$
$\square \mathrm{c}$ is chosen from Discrete Gaussian distribution with standard deviation δ

Learning With Errors

\square Secret u in $Z_{q}{ }^{n}$
\square Oracle returns random a and $\mathrm{a} \cdot \mathrm{u}+\mathrm{c}$
$\square \mathrm{c}$ is chosen from Discrete Gaussian distribution with standard deviation δ

Learning With Errors

\square Secret u in $Z_{q}{ }^{n}$
\square Oracle returns random a and $a \cdot u+c$
$\square \mathrm{c}$ is chosen from Discrete Gaussian distribution with standard deviation δ

\square When $\delta=\Omega\left(\mathrm{n}^{1 / 2}\right)$ lattice problems can be reduced to LWE [Regev09]

Learning With Structured Errors

Learning With Structured Errors

\square Structure specifies a set of possible errors

- e.g. |c| < δ^{2}
- Still represented using polynomial $\mathrm{P}(\mathrm{c})=0$

Learning With Structured Errors

\square Structure specifies a set of possible errors

- e.g. $|c|<\delta^{2}$
- Still represented using polynomial $\mathrm{P}(\mathrm{c})=0$
\square Thm: When the polynomial has degree $\mathrm{d}<\mathrm{q} / 4$, the secret can be learned in $\mathrm{n}^{\mathrm{O}}{ }^{(d)}$ time.

Learning With Structured Errors

\square Structure specifies a set of possible errors

- e.g. $|c|<\delta^{2}$
- Still represented using polynomial $\mathrm{P}(\mathrm{c})=0$
\square Thm: When the polynomial has degree $\mathrm{d}<\mathrm{q} / 4$, the secret can be learned in $\mathrm{n}^{\mathrm{O}}{ }^{(d)}$ time.
\square Cor: When $\delta=o\left(n^{1 / 2}\right)$, LWE has a subexponential time algorithm

Thm \rightarrow Cor

Thm \rightarrow Cor

Structure:
 $|c|<K \delta^{2}$

Thm \rightarrow Cor

Structure:
 $|c|<K \delta^{2}$

Thm \rightarrow Cor

Structure:
$|c|<K \delta^{2}$
In LWE:
$\left.\operatorname{Pr[|c|>K} \delta^{2}\right]<\exp \left(-O\left(K^{2} \delta^{2}\right)\right)$

Thm \rightarrow Cor

Structure:
$|c|<K \delta^{2}$

In LWE:

$\operatorname{Pr}\left[|c|>K \delta^{2}\right]<\exp \left(-O\left(K^{2} \delta^{2}\right)\right)$ \# of equations: $\mathrm{n}^{\wedge}\left(\mathrm{O}\left(\mathrm{K} \delta^{2}\right)\right)<\exp \left(\mathrm{O}\left(\mathrm{K}^{2} \delta^{2}\right)\right)$

$K=100 \log n$

Thm \rightarrow Cor

Structure:
$|c|<K \delta^{2}$

In LWE:

$\operatorname{Pr}\left[|c|>K \delta^{2}\right]<\exp \left(-O\left(K^{2} \delta^{2}\right)\right)$ \# of equations: $\mathrm{n}^{\wedge}\left(\mathrm{O}\left(\mathrm{K} \delta^{2}\right)\right)<\exp \left(\mathrm{O}\left(\mathrm{K}^{2} \delta^{2}\right)\right)$

$K=100 \log n$

Thm \rightarrow Cor

Structure:
$|c|<K \delta^{2}$

In LWE:

$\operatorname{Pr}\left[|c|>K \delta^{2}\right]<\exp \left(-O\left(K^{2} \delta^{2}\right)\right)$ \# of equations: $\mathrm{n}^{\wedge}\left(\mathrm{O}\left(\mathrm{K} \delta^{2}\right)\right)<\exp \left(\mathrm{O}\left(\mathrm{K}^{2} \delta^{2}\right)\right)$

$K=100 \log n$

Thm \rightarrow Cor

Structure:
$|c|<K \delta^{2}$
In LWE:
$\operatorname{Pr}\left[|c|>K \delta^{2}\right]<\exp \left(-O\left(K^{2} \delta^{2}\right)\right)$
\# of equations: $\mathrm{n}^{\wedge}\left(\mathrm{O}\left(\mathrm{K} \delta^{2}\right)\right)<\exp \left(\mathrm{O}\left(\mathrm{K}^{2} \delta^{2}\right)\right)$

$K=100 \log n$

Negligible difference between LWE and LWSE, Algorithm still success with high probability

Open Problems

\square Non-trivial algorithm for the original model using linearization
\square Possible lower bound for special kind of linear equation systems
\square Improve the algorithm for learning with errors?

Thank You

Questions?

