New Algorithms for Learning in Presence of Errors

Sanjeev Arora, Rong Ge Princeton University

Treasure shall be found at u

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

Treasure shall be found at u

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

Treasure shall be found at u

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

At least 90% of above are satisfied

Treasure shall be found at u

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

At least 90% of above are satisfied

Treasure shall be found at u

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

There might be 1 mistake in every 3 lines.

Treasure shall be found at u

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

There might be 1 mistake in every 3 lines.

Secret u = (1,0,1,1,1) $u \cdot (0,1,0,1,1) = 0$

Secret u = (1,0,1,1,1)u · (0,1,0,1,1) = 0u · (1,1,1,0,1) = 1

Secret vector u in GF(2)ⁿ

- □ Secret vector u in GF(2)ⁿ
- □ Oracle returns random a and b≈u·a

- □ Secret vector u in GF(2)ⁿ
- □ Oracle returns random a and b≈u·a
- u·a is incorrect with probability p

- □ Secret vector u in GF(2)ⁿ
- □ Oracle returns random a and b≈u·a
- u·a is incorrect with probability p
- Best known algorithm: 2^{O(n/log n)} [BKW'03]

- □ Secret vector u in GF(2)ⁿ
- □ Oracle returns random a and b≈u·a
- u·a is incorrect with probability p
- Best known algorithm: 2^{O(n/log n)} [BKW'03]
- Used in designing public-key crypto [Alekhnovich'03]

Secret u = (1,0,1,1,1)

 $u \cdot (0,1,0,1,1) = 0$ $u \cdot (1,1,0,1,0) = 1$ $u \cdot (0,1,1,0,0) = 1$

Secret u = (1,0,1,1,1) u · (0,1,0,1,1) = 0u · (1,1,0,1,0) = 1u · (0,1,1,0,0) = 1

Secret vector u

- Secret vector u
- □ Oracle returns random a¹, a², ..., a^m and b₁≈u·a¹, b₂≈u·a², ..., b_m≈u·a^m

- Secret vector u
- □ Oracle returns random a¹, a², ..., a^m and b₁≈u·a¹, b₂≈u·a², ..., b_m≈u·a^m
- "Not all inner-products are incorrect"

- Secret vector u
- □ Oracle returns random a¹, a², ..., a^m and b₁≈u·a¹, b₂≈u·a², ..., b_m≈u·a^m
- The error has a certain structure

- Secret vector u
- □ Oracle returns random a¹, a², ..., a^m and b₁≈u·a¹, b₂≈u·a², ..., b_m≈u·a^m
- The error has a certain structure

Can the secret be learned in polynomial time?

Learning parities with structured noise

n^{O(d)} time, adversarial noise

- n^{O(d)} time, adversarial noise
- Learning With Errors
 - Subexp algorithm when noise < n^{1/2}
 - Open problem since [Regev'05]

Learning parities with structured noise

n^{O(d)} time, adversarial noise

Learning With Errors

- Subexp algorithm when noise < n^{1/2}
- Open problem since [Regev'05]
- Majority of 3 parities
 - Can inverse with O(n²log n) queries.
 - Pseudorandom generator purposed in [ABW'10]

Structures as Polynomials

- □ c_i=1 iff i-th inner-product is incorrect
 - $\bullet b_i = a^i \cdot u + c_i$

- c_i=1 iff i-th inner-product is incorrect
 - $\bullet b_i = a^i \cdot u + c_i$
- \square P(c) = 0 if an answer pattern is allowed

- c_i=1 iff i-th inner-product is incorrect
 - $\bullet b_i = a^i \cdot u + c_i$
- \square P(c) = 0 if an answer pattern is allowed
- "At least one of the inner-products is correct"
 P(c) = c₁c₂c₃...c_m = 0

- c_i=1 iff i-th inner-product is incorrect
 - $\bullet b_i = a^i \cdot u + c_i$
- \square P(c) = 0 if an answer pattern is allowed
- "At least one of the inner-products is correct"
 P(c) = c₁c₂c₃...c_m = 0
 "No 3 consecutive wrong inner-products"
 - $P(c) = c_1 c_2 c_3 + c_2 c_3 c_4 + \dots + c_{m-2} c_{m-1} c_m = 0$

Notations

- Subscripts are used for indexing vectors
 - U_i, C_i
- Superscripts are used for a list of vectors
 aⁱ
- High dimensional vectors are indexed like Z_{i,j,k}
- a, b are known constants, u, c are unknown constants used in analysis, x, y, Z are variables in equations.

Main Result

Main Result

For ANY non-trivial structure P of degree d, the secret can be learned using n^{O(d)} queries and n^{O(d)} time.

Main Result

For ANY non-trivial structure P of degree d, the secret can be learned using n^{O(d)} queries and n^{O(d)} time.

Query the Oracle

Query the Oracle

Write out polynomial equations over x

Solution in mind: x = u

- Query the Oracle
- Write out polynomial equations over x
 - Solution in mind: x = u
- Linearize all equations to get equations over y

- Query the Oracle
- Write out polynomial equations over x
 - Solution in mind: x = u
- Linearize all equations to get equations over y
- Solve the equations for y (Gaussian Elimination)

- Query the Oracle
- Write out polynomial equations over x
 - Solution in mind: x = u
- Linearize all equations to get equations over y
- Solve the equations for y (Gaussian Elimination)

The unique solution will recover secret u

- Query the Oracle
- Write out polynomial equations over x
 - Solution in mind: x = u
- Linearize all equations to get equations over y
- Solve the equations for y (Gaussian Elimination)

The unique solution will recover secret u

Answers
$$b_i = c_i + a^i \cdot x$$
 $c_1 c_2 c_3 = 0$

Answers $b_i = c_i + a^i \cdot x$ $c_1 c_2 c_3 = 0$ ($a^1 \cdot x + b_1$) $(a^2 \cdot x + b_2)(a^3 \cdot x + b_3) = 0(*)$

Answers
$$b_i = c_i + a^i \cdot x$$
 $c_1 c_2 c_3 = 0$
 $(a^{1} \cdot x + b_1)(a^{2} \cdot x + b_2)(a^{3} \cdot x + b_3) = 0(*)$
Degree 3 polynomial over x

Linearization $y_1 = x_1, y_2 = x_2, ..., y_{1,2} = x_1 x_2, ..., y_{1,2,3} = x_1 x_2 x_3$

Answers

$$b_i = c_i + a^i \cdot x$$
 $c_1 c_2 c_3 = 0$
 $(a^{1} \cdot x + b_1)(a^{2} \cdot x + b_2)(a^{3} \cdot x + b_3) = 0(*)$
Degree 3 polynomial over x
Linearization $y_1 = x_1, y_2 = x_2, ..., y_{1,2} = x_1 x_2, ..., y_{1,2,3} = x_1 x_2 x_3$
 $a_{1_1}^1 a_{2_2}^2 a_{3_3}^3 y_{1,2,3} + ... + b_1 b_2 b_3 = 0$ (**)

Answers

$$b_i = c_i + a^{i} \cdot x$$
 $c_1 c_2 c_3 = 0$
 $(a^{1} \cdot x + b_1)(a^{2} \cdot x + b_2)(a^{3} \cdot x + b_3) = 0(*)$
Degree 3 polynomial over x
Linearization $y_1 = x_1, y_2 = x_2, ..., y_{1,2} = x_1 x_2, ..., y_{1,2,3} = x_1 x_2 x_3$
 $a^{1}_1 a^{2}_2 a^{3}_3 y_{1,2,3} + ... + b_1 b_2 b_3 = 0$ (**)
Linear Equations over y
 $(**) = L((*))$

$\Box (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*)$

• Always satisfied when $x_i = u_i$

- $\Box (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*)$
 - Always satisfied when x_i = u_i
- $\Box a_1^1 a_2^2 a_3^3 y_{1,2,3} + \dots + b_1^2 b_2^3 = 0 (**)$
 - Always satisfied when $y_1=u_1, y_2=u_2, \dots, y_{1,2,3}=u_1u_2u_3$

 $\Box (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*)$

Always satisfied when x_i = u_i

- $\Box a_1^1 a_2^2 a_3^3 y_{1,2,3} + \dots + b_1^2 b_2^2 b_3 = 0 (**)$
 - Always satisfied when $y_1=u_1, y_2=u_2, \dots, y_{1,2,3}=u_1u_2u_3$

Canonical Solution: $y_1 = u_1, y_2 = u_2, \dots, y_{1,2,3} = u_1 u_2 u_3$

 $\Box (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*)$

Always satisfied when x_i = u_i

- $\Box a_1^1 a_2^2 a_3^3 y_{1,2,3} + \dots + b_1^2 b_2^2 b_3 = 0 (**)$
 - Always satisfied when $y_1=u_1, y_2=u_2, \dots, y_{1,2,3}=u_1u_2u_3$
- Canonical Solution: $y_1 = u_1, y_2 = u_2, \dots, y_{1,2,3} = u_1 u_2 u_3$
- Coming up: This is the only solution to the system of linear equations

Express (*) and (**) in a special form

Tensor-Expansion

Express (*) and (**) in a special form

Tensor-Expansion

Change view: treat y as constants, a as variables

Express (*) and (**) in a special form

Tensor-Expansion

Change view: treat y as constants, a as variables

Pr[fix y sat. all equations] = extremely small

Express (*) and (**) in a special form

Tensor-Expansion

Change view: treat y as constants, a as variables

Pr[fix y sat. all equations] = extremely small
 Union bound over all "non-canonical" solutions.

$$(a^1 \cdot x + b_1)(a^2 \cdot x + b_2)(a^3 \cdot x + b_3) = 0(*)$$

 $(a^1 \cdot x + b_1)(a^2 \cdot x + b_2)(a^3 \cdot x + b_3) = 0(*)$ Problem: b depends on a

 $(a^1 \cdot x + b_1)(a^2 \cdot x + b_2)(a^3 \cdot x + b_3) = 0(*)$ Problem: b depends on a

 $(a^{1} \cdot (x+u)+c_{1})(a^{2} \cdot (x+u)+c_{2})(a^{3} \cdot (x+u)+c_{3}) = 0$

 $(a^1 \cdot x + b_1)(a^2 \cdot x + b_2)(a^3 \cdot x + b_3) = 0(*)$ Problem: b depends on a

 $(a^{1} \cdot (x+u)+c_{1})(a^{2} \cdot (x+u)+c_{2})(a^{3} \cdot (x+u)+c_{3}) = 0$ $(a^{1} \cdot X+c_{1})(a^{2} \cdot X+c_{2})(a^{3} \cdot X+c_{3}) = 0$

 $(a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*)$ Problem: b depends on a $(a^{1} \cdot (x + u) + c_{1})(a^{2} \cdot (x + u) + c_{2})(a^{3} \cdot (x + u) + c_{3}) = 0$ $(a^{1} \cdot X + c_{1})(a^{2} \cdot X + c_{2})(a^{3} \cdot X + c_{3}) = 0$ a,c:numbers; X: variable

 $(a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*) \quad \text{Problem: b depends on a}$ $(a^{1} \cdot (x + u) + c_{1})(a^{2} \cdot (x + u) + c_{2})(a^{3} \cdot (x + u) + c_{3}) = 0$ $(a^{1} \cdot X + c_{1})(a^{2} \cdot X + c_{2})(a^{3} \cdot X + c_{3}) = 0 \quad \text{a,c:numbers; X: variable}$ $a^{1}a^{2}a^{3} \cdot X^{3} + c_{1}a^{2}a^{3} \cdot X^{2} + \ldots + c_{1}c_{2}c_{3} = 0$

$$\begin{array}{l} (a^{1}\cdot x+b_{1})(a^{2}\cdot x+b_{2})(a^{3}\cdot x+b_{3})=0(^{*}) & \text{Problem: b depends on a} \\ (a^{1}\cdot (x+u)+c_{1})(a^{2}\cdot (x+u)+c_{2})(a^{3}\cdot (x+u)+c_{3})=0 \\ (a^{1}\cdot X+c_{1})(a^{2}\cdot X+c_{2})(a^{3}\cdot X+c_{3})=0 & \text{a,c:numbers; X: variable} \\ & a^{1}a^{2}a^{3}\cdot X^{3}=0 \end{array}$$

$$\begin{array}{l} (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(^{*}) & \text{Problem: b depends on a} \\ (a^{1} \cdot (x + u) + c_{1})(a^{2} \cdot (x + u) + c_{2})(a^{3} \cdot (x + u) + c_{3}) = 0 \\ (a^{1} \cdot X + c_{1})(a^{2} \cdot X + c_{2})(a^{3} \cdot X + c_{3}) = 0 & \text{a,c:numbers; X: variable} \\ a^{1}a^{2}a^{3} \cdot X^{3} = 0 & (a^{1} \cdot x)(a^{2} \cdot x) = (a^{1} \otimes a^{2})(x \otimes x) \end{array}$$

$$\begin{aligned} (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) &= 0(^{*}) & \text{Problem: b depends on a} \\ (a^{1} \cdot (x + u) + c_{1})(a^{2} \cdot (x + u) + c_{2})(a^{3} \cdot (x + u) + c_{3}) &= 0 \\ (a^{1} \cdot X + c_{1})(a^{2} \cdot X + c_{2})(a^{3} \cdot X + c_{3}) &= 0 & \text{a,c:numbers; X: variable} \\ a^{1}a^{2}a^{3} \cdot X^{3} &= 0 & (a^{1} \cdot x)(a^{2} \cdot x) = (a^{1} \otimes a^{2})(x \otimes x) \end{aligned}$$

$$(a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) = 0(*) \quad \text{Problem: b depends on a}$$
$$(a^{1} \cdot (x + u) + c_{1})(a^{2} \cdot (x + u) + c_{2})(a^{3} \cdot (x + u) + c_{3}) = 0$$
$$(a^{1} \cdot X + c_{1})(a^{2} \cdot x + c_{2})(a^{3} \cdot X + c_{3}) = 0 \quad \text{a,c:numbers; X: variable}$$
$$a^{1}a^{2}a^{3} \cdot X^{3} = 0 \quad (a^{1} \cdot x)(a^{2} \cdot x) = (a^{1} \otimes a^{2})(x \otimes x)$$

Linearize
Let
$$Z^{3}_{i,j,k} = L((x_i+u_i)(x_j+u_j)(x_k+u_k))$$

 $(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$

$$\begin{aligned} (a^{1} \cdot x + b_{1})(a^{2} \cdot x + b_{2})(a^{3} \cdot x + b_{3}) &= 0(^{*}) & \text{Problem: b depends on a} \\ (a^{1} \cdot (x + u) + c_{1})(a^{2} \cdot (x + u) + c_{2})(a^{3} \cdot (x + u) + c_{3}) &= 0 \\ (a^{1} \cdot X + c_{1})(a^{2} \cdot X + c_{2})(a^{3} \cdot X + c_{3}) &= 0 & \text{a,c:numbers; X: variable} \\ a^{1}a^{2}a^{3} \cdot X^{3} &= 0 & (a^{1} \cdot x)(a^{2} \cdot x) = (a^{1} \otimes a^{2})(x \otimes x) \end{aligned}$$

Linearize Let $Z^{3}_{i,j,k} = L((x_i+u_i)(x_j+u_j)(x_k+u_k))$

$$(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$$

 $Z^3 = 0 \Leftrightarrow y$ is the canonical solution

$(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$ Linear Equation over y variables

 $(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$ Linear Equation over y variables $Z^3(a^1 \otimes a^2 \otimes a^3) = 0$

 $(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$ Linear Equation over y variables $Z^3(a^1 \otimes a^2 \otimes a^3) = 0$ Polynomial over a's

 $(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$ Linear Equation over y variables

 $Z^3(a^1 \otimes a^2 \otimes a^3) = 0$

Polynomial over a's

Uniformly random

$$(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$$
 Linear Equation over y variables
 $Z^3(a^1 \otimes a^2 \otimes a^3) = 0$ Polynomial over a's
Uniformly random

Lemma

When Z³≠0 (y non-canonical), the equation is a non-zero polynomial over a's

$$(a^1 \otimes a^2 \otimes a^3)Z^3 = 0$$
 Linear Equation over y variables

$$Z^3(a^1 \otimes a^2 \otimes a^3) = 0$$

Polynomial over a's

Uniformly random

Lemma

- When Z³≠0 (y non-canonical), the equation is a nonzero polynomial over a's
- Schwartz-Zippel
 - The polynomial is non-zero w.p. at least 2^{-d}

No Non-Canonical Solutions

Non-zero Z³ vector, F

Schwartz-Zippel

= 0 for all equations

Union Bound

With High Probability

No Non-Canonical Solutions

Non-zero Z³ vector, F

Schwartz-Zippel

= 0 for all equations

Union Bound

With High Probability

Structure = "not all inner-products are incorrect"

Structure = "not all inner-products are incorrect" Secret u = (1,0,1,1,1)

Structure = "not all inner-products are incorrect" Secret u = (1,0,1,1,1)

Structure = "not all inner-products are incorrect" $u \cdot (0,1,0,1,1) = 0 \ 1 \ 1$ Secret u = (1,0,1,1,1) $u \cdot (1, 1, 0, 1, 0) = 0 0 1$ $u \cdot (0, 1, 1, 0, 0) = 1 1 0$ Pretend (0,1,1,0,0)

The adversary can fool ANY algorithm for some structures.

- The adversary can fool ANY algorithm for some structures.
- Thm: If exists c that cannot be represented as c = c¹+c², P(c¹)=P(c²)=0,

the secret can be learned in n^{O(m)} time otherwise no algorithm can learn the secret

Compute polynomial R, $R(c) = 0 \Leftrightarrow c = c_1 + c_2, P(c_1) = P(c_2) = 0$

- □ Compute polynomial R, $R(c) = 0 \iff c = c_1 + c_2, P(c_1) = P(c_2) = 0$
- For each oracle answer (A,b), generate a group of oracle answers (A, b+c') for all P(c') = 0.

- □ Compute polynomial R, R(c) = 0 ⇔ c = c_1+c_2 , P(c_1)=P(c_2)=0
- For each oracle answer (A,b), generate a group of oracle answers (A, b+c') for all P(c') = 0.

Apply the white-noise algorithm

$$P = c_1 c_2 + c_2 c_3 + c_3 c_1$$

$$R = c_1 c_2 c_3$$

For each oracle answer (A,b), generate a group of oracle answers (A, b+c') for all P(c') = 0.

Apply the white-noise algorithm

$$P = c_{1}c_{2}+c_{2}c_{3}+c_{3}c_{1}$$
$$R = c_{1}c_{2}c_{3}$$

For each oracle answer (A,b), generate a group of oracle answers (A, b+c') for all P(c') = 0.

$$b = (1,0,1)$$

$$b = (0,0,1), (1,0,1), (1,1,1), (1,0,0)$$

Apply the white-noise algorithm

$$P = c_1 c_2 + c_2 c_3 + c_3 c_1$$

R = c_1 c_2 c_3

For each oracle answer (A,b), generate a group of oracle answers (A, b+c') for all P(c') = 0.

$$b = (1,0,1)$$

$$b = (0,0,1), (1,0,1), (1,1,1), (1,0,0)$$

Apply the white-noise algorithm

Canonical Solution: still satisfied Non-Canonical: cannot be satisfied because noise c = (0,0,0) is always present

Learning With Errors

Used in designing new crypto systems

- Used in designing new crypto systems
- Resistant to "side channel attacks"

Used in designing new crypto systems Desigtant to "side abarred attacks"

Resistant to "side channel attacks"

- Used in designing new crypto systems
- Resistant to "side channel attacks"

Provable reduction from worst case lattice problems

 \Box Secret u in \mathbb{Z}_q^n

- **D** Secret u in \mathbb{Z}_q^n
- Oracle returns random a and a·u+c

- \Box Secret u in \mathbb{Z}_q^n
- Oracle returns random a and a·u+c
- c is chosen from Discrete Gaussian distribution with standard deviation δ

- **D** Secret u in \mathbb{Z}_q^n
- Oracle returns random a and a·u+c
- c is chosen from Discrete Gaussian distribution with standard deviation δ

- **D** Secret u in \mathbb{Z}_q^n
- Oracle returns random a and a·u+c
- c is chosen from Discrete Gaussian distribution with standard deviation δ

When δ = Ω(n^{1/2}) lattice problems can be reduced to LWE [Regev09]

- Structure specifies a set of possible errors
 - e.g. |c| < δ²
 - Still represented using polynomial P(c) = 0

- Structure specifies a set of possible errors
 - e.g. |c| < δ²
 - Still represented using polynomial P(c) = 0
- Thm: When the polynomial has degree d < q/4, the secret can be learned in n^{O(d)} time.

- Structure specifies a set of possible errors
 - e.g. |c| < δ²
 - Still represented using polynomial P(c) = 0
- Thm: When the polynomial has degree d < q/4, the secret can be learned in n^{O(d)} time.
- Cor: When δ = o(n^{1/2}), LWE has a subexponential time algorithm

Structure: $|c| < K \delta^2$

Structure: $|c| < K \delta^2$

Structure: $|c| < K \delta^2$ In LWE: $Pr[|c|>K \delta^2] < exp(-O(K^2\delta^2))$ # of equations: $n^(O(K \delta^2)) < exp(O(K^2\delta^2))$ $K = 100 \log n$

Negligible difference between LWE and LWSE, Algorithm still success with high probability

Open Problems

- Non-trivial algorithm for the original model using linearization
- Possible lower bound for special kind of linear equation systems
- Improve the algorithm for learning with errors?

Thank You

Questions?