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 Secret vector u in GF(2)n

 Oracle returns random a and b≈u∙a

 u∙a is incorrect with probability p

 Best known algorithm: 2O(n/log n) [BKW’03]

 Used in designing public-key crypto 

[Alekhnovich’03]
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 Secret vector u

 Oracle returns random a1, a2, …, am and b1≈u∙a1, 

b2≈u∙a2, …, bm≈u∙am

 The error has a certain structure

Can the secret be learned 

in polynomial time?
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Our Results

 Learning parities with structured noise

 nO(d) time, adversarial noise

 Learning With Errors

 Subexp algorithm when noise < n1/2

 Open problem since [Regev’05]

 Majority of 3 parities

 Can inverse with O(n2log n) queries.

 Pseudorandom generator purposed in [ABW’10]
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Structures as Polynomials

 ci=1 iff i-th inner-product is incorrect

 bi = ai ∙ u + ci

 P(c) = 0 if an answer pattern is allowed

 “At least one of the inner-products is correct”

 P(c) = c1c2c3…cm = 0

 “No 3 consecutive wrong inner-products”

 P(c) = c1c2c3+c2c3c4+…+cm-2cm-1cm = 0



Notations

 Subscripts are used for indexing vectors

 ui, ci

 Superscripts are used for a list of vectors

 ai

 High dimensional vectors are indexed like Zi,j,k

 a, b are known constants, u, c are unknown 

constants used in analysis, x, y, Z are variables 

in equations.
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Canonical Solution

 (a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*) 

 Always satisfied when xi = ui

 a1
1a

2
2a

3
3y1,2,3+…+b1b2b3 = 0 (**)

 Always satisfied when y1=u1,y2=u2,…,y1,2,3=u1u2u3

 Canonical Solution: y1=u1,y2=u2,…,y1,2,3=u1u2u3

 Coming up: This is the only solution to the 

system of linear equations
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Proof Outline

 Express (*) and (**) in a special form

 Tensor-Expansion

 Change view: treat y as constants, a as 

variables

 Pr[fix y sat. all equations] = extremely small

 Union bound over all “non-canonical” solutions.
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(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*) 

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Linearize

Let Z3
i,j,k = L((xi+ui)(xj+uj)(xk+uk))

Z3 = 0  y is the canonical solution
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Change View

Linear Equation over y variables

0)( 3213  aaaZ

Polynomial over a’s

 Lemma

 When Z3≠0 (y non-canonical), the equation is a non-

zero polynomial over a’s

 Schwartz-Zippel

 The polynomial is non-zero w.p. at least 2-d

Uniformly random
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Pretend (0,1,1,0,0)

Adversarial Noise

 Structure = “not all inner-products are incorrect”

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0 1 1

u ∙ (1,1,0,1,0) = 0 0 1

u ∙ (0,1,1,0,0) = 1 1 0
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Adversarial Noise

 The adversary can fool ANY algorithm for some 

structures.

 Thm: If exists c that cannot be represented as 

c = c1+c2, P(c1)=P(c2)=0, 

the secret can be learned in nO(m) time

otherwise no algorithm can learn the secret
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Handling Adversarial Noise

 Compute polynomial R, 

R(c) = 0  c = c1+c2, P(c1)=P(c2)=0

 For each oracle answer (A,b), generate a group 

of oracle answers (A, b+c’) for all P(c’) = 0.

 Apply the white-noise algorithm

P = c1c2+c2c3+c3c1

R = c1c2c3

b = (1,0,1)

b = (0,0,1), (1,0,1), (1,1,1), (1,0,0)

Canonical Solution: still satisfied

Non-Canonical: cannot be satisfied because 

noise c = (0,0,0) is always present
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Learning With Errors

 Used in designing new crypto systems

 Resistant to “side channel attacks”

 Provable reduction from worst case lattice 

problems
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Learning With Errors

 Secret u in Zq
n

 Oracle returns random a and a∙u+c

 c is chosen from Discrete Gaussian distribution 

with standard deviation δ

 When δ = Ω(n1/2) lattice problems can be 

reduced to LWE [Regev09]
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Learning With Structured Errors

 Structure specifies a set of possible errors

 e.g. |c| < δ2

 Still represented using polynomial P(c) = 0

 Thm: When the polynomial has degree d < q/4, 

the secret can be learned in nO(d) time.

 Cor: When δ = o(n1/2), LWE has a sub-

exponential time algorithm
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Thm  Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

In LWE:

Pr[|c|>K δ2] < exp(-O(K2δ2))

# of equations:

n^(O(K δ2)) < exp(O(K2δ2))              K = 100 log n 

Negligible difference between LWE and LWSE,

Algorithm still success with high probability



Open Problems

 Non-trivial algorithm for the original model using 

linearization

 Possible lower bound for special kind of linear 

equation systems

 Improve the algorithm for learning with errors?



Thank You

Questions?


