
New Algorithms for Learning

in Presence of Errors

Sanjeev Arora, Rong Ge

Princeton University

Hard(?) Problems

Treasure shall be

found at u

u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

……

Hard(?) Problems

Treasure shall be

found at u

u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

……

Hard(?) Problems

Treasure shall be

found at u

u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

……

At least 90% of

above are satisfied

Hard(?) Problems

Treasure shall be

found at u

u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

……

At least 90% of

above are satisfied

There might be 1

mistake in every 3

lines.

Hard(?) Problems

Treasure shall be

found at u

u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

……

Hard(?) Problems

Treasure shall be

found at u

u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

……

There might be 1

mistake in every 3

lines.

Learning Parities with Noise

Learning Parities with Noise

Secret u = (1,0,1,1,1)

Learning Parities with Noise

Secret u = (1,0,1,1,1)

Learning Parities with Noise

Secret u = (1,0,1,1,1)

Learning Parities with Noise

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0

Learning Parities with Noise

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,1,0,1) = 1

Learning Parities with Noise

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,1,0,1) = 1
u ∙ (0,1,1,1,0) = 1

Learning Parities with Noise

Learning Parities with Noise

 Secret vector u in GF(2)n

Learning Parities with Noise

 Secret vector u in GF(2)n

 Oracle returns random a and b≈u∙a

Learning Parities with Noise

 Secret vector u in GF(2)n

 Oracle returns random a and b≈u∙a

 u∙a is incorrect with probability p

Learning Parities with Noise

 Secret vector u in GF(2)n

 Oracle returns random a and b≈u∙a

 u∙a is incorrect with probability p

 Best known algorithm: 2O(n/log n) [BKW’03]

Learning Parities with Noise

 Secret vector u in GF(2)n

 Oracle returns random a and b≈u∙a

 u∙a is incorrect with probability p

 Best known algorithm: 2O(n/log n) [BKW’03]

 Used in designing public-key crypto

[Alekhnovich’03]

Learning Parities with Structured Noise

Learning Parities with Structured Noise

Secret u = (1,0,1,1,1)

Learning Parities with Structured Noise

Secret u = (1,0,1,1,1)

Learning Parities with Structured Noise

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

Learning Parities with Structured Noise

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0

u ∙ (1,1,0,1,0) = 1

u ∙ (0,1,1,0,0) = 1

Learning Parities with Structured Noise

Learning Parities with Structured Noise

 Secret vector u

Learning Parities with Structured Noise

 Secret vector u

 Oracle returns random a1, a2, …, am and b1≈u∙a1,

b2≈u∙a2, …, bm≈u∙am

Learning Parities with Structured Noise

 Secret vector u

 Oracle returns random a1, a2, …, am and b1≈u∙a1,

b2≈u∙a2, …, bm≈u∙am

 “Not all inner-products are incorrect”

Learning Parities with Structured Noise

 Secret vector u

 Oracle returns random a1, a2, …, am and b1≈u∙a1,

b2≈u∙a2, …, bm≈u∙am

 The error has a certain structure

Learning Parities with Structured Noise

 Secret vector u

 Oracle returns random a1, a2, …, am and b1≈u∙a1,

b2≈u∙a2, …, bm≈u∙am

 The error has a certain structure

Can the secret be learned

in polynomial time?

Our Results

Our Results

 Learning parities with structured noise

 nO(d) time, adversarial noise

Our Results

 Learning parities with structured noise

 nO(d) time, adversarial noise

 Learning With Errors

 Subexp algorithm when noise < n1/2

 Open problem since [Regev’05]

Our Results

 Learning parities with structured noise

 nO(d) time, adversarial noise

 Learning With Errors

 Subexp algorithm when noise < n1/2

 Open problem since [Regev’05]

 Majority of 3 parities

 Can inverse with O(n2log n) queries.

 Pseudorandom generator purposed in [ABW’10]

Structures as Polynomials

Structures as Polynomials

 ci=1 iff i-th inner-product is incorrect

 bi = ai ∙ u + ci

Structures as Polynomials

 ci=1 iff i-th inner-product is incorrect

 bi = ai ∙ u + ci

 P(c) = 0 if an answer pattern is allowed

Structures as Polynomials

 ci=1 iff i-th inner-product is incorrect

 bi = ai ∙ u + ci

 P(c) = 0 if an answer pattern is allowed

 “At least one of the inner-products is correct”

 P(c) = c1c2c3…cm = 0

Structures as Polynomials

 ci=1 iff i-th inner-product is incorrect

 bi = ai ∙ u + ci

 P(c) = 0 if an answer pattern is allowed

 “At least one of the inner-products is correct”

 P(c) = c1c2c3…cm = 0

 “No 3 consecutive wrong inner-products”

 P(c) = c1c2c3+c2c3c4+…+cm-2cm-1cm = 0

Notations

 Subscripts are used for indexing vectors

 ui, ci

 Superscripts are used for a list of vectors

 ai

 High dimensional vectors are indexed like Zi,j,k

 a, b are known constants, u, c are unknown

constants used in analysis, x, y, Z are variables

in equations.

Main Result

Main Result

 For ANY non-trivial structure P of degree d, the

secret can be learned using nO(d) queries and

nO(d) time.

Main Result

 For ANY non-trivial structure P of degree d, the

secret can be learned using nO(d) queries and

nO(d) time.

The Algorithm

The Algorithm

 Query the Oracle

The Algorithm

 Query the Oracle

 Write out polynomial equations over x

 Solution in mind: x = u

The Algorithm

 Query the Oracle

 Write out polynomial equations over x

 Solution in mind: x = u

 Linearize all equations to get equations over y

The Algorithm

 Query the Oracle

 Write out polynomial equations over x

 Solution in mind: x = u

 Linearize all equations to get equations over y

 Solve the equations for y (Gaussian Elimination)

The Algorithm

 Query the Oracle

 Write out polynomial equations over x

 Solution in mind: x = u

 Linearize all equations to get equations over y

 Solve the equations for y (Gaussian Elimination)

 The unique solution will recover secret u

The Algorithm

 Query the Oracle

 Write out polynomial equations over x

 Solution in mind: x = u

 Linearize all equations to get equations over y

 Solve the equations for y (Gaussian Elimination)

 The unique solution will recover secret u

Linearization

Linearization

c1c2c3 = 0Answers bi = ci+ai∙x

Linearization

c1c2c3 = 0Answers bi = ci+ai∙x

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

Linearization

c1c2c3 = 0Answers bi = ci+ai∙x

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

Degree 3 polynomial over x

Linearization

c1c2c3 = 0Answers bi = ci+ai∙x

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

Degree 3 polynomial over x

y1 = x1, y2=x2,…, y1,2 = x1x2,…, y1,2,3=x1x2x3Linearization

Linearization

c1c2c3 = 0Answers bi = ci+ai∙x

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

Degree 3 polynomial over x

y1 = x1, y2=x2,…, y1,2 = x1x2,…, y1,2,3=x1x2x3

a1
1a

2
2a

3
3y1,2,3+…+b1b2b3 = 0 (**)

Linearization

Linearization

Linear Equations over y

(**) = L((*))

c1c2c3 = 0Answers bi = ci+ai∙x

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

Degree 3 polynomial over x

y1 = x1, y2=x2,…, y1,2 = x1x2,…, y1,2,3=x1x2x3

a1
1a

2
2a

3
3y1,2,3+…+b1b2b3 = 0 (**)

Linearization

Canonical Solution

Canonical Solution

 (a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

 Always satisfied when xi = ui

Canonical Solution

 (a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

 Always satisfied when xi = ui

 a1
1a

2
2a

3
3y1,2,3+…+b1b2b3 = 0 (**)

 Always satisfied when y1=u1,y2=u2,…,y1,2,3=u1u2u3

Canonical Solution

 (a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

 Always satisfied when xi = ui

 a1
1a

2
2a

3
3y1,2,3+…+b1b2b3 = 0 (**)

 Always satisfied when y1=u1,y2=u2,…,y1,2,3=u1u2u3

 Canonical Solution: y1=u1,y2=u2,…,y1,2,3=u1u2u3

Canonical Solution

 (a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

 Always satisfied when xi = ui

 a1
1a

2
2a

3
3y1,2,3+…+b1b2b3 = 0 (**)

 Always satisfied when y1=u1,y2=u2,…,y1,2,3=u1u2u3

 Canonical Solution: y1=u1,y2=u2,…,y1,2,3=u1u2u3

 Coming up: This is the only solution to the

system of linear equations

Proof Outline

Proof Outline

 Express (*) and (**) in a special form

 Tensor-Expansion

Proof Outline

 Express (*) and (**) in a special form

 Tensor-Expansion

 Change view: treat y as constants, a as

variables

Proof Outline

 Express (*) and (**) in a special form

 Tensor-Expansion

 Change view: treat y as constants, a as

variables

 Pr[fix y sat. all equations] = extremely small

Proof Outline

 Express (*) and (**) in a special form

 Tensor-Expansion

 Change view: treat y as constants, a as

variables

 Pr[fix y sat. all equations] = extremely small

 Union bound over all “non-canonical” solutions.

Tensor-expansion

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*) Problem: b depends on a

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

Problem: b depends on a

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

Problem: b depends on a

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

Problem: b depends on a

a,c:numbers; X: variable

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3+c1a
2 a3 ∙X2+…+c1c2c3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Linearize

Let Z3
i,j,k = L((xi+ui)(xj+uj)(xk+uk))

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Linearize

Let Z3
i,j,k = L((xi+ui)(xj+uj)(xk+uk))

Tensor-expansion

(a1∙x+b1)(a
2∙x+b2)(a

3∙x+b3) = 0(*)

(a1∙(x+u)+c1)(a
2∙(x+u)+c2)(a

3∙(x+u)+c3) = 0

(a1∙X+c1)(a
2∙X+c2)(a

3∙X+c3) = 0

a1a2 a3 ∙X3 = 0

Problem: b depends on a

a,c:numbers; X: variable

Linearize

Let Z3
i,j,k = L((xi+ui)(xj+uj)(xk+uk))

Z3 = 0 y is the canonical solution

Change View

Linear Equation over y variables

0)(3213 aaaZ

Change View

Linear Equation over y variables

0)(3213 aaaZ

Change View

Linear Equation over y variables

0)(3213 aaaZ

Polynomial over a’s

Change View

Linear Equation over y variables

0)(3213 aaaZ

Polynomial over a’s

Uniformly random

Change View

Linear Equation over y variables

0)(3213 aaaZ

Polynomial over a’s

 Lemma

 When Z3≠0 (y non-canonical), the equation is a non-

zero polynomial over a’s

Uniformly random

Change View

Linear Equation over y variables

0)(3213 aaaZ

Polynomial over a’s

 Lemma

 When Z3≠0 (y non-canonical), the equation is a non-

zero polynomial over a’s

 Schwartz-Zippel

 The polynomial is non-zero w.p. at least 2-d

Uniformly random

Main Lemma Theorem

Main Lemma Theorem

Non-Canonical Solution

Main Lemma Theorem

Non-zero Z3 vector, Poly(a) = 0 for all equations

Non-Canonical Solution

Main Lemma Theorem

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

Non-Canonical Solution

Main Lemma Theorem

Low Probability

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

Non-Canonical Solution

Main Lemma Theorem

Low Probability

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

Non-Canonical Solution

With High Probability

Main Lemma Theorem

Low Probability

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

Non-Canonical Solution

With High Probability

No Non-Canonical Solutions

Main Lemma Theorem

Low Probability

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

Non-Canonical Solution

With High Probability

No Non-Canonical Solutions

Adversarial Noise

 Structure = “not all inner-products are incorrect”

Pretend (0,1,1,0,0)

Adversarial Noise

 Structure = “not all inner-products are incorrect”

Secret u = (1,0,1,1,1)

Pretend (0,1,1,0,0)

Adversarial Noise

 Structure = “not all inner-products are incorrect”

Secret u = (1,0,1,1,1)

Pretend (0,1,1,0,0)

Adversarial Noise

 Structure = “not all inner-products are incorrect”

Secret u = (1,0,1,1,1) u ∙ (0,1,0,1,1) = 0 1 1

u ∙ (1,1,0,1,0) = 0 0 1

u ∙ (0,1,1,0,0) = 1 1 0

Adversarial Noise

 The adversary can fool ANY algorithm for some

structures.

Adversarial Noise

 The adversary can fool ANY algorithm for some

structures.

 Thm: If exists c that cannot be represented as

c = c1+c2, P(c1)=P(c2)=0,

the secret can be learned in nO(m) time

otherwise no algorithm can learn the secret

Handling Adversarial Noise

Handling Adversarial Noise

 Compute polynomial R,

R(c) = 0 c = c1+c2, P(c1)=P(c2)=0

Handling Adversarial Noise

 Compute polynomial R,

R(c) = 0 c = c1+c2, P(c1)=P(c2)=0

 For each oracle answer (A,b), generate a group

of oracle answers (A, b+c’) for all P(c’) = 0.

Handling Adversarial Noise

 Compute polynomial R,

R(c) = 0 c = c1+c2, P(c1)=P(c2)=0

 For each oracle answer (A,b), generate a group

of oracle answers (A, b+c’) for all P(c’) = 0.

 Apply the white-noise algorithm

Handling Adversarial Noise

 Compute polynomial R,

R(c) = 0 c = c1+c2, P(c1)=P(c2)=0

 For each oracle answer (A,b), generate a group

of oracle answers (A, b+c’) for all P(c’) = 0.

 Apply the white-noise algorithm

P = c1c2+c2c3+c3c1

R = c1c2c3

Handling Adversarial Noise

 Compute polynomial R,

R(c) = 0 c = c1+c2, P(c1)=P(c2)=0

 For each oracle answer (A,b), generate a group

of oracle answers (A, b+c’) for all P(c’) = 0.

 Apply the white-noise algorithm

P = c1c2+c2c3+c3c1

R = c1c2c3

b = (1,0,1)

b = (0,0,1), (1,0,1), (1,1,1), (1,0,0)

Handling Adversarial Noise

 Compute polynomial R,

R(c) = 0 c = c1+c2, P(c1)=P(c2)=0

 For each oracle answer (A,b), generate a group

of oracle answers (A, b+c’) for all P(c’) = 0.

 Apply the white-noise algorithm

P = c1c2+c2c3+c3c1

R = c1c2c3

b = (1,0,1)

b = (0,0,1), (1,0,1), (1,1,1), (1,0,0)

Canonical Solution: still satisfied

Non-Canonical: cannot be satisfied because

noise c = (0,0,0) is always present

Learning With Errors

Learning With Errors

 Used in designing new crypto systems

Learning With Errors

 Used in designing new crypto systems

 Resistant to “side channel attacks”

Learning With Errors

 Used in designing new crypto systems

 Resistant to “side channel attacks”

Learning With Errors

 Used in designing new crypto systems

 Resistant to “side channel attacks”

 Provable reduction from worst case lattice

problems

Learning With Errors

Learning With Errors

 Secret u in Zq
n

Learning With Errors

 Secret u in Zq
n

 Oracle returns random a and a∙u+c

Learning With Errors

 Secret u in Zq
n

 Oracle returns random a and a∙u+c

 c is chosen from Discrete Gaussian distribution

with standard deviation δ

Learning With Errors

 Secret u in Zq
n

 Oracle returns random a and a∙u+c

 c is chosen from Discrete Gaussian distribution

with standard deviation δ

Learning With Errors

 Secret u in Zq
n

 Oracle returns random a and a∙u+c

 c is chosen from Discrete Gaussian distribution

with standard deviation δ

 When δ = Ω(n1/2) lattice problems can be

reduced to LWE [Regev09]

Learning With Structured Errors

Learning With Structured Errors

 Structure specifies a set of possible errors

 e.g. |c| < δ2

 Still represented using polynomial P(c) = 0

Learning With Structured Errors

 Structure specifies a set of possible errors

 e.g. |c| < δ2

 Still represented using polynomial P(c) = 0

 Thm: When the polynomial has degree d < q/4,

the secret can be learned in nO(d) time.

Learning With Structured Errors

 Structure specifies a set of possible errors

 e.g. |c| < δ2

 Still represented using polynomial P(c) = 0

 Thm: When the polynomial has degree d < q/4,

the secret can be learned in nO(d) time.

 Cor: When δ = o(n1/2), LWE has a sub-

exponential time algorithm

Thm Cor

Thm Cor

Structure:

|c| < K δ2

Thm Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

Thm Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

In LWE:

Pr[|c|>K δ2] < exp(-O(K2δ2))

Thm Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

In LWE:

Pr[|c|>K δ2] < exp(-O(K2δ2))

of equations:

n^(O(K δ2)) < exp(O(K2δ2)) K = 100 log n

Thm Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

In LWE:

Pr[|c|>K δ2] < exp(-O(K2δ2))

of equations:

n^(O(K δ2)) < exp(O(K2δ2)) K = 100 log n

Thm Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

In LWE:

Pr[|c|>K δ2] < exp(-O(K2δ2))

of equations:

n^(O(K δ2)) < exp(O(K2δ2)) K = 100 log n

Thm Cor

Structure:

|c| < K δ2

c
-K δ2 K δ2

In LWE:

Pr[|c|>K δ2] < exp(-O(K2δ2))

of equations:

n^(O(K δ2)) < exp(O(K2δ2)) K = 100 log n

Negligible difference between LWE and LWSE,

Algorithm still success with high probability

Open Problems

 Non-trivial algorithm for the original model using

linearization

 Possible lower bound for special kind of linear

equation systems

 Improve the algorithm for learning with errors?

Thank You

Questions?

