A New Learning Problem with Applications To Cryptography

William Skeith

CCNY and Graduate Center CAISS

Joint work with Gilbert Baumslag, Nelly Fazio, Antonio Nicolosi and Vladimir Shpilrain

Outline

1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Learning With Errors (LWE)

2) Generalized Learning Problems

- An Abstract Learning Problem
- The Search for Instantiations: $B(n, 3)$

3 Symmetric-Key Cryptosystem

- High-Level Approach
- Construction

1) Motivation \& Background - Why Group-Theoretic Cryptography?

- Learning With Errors (LWE)
(2) Generalized Learning Problems - An Abstract Learning Problem - The Search for Instantiations: B(n,3)

3 Symmetric-Key Cryptosystem - High-Level Approach - Construction

- Interesting mathematical problem on its own...

Motivation

- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Hardness of order-finding at the heart of most popular public-key cryptosystems (RSA, DH, ECDH)
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Hardness of order-finding at the heart of most popular public-key cryptosystems (RSA, DH, ECDH)
\therefore If quantum computing becomes practical, we'll need alternative crypto platforms
Quantum computing aside, diversifying assumptions still seems
prudent
- Interesting mathematical problem on its own...
- Tackling crypto challenges of post-quantum era [Sh'94]
- Shor's algorithm: Efficient quantum procedure to compute the order of any element in a cyclic group
- Hardness of order-finding at the heart of most popular public-key cryptosystems (RSA, DH, ECDH)
\therefore If quantum computing becomes practical, we'll need alternative crypto platforms
- Quantum computing aside, diversifying assumptions still seems prudent

Prior Work in NonCommutative Cryptography

Challenging computational problems abound in group theory, however...

Many hard problems are based on infinite groups

Prior Work in NonCommutative Cryptography

Challenging computational problems abound in group theory, however...

- Many hard problems are based on infinite groups

This makes probabilistic modeling difficult
Average-case hardness for many problems seems to be not
well-understood

Prior Work in NonCommutative Cryptography

Challenging computational problems abound in group theory, however...

- Many hard problems are based on infinite groups
- This makes probabilistic modeling difficult

Average-case hardness for many problems seems to be not
well-understood

Prior Work in NonCommutative Cryptography

Challenging computational problems abound in group theory, however...

- Many hard problems are based on infinite groups
- This makes probabilistic modeling difficult
- Average-case hardness for many problems seems to be not well-understood

Goal

Inspired by the success of LWE and lattice-based cryptography, we seek a new source of viable intractability assumptions from learning problems in group theory.

Outline

1) Motivation \& Background

- Why Group-Theoretic Cryptography?
 - Learning With Errors (LWE)

2) Generalized Learning Problems - An Abstract Learning Problem - The Search for Instantiations: $B(n, 3)$

3 Symmetric-Key Cryptosystem - High-Level Approach - Construction

Learning With Errors [Reg05]

Let $\mathbf{s} \in \mathbb{F}_{p}^{n}$. The picture is as follows:

Learning With Errors [Reg05]

Let $\mathbf{s} \in \mathbb{F}_{p}^{n}$. The picture is as follows:

Learning With Errors [Reg05]

Let $\mathbf{s} \in \mathbb{F}_{p}^{n}$. The picture is as follows:

LWE, Informally

Roughly, the Learning With Errors problem is to recover s by sampling preimage-image pairs in the presence of some small "noise"

Learning With Errors [Reg05]

More precisely, let

Learning With Errors [Reg05]

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0
Define a distribution $\mathbf{A}_{\mathbf{s}, \psi}$ on $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ whose samples are pairs

Learning With Errors [Reg05]

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0

Learning With Errors [Reg05]

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0
- Define a distribution $\mathbf{A}_{\mathbf{s}, \psi}$ on $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a} \stackrel{\mathfrak{s}}{\leftarrow} \mathbb{F}_{p}^{n}, b=\mathbf{s} \cdot \mathbf{a}+e, e \stackrel{\leftarrow}{\leftarrow} \psi$

Learning With Errors [Reg05]

More precisely, let

- $\mathbf{s} \in \mathbb{F}_{p}^{n}$
- Ψ be a discrete gaussian distribution over \mathbb{F}_{p} centered at 0
- Define a distribution $\mathbf{A}_{\mathbf{s}, \psi}$ on $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}$ whose samples are pairs (\mathbf{a}, b) where $\mathbf{a} \stackrel{\mathfrak{s}}{\leftarrow} \mathbb{F}_{p}^{n}, b=\mathbf{s} \cdot \mathbf{a}+e, e{ }_{\leftarrow}^{\leftarrow} \psi$

Definition

The Learning With Errors problem is to recover s by sampling the distribution $\mathbf{A}_{\mathbf{s}, \psi}$.

Hardness of LWE

- For noise parameters $>\sqrt{n}$ no sub-exponential algorithms are known

In fact, for this case reductions from worst-case lattice problems
have been shown ([Reg05,Pei09])

Hardness of LWE

- For noise parameters $>\sqrt{n}$ no sub-exponential algorithms are known
- In fact, for this case reductions from worst-case lattice problems have been shown ([Reg05,Pei09])

Hardness of LWE

- For noise parameters $>\sqrt{n}$ no sub-exponential algorithms are known
- In fact, for this case reductions from worst-case lattice problems have been shown ([Reg05,Pei09])
- Very recently, [AuGe11] showed a sub-exponential algorithm for noise parameters $<\sqrt{n}$

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Learning With Errors (LWE)

2) Generalized Learning Problems

- An Abstract Learning Problem
- The Search for Instantiations: B(n,3)

3 Symmetric-Key Cryptosystem

- High-Level Approach
- Construction

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

> Expressed in terms of homomorphisms
> Complexity reductions (worst case to average case, search to decision) also algebraic

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms

Complexity reductions (worst case to average case, search to decision) also algebraic

This motivates the following

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
- Complexity reductions (worst case to average case, search to decision) also algebraic

This motivates the following

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
- Complexity reductions (worst case to average case, search to decision) also algebraic

This motivates the following
 based on aroup theory?

Learning Homomorphisms With Errors

Observation

LWE's formulation was mainly algebraic:

- Expressed in terms of homomorphisms
- Complexity reductions (worst case to average case, search to decision) also algebraic

This motivates the following

Question

Can similar learning problems yield viable intractability assumptions based on group theory?

LWE Over Groups

Vector Spaces
Groups

Learning Homomorphisms from Images with Errors

Setup

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.

Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{s}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{s}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

- $a \leftarrow_{\leftarrow}^{s} \Gamma_{n}$;

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{s}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

- $a \stackrel{s}{s}_{\leftarrow} \Gamma_{n}$;
- $e{ }_{\leftarrow}^{\leftarrow} \Psi_{n}$;

Learning Homomorphisms from Images with Errors

Setup

- Let G_{n} and P_{n} be groups
- Set Γ_{n}, Ψ_{n}, distributions on G_{n}, P_{n}, resp.
- Let Φ_{n} be a distribution on the set of all homomorphisms, $\operatorname{hom}\left(G_{n}, P_{n}\right)$

The Distribution $\mathbf{A}_{\varphi, \psi_{n}}$

For $\varphi \stackrel{s}{\leftarrow} \Phi_{n}$, define the analogous distribution $\mathbf{A}_{\varphi, \psi_{n}}$ on $G_{n} \times P_{n}$ whose samples are (a, b) where

- $a \stackrel{s}{s}_{\leftarrow} \Gamma_{n}$;
- $e{ }_{\leftarrow}^{\leftarrow} \Psi_{n}$;
- $b=\varphi(a) e$

Learning Homomorphisms from Images with Errors

Search Problem

Given $\mathbf{A}_{\varphi, \psi_{n}}$, recover φ.

Decision Problem
Civan samulas fram an unknown distribution $R \in\left\{A_{\varphi, \psi_{n}}, \mathrm{U}\left(G_{n} \times P_{n}\right)\right\}$, determine R.

Learning Homomorphisms from Images with Errors

Search Problem

Given $\mathbf{A}_{\varphi, \psi_{n}}$, recover φ.

Decision Problem

Given samples from an unknown distribution $\mathbf{R} \in\left\{\mathbf{A}_{\varphi, \Psi_{n}}, \mathbf{U}\left(G_{n} \times P_{n}\right)\right\}$, determine \mathbf{R}.

Learning Homomorphisms from Images with Errors

Search Problem

Given $\mathbf{A}_{\varphi, \psi_{n}}$, recover φ.

Decision Problem

Given samples from an unknown distribution $\mathbf{R} \in\left\{\mathbf{A}_{\varphi, \Psi_{n}}, \mathbf{U}\left(G_{n} \times P_{n}\right)\right\}$, determine \mathbf{R}.

Hardness Assumption (Decision Version)

$$
\mathbf{A}_{\varphi, \psi_{n}} \approx \mathbf{F P T} \mathbf{U}\left(G_{n} \times P_{n}\right)
$$

Learning Homomorphisms from Images with Errors

Note that this is a proper generalization of the standard LWE problem, where

Learning Homomorphisms from Images with Errors

Note that this is a proper generalization of the standard LWE problem, where

- $G_{n}:=\left(\mathbb{F}_{p}^{n},+\right)$ and $\Gamma_{n}:=\mathbf{U}\left(\mathbb{F}_{p}^{n}\right)$

Learning Homomorphisms from Images with Errors

Note that this is a proper generalization of the standard LWE problem, where

- $G_{n}:=\left(\mathbb{F}_{p}^{n},+\right)$ and $\Gamma_{n}:=\mathbf{U}\left(\mathbb{F}_{p}^{n}\right)$
- $P_{n}:=\left(\mathbb{F}_{p},+\right)$ and $\Psi_{n}:=$ discrete gaussian

Learning Homomorphisms from Images with Errors

Note that this is a proper generalization of the standard LWE problem, where

- $G_{n}:=\left(\mathbb{F}_{p}^{n},+\right)$ and $\Gamma_{n}:=\mathbf{U}\left(\mathbb{F}_{p}^{n}\right)$
- $P_{n}:=\left(\mathbb{F}_{p},+\right)$ and $\Psi_{n}:=$ discrete gaussian
- $\varphi:=\mathbf{s} \cdot{ }_{-}$and $\Phi_{n}:=\mathbf{U}\left(\operatorname{hom}\left(\mathbb{F}_{p}^{n}, \mathbb{F}_{p}\right)\right)$

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Learning With Errors (LWE)
(2) Generalized Learning Problems
- An Abstract Learning Problem
- The Search for Instantiations: $B(n, 3)$

3 Symmetric-Key Cryptosystem

- High-Level Approach
- Construction

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{η} is a free module

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{η} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism Hence, space of keys is exponential in \# generators

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators

So, what about free groups? Not such a good idea

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

So, what about free groups? Not such a good idea:
Free groups are infinite-wh
modeling?
Multiplication is transparent

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

So, what about free groups? Not such a good idea:

- Free groups are infinite-what to do about probabilistic modeling?

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

So, what about free groups? Not such a good idea:

- Free groups are infinite-what to do about probabilistic modeling?
- Multiplication is transparent

Intuition for Hardness of LWE

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

So, what about free groups? Not such a good idea:

- Free groups are infinite-what to do about probabilistic modeling?
- Multiplication is transparent
- Errors might be easy to separate

Part of what makes LWE work is that \mathbb{F}_{p}^{n} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

So, what about free groups? Not such a good idea:

- Free groups are infinite-what to do about probabilistic modeling?
- Multiplication is transparent
- Errors might be easy to separate
- Subset sum is easy (no hope of a public key scheme using these techniques)

Part of what makes LWE work is that \mathbb{F}_{p}^{η} is a free module

Free Objects

- Any mapping of generators extends to a unique homomorphism
- Hence, space of keys is exponential in \# generators
- Irrespective of the error distribution, $\varphi(a)+e$ always "looks" plausible as an image of a

So, what about free groups? Not such a good idea:

- Free groups are infinite-what to do about probabilistic modeling?
- Multiplication is transparent
- Errors might be easy to separate
- Subset sum is easy (no hope of a public key scheme using these techniques)
- Length-based attacks? [MyUs07,HuTa00]
- Free objects seem like the right approach, but free groups seem rather unsuitable (infinite order, etc.)
However, in restricted classes of groups, one can find

\mathbb{F}_{p}^{n} is actually an example, but we'll look for something more general / less constrained

- Free objects seem like the right approach, but free groups seem rather unsuitable (infinite order, etc.)
- However, in restricted classes of groups, one can find finite free objects

Intuition for Hardness of LWE

- Free objects seem like the right approach, but free groups seem rather unsuitable (infinite order, etc.)
- However, in restricted classes of groups, one can find finite free objects
- \mathbb{F}_{p}^{n} is actually an example, but we'll look for something more general / less constrained

Free groups

Other varieties
$\left.\right|_{\mathbb{F}_{p}^{n}}$

Free groups

Free groups

Other varieties

Too free?

Too restricted (already studied)

Free groups

Other varieties

Too free?

We'll look here

Too restricted (already studied)

Varieties of Groups

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose elements satisfy a certain set of equations.

Varieties of Groups

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose elements satisfy a certain set of equations.

Example

Abelian groups can be seen as the variety corresponding to the equation

$$
X Y=Y X
$$

Varieties of Groups

Via the usual "abstract nonsense", it is easy to see that varieties of groups contain free objects-just take a free group and factor out the normal subgroup resulting from all the "equations"...

Varieties of Groups

Via the usual "abstract nonsense", it is easy to see that varieties of groups contain free objects-just take a free group and factor out the normal subgroup resulting from all the "equations"...

Sets
Groups

Varieties of Groups

Question

Which varieties of groups contain finite free objects???
If the equations are say,
then the free objects are exactly \mathbb{Z}_{p}^{n}, which are the objects of study in LWE (if p is prime)

Varieties of Groups

Question

Which varieties of groups contain finite free objects???
If the equations are say,

$$
\begin{aligned}
{[X, Y] } & =1 \\
X^{p} & =1
\end{aligned}
$$

then the free objects are exactly \mathbb{Z}_{p}^{n}, which are the objects of study in LWE (if p is prime).

Varieties of Groups

Question

Which varieties of groups contain finite free objects???
If the equations are say,

$$
\begin{aligned}
{[X, Y] } & =1 \\
X^{p} & =1
\end{aligned}
$$

then the free objects are exactly \mathbb{Z}_{p}^{n}, which are the objects of study in LWE (if p is prime).

Question

What happens if the $[X, Y]=1$ equation is removed? ${ }^{a}$ In general, the answer is not so simple...

$$
\text { a Note: }[X, Y]=X^{-1} Y^{-1} X Y
$$

Burnside Groups

Notation

For the variety of groups defined by the equation $X^{m}=1$, denote the free group on n generators in this variety by $B(n, m)$.

Burnside Groups

Notation

For the variety of groups defined by the equation $X^{m}=1$, denote the free group on n generators in this variety by $B(n, m)$.

Determining the finiteness of $B(n, m)$ is known as the Bounded Burnside Problem.

For $n>1$ and for sufficiently large m, it is known that $|B(n, m)|=\infty$, yet for small m, our understanding is far from complete:

$$
\begin{aligned}
& B(n, 2) \\
& B(n, 3) \\
& B(n, 4) \\
& B(n, 5) \\
& B(n, 6) \\
& B(n, 7)
\end{aligned}
$$

Finite (also abelian)
Finite
Finite
Unknown
Finite
Unknown

Our Approach

We will use $B(n, 3)$ as a starting point for our investigation: it is the simplest case yielding finiteness + non-abelian.

Normal Form for $B(n, 3)$

The structure of $B(n, 3)$ is fairly well-understood. In particular we have the following

Normal Form for $B(n, 3)$

The structure of $B(n, 3)$ is fairly well-understood. In particular we have the following

Fact

Every element of $B(n, 3)$ has a unique representation as

$$
\begin{gathered}
x_{1}^{\alpha_{1} \cdots x_{i}^{\alpha_{i}} \cdots x_{n}^{\alpha_{n}}\left[x_{1}, x_{2}\right]^{\beta_{1,2}} \cdots\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \cdots\left[x_{n-1}, x_{n}\right]^{\beta_{n-1, n}}\left[x_{1}, x_{2}, x_{3}\right]^{\gamma_{1,2,3}}} \cdots\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k} \cdots} \cdots\left[x_{n-2}, x_{n-1}, x_{n}\right]^{\gamma_{n-2, n-1, n}}
\end{gathered}
$$

where the $\left\{x_{i}\right\}$ are the generators, all $\alpha_{i}, \beta_{i, j}, \gamma_{i, j, k} \in\{0,1,2\}$ for all $1 \leq i<j<k \leq n$, and $\left[x_{i}, x_{j}, x_{k}\right]=\left[\left[x_{i}, x_{j}\right], x_{k}\right]$.

Normal Form for $B(n, 3)$

The structure of $B(n, 3)$ is fairly well-understood. In particular we have the following

Fact

Every element of $B(n, 3)$ has a unique representation as

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \cdots x_{i}^{\alpha_{i}} \cdots x_{n}^{\alpha_{n}}\left[x_{1}, x_{2}\right]^{\beta_{1,2}} \cdots\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \cdots\left[x_{n-1}, x_{n}\right]^{\beta_{n-1, n}}\left[x_{1}, x_{2}, x_{3}\right]^{\gamma_{1,2,3}} \\
\cdots\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}} \cdots\left[x_{n-2}, x_{n-1}, x_{n}\right]^{\gamma_{n-2, n-1, n}}
\end{gathered}
$$

where the $\left\{x_{i}\right\}$ are the generators, all $\alpha_{i}, \beta_{i, j}, \gamma_{i, j, k} \in\{0,1,2\}$ for all $1 \leq i<j<k \leq n$, and $\left[x_{i}, x_{j}, x_{k}\right]=\left[\left[x_{i}, x_{j}\right], x_{k}\right]$.

Corollary

Given the above normal form, we see that the order of $B(n, 3)$ is

$$
3^{n+\binom{n}{2}+\binom{n}{3}}
$$

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{\S} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\lessgtr} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- G_{n}
- P_{n}
- Φ_{n}
- 「 ${ }_{n}$
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{\S} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\lessgtr} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- P_{n}
- Φ_{n}
- 「 ${ }_{n}$
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{\S} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\lessgtr} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- Φ_{n}
- 「 n
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{\S} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\lessgtr} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- $\Phi_{n}:=\mathbf{U}(\operatorname{hom}(B(n, 3), B(r, 3)))$
- 「 ${ }_{n}$
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{s} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\leftarrow} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- $\Phi_{n}:=\mathbf{U}($ hom $(B(n, 3), B(r, 3)))$ Easy to sample: $B(n, 3)$ is free
- 「 ${ }_{n}$
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{s} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\leftarrow} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- $\Phi_{n}:=\mathbf{U}(\operatorname{hom}(B(n, 3), B(r, 3)))$
- $\Gamma_{n}:=\mathbf{U}(B(n, 3))$
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{s} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\leftarrow} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- $\Phi_{n}:=\mathbf{U}(\operatorname{hom}(B(n, 3), B(r, 3)))$
- $\Gamma_{n}:=\mathbf{U}(B(n, 3))$ Easy to sample: cf. normal form
- Ψ_{n}

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \stackrel{s}{\leftarrow} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{s} \Gamma_{n} \longmapsto \varphi(a) e, e \leftarrow_{\leftarrow}^{\leftarrow} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- $\Phi_{n}:=\mathbf{U}(\operatorname{hom}(B(n, 3), B(r, 3)))$
- $\Gamma_{n}:=\mathbf{U}(B(n, 3))$
- Ψ_{n} :=???

Putting the Pieces Together...

Recall the setup:

$$
\begin{gathered}
G_{n} \xrightarrow{\varphi \leftarrow_{\leftarrow}^{\S} \Phi_{n}} P_{n} \\
a \leftarrow_{\leftarrow}^{\S} \Gamma_{n} \longmapsto(a) e, e \leftarrow_{\leftarrow}^{\leftarrow} \Psi_{n}
\end{gathered}
$$

Instantiating the Abstract Learning Problem

- $G_{n}:=B(n, 3)$
- $P_{n}:=B(r, 3), r<n$
- $\Phi_{n}:=\mathbf{U}(\operatorname{hom}(B(n, 3), B(r, 3)))$
- $\Gamma_{n}:=\mathbf{U}(B(n, 3))$
- Ψ_{n} :=???

The error distribution requires more care...

Connection with LWE/F ${ }_{3}$

For certain error distributions, the decision problem over $B(n, 3)$ would reduce to LWE with $p=3$. Consider the abelianization:

Connection with LWE/F \mathbb{F}_{3}

For certain error distributions, the decision problem over $B(n, 3)$ would reduce to LWE with $p=3$. Consider the abelianization:

Connection with LWE/ \mathbb{F}_{3}

For certain error distributions, the decision problem over $B(n, 3)$ would reduce to LWE with $p=3$. Consider the abelianization:

This allows one to transform $\mathbf{A}_{\varphi, \psi}$ over $B(n, 3) \times B(r, 3)$ to $\mathbf{A}_{\varphi^{\prime}, \psi^{\prime}}$ over $\mathbb{F}_{3}^{n} \times \mathbb{F}_{3}^{r}$ for some induced error distribution Ψ^{\prime}. Hence the $B(n, 3)$ LWE is no harder than the vector space LWE with the induced error Ψ^{\prime}.

Error Distribution

In light of the preceding, we'll select an error distribution so that the abelianization construction takes $\mathbf{A}_{\varphi, \psi}$ to the uniform distribution $\mathbf{U}\left(\mathbb{F}_{3}^{n} \times \mathbb{F}_{3}^{r}\right)$.

Moreover, notice that the normal closure of $\operatorname{Support}(\Psi)$ is in fact the entire aroup $B($ this leaves no apparent way to "factor

In light of the preceding, we'll select an error distribution so that the abelianization construction takes $\mathbf{A}_{\varphi, \psi}$ to the uniform distribution $\mathbf{U}\left(\mathbb{F}_{3}^{n} \times \mathbb{F}_{3}^{r}\right)$.
Ψ_{n}
Let $\mathbf{v} \stackrel{\varsigma}{\varsigma}^{\varsigma} \mathbb{Z}_{3}^{r}$ and let $\sigma \leftarrow^{\varsigma} S_{r}$ be a permutation. A sample from Ψ_{n} is an element

$$
e=\prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}
$$

where the $\left\{x_{i}\right\}$ are the generators of $B(r, 3)$ and the $\left\{v_{i}\right\}$ are the components of \mathbf{v}.

Moreover, notice that the normal closure of Support(Ψ) is in fact the entire group $B(r, 3)$ this leaves no apparent way to "factor

In light of the preceding, we'll select an error distribution so that the abelianization construction takes $\mathbf{A}_{\varphi, \psi}$ to the uniform distribution $\mathbf{U}\left(\mathbb{F}_{3}^{n} \times \mathbb{F}_{3}^{r}\right)$.

Ψ_{n}

Let $\mathbf{v}{ }_{\leftarrow}^{\varsigma} \mathbb{Z}_{3}^{r}$ and let $\sigma \stackrel{\varsigma}{\leftarrow} S_{r}$ be a permutation. A sample from Ψ_{n} is an element

$$
e=\prod_{i=1}^{r} x_{\sigma(i)}^{v_{i}}
$$

where the $\left\{x_{i}\right\}$ are the generators of $B(r, 3)$ and the $\left\{v_{i}\right\}$ are the components of \mathbf{v}.

Moreover, notice that the normal closure of $\operatorname{Support}(\Psi)$ is in fact the entire group $B(r, 3)$. Intuition: this leaves no apparent way to "factor out" the noise.

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Learning With Errors (LWE)
(2) Generalized Learning Problems
- An Abstract Learning Problem
- The Search for Instantiations: B(n,3)

3 Symmetric-Key Cryptosystem

- High-Level Approach
- Construction

High-Level Approach

- Goal: construct a simple Regev-like cryptosystem which encrypts bits

High-Level Approach

- Goal: construct a simple Regev-like cryptosystem which encrypts bits
- The secret key will be a homomorphism φ

High-Level Approach

- Goal: construct a simple Regev-like cryptosystem which encrypts bits
- The secret key will be a homomorphism φ
- Encryptions of 0 will be noisy images of φ (i.e., samples from $\left.\mathbf{A}_{\varphi, \psi}\right)$
- Goal: construct a simple Regev-like cryptosystem which encrypts bits
- The secret key will be a homomorphism φ
- Encryptions of 0 will be noisy images of φ (i.e., samples from $\left.\mathbf{A}_{\varphi, \psi}\right)$
- Encryptions of 1 will be "far" from a noisy image of φ

Additional Considerations for $B(n, 3)$

For this approach to make sense, we'll need a few more ingredients:

Additional Considerations for $B(n, 3)$

For this approach to make sense, we'll need a few more ingredients:

Required Ingredients

Additional Considerations for $B(n, 3)$

For this approach to make sense, we'll need a few more ingredients:

Required Ingredients

- Norm / distance metric on $B(r, 3)$

Additional Considerations for $B(n, 3)$

For this approach to make sense, we'll need a few more ingredients:

Required Ingredients

- Norm / distance metric on $B(r, 3)$
- "Large" diameter (must be able to distinguish noisy images from noise)

Cayley Graph

In response to our needs for a metric, we turn to the Cayley Graph.

Idea

- Treat a group as a geometric object

Figure: Cayley graph of $F(\{a, b\})$.

Cayley Graph

In response to our needs for a metric, we turn to the Cayley Graph.

Idea

- Treat a group as a geometric object
- Vertexes are elements; edges are generators (and their inverses)

Figure: Cayley graph of $F(\{a, b\})$.

Cayley Graph

In response to our needs for a metric, we turn to the Cayley Graph.

Idea

- Treat a group as a geometric object
- Vertexes are elements; edges are generators (and their inverses)
- The norm (denoted $\|g\|$) is just the graph distance from the identity element

Figure: Cayley graph of $F(\{a, b\})$.

Diameter of $B(n, 3)$

Just given the order of $B(n, 3)$ alone, we can compute a simple lower bound on the diameter.

Diameter of $B(n, 3)$

Just given the order of $B(n, 3)$ alone, we can compute a simple lower bound on the diameter.

Lemma (Diameter of $B(n, 3)$)

$\exists \tau_{n} \in B(n, 3)$ such that $\left\|\tau_{n}\right\| \in \Omega\left(\frac{n^{3}}{\log _{n}}\right)$.

Diameter of $B(n, 3)$

Proof.

Let $d_{n}=\max _{x \in B(n, 3)}(\|x\|)$, and recall that $|B(n, 3)|=3^{n+\binom{n}{2}+\binom{n}{3} \text {. } . \text {. }}$ Since all elements of the group can be written with at most d_{n} symbols taken from $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$:

$$
\begin{aligned}
(2 n)^{d_{n}} & \geq 3^{n+\binom{n}{2}+\binom{n}{3}} \\
d_{n} \log _{3}(2 n) & \geq n+\binom{n}{2}+\binom{n}{3} \\
d_{n} & \geq\left\lceil\frac{n+\binom{n}{2}+\binom{n}{3}}{\log _{3} 2 n}\right\rceil
\end{aligned}
$$

$\left(\right.$ since $\left.d_{n} \in \mathbb{Z}\right)$

Diameter of $B(n, 3)$

Proof.

Let $d_{n}=\max _{x \in B(n, 3)}(\|x\|)$, and recall that $|B(n, 3)|=3^{n+\binom{n}{2}+\binom{n}{3} \text {. } . \text {. }}$ Since all elements of the group can be written with at most d_{n} symbols taken from $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$:

$$
\begin{aligned}
(2 n)^{d_{n}} & \geq 3^{n+\binom{n}{2}+\binom{n}{3}} \\
d_{n} \log _{3}(2 n) & \geq n+\binom{n}{2}+\binom{n}{3} \\
d_{n} & \geq\left\lceil\frac{n+\binom{n}{2}+\binom{n}{3}}{\log _{3} 2 n}\right\rceil
\end{aligned}
$$

$\left(\right.$ since $\left.d_{n} \in \mathbb{Z}\right)$

Diameter of $B(n, 3)$

Good so far, but one issue remains: for a given $x \in G$, how does one compute the norm in the Cayley graph?

Diameter of $B(n, 3)$

Good so far, but one issue remains: for a given $x \in G$, how does one compute the norm in the Cayley graph?

Computing Cayley Graph Norms
In some cases, this is known to be NP-hard

Diameter of $B(n, 3)$

Good so far, but one issue remains: for a given $x \in G$, how does one compute the norm in the Cayley graph?

Computing Cayley Graph Norms

- In some cases, this is known to be NP-hard was computed, and this took 35 CPU -years... Efficient methods may exist for $B(r, 3)$, but we can get away with small values of r, and just use breadth-first search

Diameter of $B(n, 3)$

Good so far, but one issue remains: for a given $x \in G$, how does one compute the norm in the Cayley graph?

Computing Cayley Graph Norms

- In some cases, this is known to be NP-hard
- It wasn't until 2010 that the diameter of the Rubik's cube group was computed, and this took 35 CPU-years...

Diameter of $B(n, 3)$

Good so far, but one issue remains: for a given $x \in G$, how does one compute the norm in the Cayley graph?

Computing Cayley Graph Norms

- In some cases, this is known to be NP-hard
- It wasn't until 2010 that the diameter of the Rubik's cube group was computed, and this took 35 CPU-years...
- Efficient methods may exist for $B(r, 3)$, but we can get away with small values of r, and just use breadth-first search

Outline

(1) Motivation \& Background

- Why Group-Theoretic Cryptography?
- Learning With Errors (LWE)
(2) Generalized Learning Problems
- An Abstract Learning Problem
- The Search for Instantiations: B(n,3)

3 Symmetric-Key Cryptosystem

- High-Level Approach
- Construction

Symmetric Cryptosystem

We can now proceed with a formal description of the cryptosystem.

We can now proceed with a formal description of the cryptosystem.

Precomputation

Run breadth-first search on the Cayley graph of $B(r, 3)$, recording the norm of each element.

Symmetric Cryptosystem

We can now proceed with a formal description of the cryptosystem.

Precomputation

Run breadth-first search on the Cayley graph of $B(r, 3)$, recording the norm of each element.

Key-Gen(n)

Symmetric Cryptosystem

We can now proceed with a formal description of the cryptosystem.

Precomputation

Run breadth-first search on the Cayley graph of $B(r, 3)$, recording the norm of each element.

Key-Gen(n)

- Run setup for the group LWE problem to obtain $\varphi: B(n, 3) \longrightarrow B(r, 3)$

Symmetric Cryptosystem

We can now proceed with a formal description of the cryptosystem.

Precomputation

Run breadth-first search on the Cayley graph of $B(r, 3)$, recording the norm of each element.

Key-Gen(n)

- Run setup for the group LWE problem to obtain $\varphi: B(n, 3) \longrightarrow B(r, 3)$
- Shared key: $\mathrm{SK} \doteq \varphi$

Symmetric Cryptosystem

We can now proceed with a formal description of the cryptosystem.

Precomputation

Run breadth-first search on the Cayley graph of $B(r, 3)$, recording the norm of each element.

Key-Gen(n)

- Run setup for the group LWE problem to obtain $\varphi: B(n, 3) \longrightarrow B(r, 3)$
- Shared key: $\mathrm{SK} \doteq \varphi$
- Using the precomputation, select an element $\tau \in B(r, 3)$ of maximal norm

Symmetric Cryptosystem

Enc(SK, t)

To encrypt a bit t, select $(a, b) \stackrel{\varsigma}{\leftarrow} \mathbf{A}_{\varphi}, \psi_{n}$, compute

$$
b^{\prime} \doteq b \tau^{t}\left(=\varphi(a) e \tau^{t}\right)
$$

and output the ciphertext $c \doteq\left(a, b^{\prime}\right)$.

Enc(SK, t)

To encrypt a bit t, select $(a, b) \stackrel{\varsigma}{\leftarrow} \mathbf{A}_{\varphi, \psi_{n}}$, compute

$$
b^{\prime} \doteq b \tau^{t}\left(=\varphi(a) e \tau^{t}\right)
$$

and output the ciphertext $c \doteq\left(a, b^{\prime}\right)$.
$\operatorname{Dec}\left(S K,\left(a, b^{\prime}\right)\right)$
Compute $e^{\prime}=\varphi(a)^{-1} \cdot b^{\prime}$ and output $t=0$ if and only if $\left\|e^{\prime}\right\| \leq r$.

Correctness

Sketch

For any group G, the norm in the Cayley metric is well-behaved with respect to the group product: for all $a, b \in G$,

$$
\mid\|a\|-\|b\|\|\leq\| a b\|\leq\| a\|+\| b \| .
$$

Combining this fact with the Lemma on the diameter, we see that as r grows, correctness is trivial.

Correctness

Sketch

For any group G, the norm in the Cayley metric is well-behaved with respect to the group product: for all $a, b \in G$,

$$
\mid\|a\|-\|b\|\|\leq\| a b\|\leq\| a\|+\| b \| .
$$

Combining this fact with the Lemma on the diameter, we see that as r grows, correctness is trivial.
(Note: For small r, say $r=4$, a more careful calculation is required.)

Security

Theorem

Under the (decisional) LWE assumption for $B(n, 3)$, the proposed cryptosystem is IND-CPA secure.

Security

Theorem

Under the (decisional) LWE assumption for $B(n, 3)$, the proposed cryptosystem is IND-CPA secure.

Proof Sketch

Given a distinguisher W that differentiates between $\mathbf{E}_{0}=\operatorname{Enc}(\mathrm{SK}, 0)$ of encryptions of 0 from $\mathbf{E}_{1}=\operatorname{Enc}(S K, 1)$ of encryptions of 1 , construct W^{\prime} to distinguish $\mathbf{A}_{\varphi, \Psi_{n}}$ from \mathbf{U} as follows. If given a distribution $\mathbf{R} \in\left\{\mathbf{A}_{\varphi, \psi_{n}}, \mathbf{U}\right\}$, create two distributions $\mathbf{R}_{0} \doteq \mathbf{R}$ and $\mathbf{R}_{1} \doteq \mathbf{R} \cdot(1, \tau)$ (i.e., \mathbf{R}_{1} takes a sample (a, b) from \mathbf{R} and outputs $(a, b \tau)$).
Main point: if $\mathbf{R}=\mathbf{U}$, then $\mathbf{R}_{0}=\mathbf{R}_{1}=\mathbf{R}$, and if $\mathbf{R}=\mathbf{A}_{\varphi, \Psi_{n}}$, then $\mathbf{R}_{0}=\mathbf{E}_{0}$ and $\mathbf{R}_{1}=\mathbf{E}_{1}$.

Work in Progress / Open Questions

- Complexity Reductions (worst case to average case, search to decision)

Public-key encryption
Better computational methods for norms in $B(n, 3)$

Work in Progress / Open Questions

- Complexity Reductions (worst case to average case, search to decision)
- Public-key encryption

Better computational methods for norms in $B(n, 3)$

Work in Progress / Open Questions

- Complexity Reductions (worst case to average case, search to decision)
- Public-key encryption
- Better computational methods for norms in $B(n, 3)$

Questions?

The techniques of [Reg05] allow parties without any secret information to sample $\mathbf{A}_{\varphi, \psi}$ (or something close) via subset sums. Doesn't seem to apply in the non-commutative setting:

Public-Key Encryption?

The techniques of [Reg05] allow parties without any secret information to sample $\mathbf{A}_{\varphi, \psi}$ (or something close) via subset sums. Doesn't seem to apply in the non-commutative setting:

Observations

Commutativity allows parties w/o private key to $$
\sum\left(\mathbf{s} \cdot \mathrm{a}_{i}+e_{i}\right)=\sum\left(\mathbf{s} \cdot \mathrm{a}_{i}\right)+\sum
$$ In the non-commutative case, $\prod 1\left(\varphi\left(a_{i}\right) e_{i}\right) \neq \prod \varphi\left(a_{i}\right) \prod e_{i}$ and hence small e_{i} is not sufficient for correctness.

The techniques of [Reg05] allow parties without any secret information to sample $\mathbf{A}_{\varphi, \psi}$ (or something close) via subset sums. Doesn't seem to apply in the non-commutative setting:

Observations

- Commutativity allows parties w/o private key to sample instances

$$
\sum\left(\mathbf{s} \cdot \mathbf{a}_{i}+e_{i}\right)=\sum\left(\mathbf{s} \cdot \mathbf{a}_{i}\right)+\sum e_{i}
$$

The techniques of [Reg05] allow parties without any secret information to sample $\mathbf{A}_{\varphi, \psi}$ (or something close) via subset sums. Doesn't seem to apply in the non-commutative setting:

Observations

- Commutativity allows parties w/o private key to sample instances

$$
\sum\left(\mathbf{s} \cdot \mathbf{a}_{i}+e_{i}\right)=\sum\left(\mathbf{s} \cdot \mathbf{a}_{i}\right)+\sum e_{i}
$$

- In the non-commutative case,

$$
\prod\left(\varphi\left(a_{i}\right) e_{i}\right) \neq \prod \varphi\left(a_{i}\right) \prod e_{i}
$$

and hence small e_{i} is not sufficient for correctness.

Public-Key Encryption?

Possible Remedies

Perhaps there is a smarter error distribution Ψ ?
Naïve approach of restricting the support of ψ to the center of the group is not promising

Public-Key Encryption?

Possible Remedies

- Perhaps there is a smarter error distribution Ψ ?

> Naïve approach of restricting the support of Ψ to the center of the group is not promising More aenerallv. the error term should not be contained in any proper normal subgroup

Public-Key Encryption?

Possible Remedies

- Perhaps there is a smarter error distribution Ψ ?
- Naïve approach of restricting the support of Ψ to the center of the group is not promising

Possible Remedies

- Perhaps there is a smarter error distribution Ψ ?
- Naïve approach of restricting the support of Ψ to the center of the group is not promising
- More generally, the error terms should not be contained in any proper normal subgroup

