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Motivation

Interesting mathematical problem on its own . . .
Tackling crypto challenges of post-quantum era [Sh’94]

Shor’s algorithm: Efficient quantum procedure to compute the
order of any element in a cyclic group
Hardness of order-finding at the heart of most popular public-key
cryptosystems (RSA, DH, ECDH)

∴ If quantum computing becomes practical, we’ll need alternative
crypto platforms

Quantum computing aside, diversifying assumptions still seems
prudent
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Prior Work in Non-
Commutative Cryptography

Challenging computational problems abound in group theory,
however...

Many hard problems are based on infinite groups
This makes probabilistic modeling difficult
Average-case hardness for many problems seems to be not
well-understood
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In this Work

Goal
Inspired by the success of LWE and lattice-based cryptography, we
seek a new source of viable intractability assumptions from learning
problems in group theory.
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Learning With Errors [Reg05]

Let s ∈ Fn
p. The picture is as follows:

Fn
p 3 a

Fp

s ·

?
3 b

≈ s · a

?
= s · a + e

LWE, Informally

Roughly, the Learning With Errors problem is to recover s by
sampling preimage-image pairs in the presence of some small “noise”
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Learning With Errors [Reg05]

More precisely, let
s ∈ Fn

p

Ψ be a discrete gaussian distribution over Fp centered at 0
Define a distribution As,Ψ on Fn

p × Fp whose samples are pairs
(a,b) where a $← Fn

p,b = s · a + e,e $← Ψ

Definition
The Learning With Errors problem is to recover s by sampling the
distribution As,Ψ.
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Hardness of LWE

For noise parameters >
√

n no sub-exponential algorithms are
known

In fact, for this case reductions from worst-case lattice problems
have been shown ([Reg05,Pei09])

Very recently, [AuGe11] showed a sub-exponential algorithm for
noise parameters <

√
n
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Learning Homomorphisms
With Errors

Observation
LWE’s formulation was mainly algebraic:

Expressed in terms of homomorphisms
Complexity reductions (worst case to average case, search to
decision) also algebraic

This motivates the following

Question
Can similar learning problems yield viable intractability assumptions
based on group theory?
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LWE Over Groups

Vector Spaces Groups

Fn
p 3 a Gn 3 a

Fp

s ·

?
3 b

≈ s · a

?
Pn

ϕ

?
3 b

≈ ϕ(a)

?

‖ ‖

s · a + e ϕ(a)e
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Learning Homomorphisms
from Images with Errors

Setup

Let Gn and Pn be groups
Set Γn, Ψn, distributions on Gn, Pn, resp.
Let Φn be a distribution on the set of all homomorphisms,
hom(Gn,Pn)

The Distribution Aϕ,Ψn

For ϕ $← Φn, define the analogous distribution Aϕ,Ψn on Gn × Pn
whose samples are (a,b) where

a $← Γn;
e $← Ψn;
b = ϕ(a)e
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Learning Homomorphisms
from Images with Errors

Search Problem
Given Aϕ,Ψn , recover ϕ.

Decision Problem
Given samples from an unknown distribution
R ∈ {Aϕ,Ψn ,U(Gn × Pn)}, determine R.

Hardness Assumption (Decision Version)

Aϕ,Ψn ≈
PPT

U(Gn × Pn)
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Learning Homomorphisms
from Images with Errors

Note that this is a proper generalization of the standard LWE
problem, where

Gn := (Fn
p,+) and Γn := U(Fn

p)

Pn := (Fp,+) and Ψn := discrete gaussian
ϕ := s · and Φn := U(hom(Fn

p,Fp))
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Intuition for Hardness of LWE

Part of what makes LWE work is that Fn
p is a free module

Free Objects

Any mapping of generators extends to a unique homomorphism
Hence, space of keys is exponential in # generators
Irrespective of the error distribution, ϕ(a) + e always “looks”
plausible as an image of a

So, what about free groups? Not such a good idea:
Free groups are infinite—what to do about probabilistic
modeling?
Multiplication is transparent

Errors might be easy to separate
Subset sum is easy (no hope of a public key scheme using these
techniques)
Length-based attacks? [MyUs07,HuTa00]
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Intuition for Hardness of LWE

Free objects seem like the right approach, but free groups seem
rather unsuitable (infinite order, etc.)
However, in restricted classes of groups, one can find finite free
objects
Fn

p is actually an example, but we’ll look for something more
general / less constrained
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The Search for Instantiations

Free groups

Too free?

Other varieties

We’ll look here

Fn
p

Too restricted (already studied)
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Varieties of Groups

Variety of Groups (Informal)

Roughly speaking, a variety is the class of all groups whose
elements satisfy a certain set of equations.

Example

Abelian groups can be seen as the variety corresponding to the
equation

XY = YX .
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Varieties of Groups

Via the usual “abstract nonsense”, it is easy to see that varieties of
groups contain free objects—just take a free group and factor out the
normal subgroup resulting from all the “equations”...

S
i - UF (S) F (S)

p - F (S)/E

UG

Uf ′

?

f
-

G

f ′

?�
f′
′

Sets Groups
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Varieties of Groups

Question
Which varieties of groups contain finite free objects???

If the equations are say,

[X ,Y ] =1
X p =1

then the free objects are exactly Zn
p, which are the objects of study in

LWE (if p is prime).

Question
What happens if the [X ,Y ] = 1 equation is removed?a In general, the
answer is not so simple...

aNote: [X ,Y ] = X−1Y−1XY .
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Burnside Groups

Notation
For the variety of groups defined by the equation X m = 1, denote the
free group on n generators in this variety by B(n,m).

Determining the finiteness of B(n,m) is known as the Bounded
Burnside Problem.
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Bounded Burnside Problem

For n > 1 and for sufficiently large m, it is known that |B(n,m)| =∞,
yet for small m, our understanding is far from complete:

B(n,2) Finite (also abelian)
B(n,3) Finite
B(n,4) Finite
B(n,5) Unknown
B(n,6) Finite
B(n,7) Unknown

...
...

Our Approach

We will use B(n,3) as a starting point for our investigation: it is the
simplest case yielding finiteness + non-abelian.
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Normal Form for B(n,3)

The structure of B(n,3) is fairly well-understood. In particular we
have the following

Fact
Every element of B(n,3) has a unique representation as

xα1
1 · · · x

αi
i · · · x

αn
n [x1, x2]β1,2 · · · [xi , xj ]

βi,j · · · [xn−1, xn]βn−1,n [x1, x2, x3]γ1,2,3

· · · [xi , xj , xk ]γi,j,k · · · [xn−2, xn−1, xn]γn−2,n−1,n

where the {xi} are the generators, all αi , βi,j , γi,j,k ∈ {0,1,2} for all
1 ≤ i < j < k ≤ n, and [xi , xj , xk ] = [[xi , xj ], xk ].

Corollary

Given the above normal form, we see that the order of B(n,3) is

3n+(n
2)+(n

3)
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Putting the Pieces Together...

Recall the setup:

Gn
ϕ

$← Φn - Pn

a $← Γn - ϕ(a)e,e $← Ψn

Instantiating the Abstract Learning Problem

Gn

:= B(n,3)

Pn

:= B(r ,3), r < n

Φn

:= U(hom(B(n,3),B(r ,3))) Easy to sample: B(n,3) is free

Γn

:= U(B(n,3)) Easy to sample: cf. normal form

Ψn

:=???

The error distribution requires more care...
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Connection with LWE/F3

For certain error distributions, the decision problem over B(n,3)
would reduce to LWE with p = 3. Consider the abelianization:

B(n,3)
ϕ - B(r ,3)

Fn
3

G 7→ G/[G,G]

?

ϕ′
- Fr

3

?

This allows one to transform Aϕ,Ψ over B(n,3)× B(r ,3) to Aϕ′,Ψ′ over
Fn

3×Fr
3 for some induced error distribution Ψ′. Hence the B(n,3) LWE

is no harder than the vector space LWE with the induced error Ψ′.
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Error Distribution

In light of the preceding, we’ll select an error distribution so that the
abelianization construction takes Aϕ,Ψ to the uniform distribution
U(Fn

3 × Fr
3).

Ψn

Let v $← Zr
3 and let σ $← Sr be a permutation. A sample from Ψn is an

element

e =
r∏

i=1

xvi
σ(i)

where the {xi} are the generators of B(r ,3) and the {vi} are the
components of v.

Moreover, notice that the normal closure of Support(Ψ) is in fact the
entire group B(r ,3). Intuition: this leaves no apparent way to “factor
out” the noise.
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Outline

1 Motivation & Background
Why Group-Theoretic Cryptography?
Learning With Errors (LWE)

2 Generalized Learning Problems
An Abstract Learning Problem
The Search for Instantiations: B(n,3)

3 Symmetric-Key Cryptosystem
High-Level Approach
Construction
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High-Level Approach

Goal: construct a simple Regev-like cryptosystem which
encrypts bits
The secret key will be a homomorphism ϕ

Encryptions of 0 will be noisy images of ϕ (i.e., samples from
Aϕ,Ψ)
Encryptions of 1 will be “far” from a noisy image of ϕ
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Additional Considerations
for B(n,3)

For this approach to make sense, we’ll need a few more ingredients:

Required Ingredients

Norm / distance metric on B(r ,3)

“Large” diameter (must be able to distinguish noisy images from
noise)
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Cayley Graph

In response to our needs for a metric, we turn to the Cayley Graph.

Idea
Treat a group as a
geometric object
Vertexes are elements;
edges are generators (and
their inverses)
The norm (denoted ‖g‖) is
just the graph distance
from the identity element

Figure: Cayley graph of F ({a, b}).
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Diameter of B(n,3)

Just given the order of B(n,3) alone, we can compute a simple lower
bound on the diameter.

Lemma (Diameter of B(n,3))

∃τn ∈ B(n,3) such that ‖τn‖ ∈ Ω( n3

log n ).
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Diameter of B(n,3)

Proof.

Let dn = maxx∈B(n,3)(‖x‖), and recall that |B(n,3)| = 3n+(n
2)+(n

3).
Since all elements of the group can be written with at most dn
symbols taken from x±1

1 , . . . , x±1
n :

(2n)dn ≥ 3n+(n
2)+(n

3)

dn log3(2n) ≥ n +

(
n
2

)
+

(
n
3

)
dn ≥

⌈
n +

(n
2

)
+
(n

3

)
log3 2n

⌉
(since dn ∈ Z)
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Diameter of B(n,3)

Good so far, but one issue remains: for a given x ∈ G, how does one
compute the norm in the Cayley graph?

Computing Cayley Graph Norms

In some cases, this is known to be NP-hard
It wasn’t until 2010 that the diameter of the Rubik’s cube group
was computed, and this took 35 CPU-years...
Efficient methods may exist for B(r ,3), but we can get away with
small values of r , and just use breadth-first search
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Symmetric Cryptosystem

We can now proceed with a formal description of the cryptosystem.

Precomputation

Run breadth-first search on the Cayley graph of B(r ,3), recording the
norm of each element.

Key-Gen(n)

Run setup for the group LWE problem to obtain
ϕ : B(n,3) - B(r ,3)

Shared key: SK .
= ϕ

Using the precomputation, select an element τ ∈ B(r ,3) of
maximal norm
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Symmetric Cryptosystem

Enc(SK, t)

To encrypt a bit t , select (a,b)
$← Aϕ,Ψn , compute

b′ .= bτ t (= ϕ(a)eτ t )

and output the ciphertext c .
= (a,b′).

Dec(SK, (a,b′))

Compute e′ = ϕ(a)−1 · b′ and output t = 0 if and only if ‖e′‖ ≤ r .
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Correctness

Sketch
For any group G, the norm in the Cayley metric is well-behaved with
respect to the group product: for all a,b ∈ G,

|‖a‖ − ‖b‖| ≤ ‖ab‖ ≤ ‖a‖+ ‖b‖ .

Combining this fact with the Lemma on the diameter, we see that as r
grows, correctness is trivial.

(Note: For small r , say r = 4, a more careful calculation is required.)
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Security

Theorem
Under the (decisional) LWE assumption for B(n,3), the proposed
cryptosystem is IND-CPA secure.

Proof Sketch
Given a distinguisher W that differentiates between E0 = Enc(SK,0)
of encryptions of 0 from E1 = Enc(SK,1) of encryptions of 1,
construct W ′ to distinguish Aϕ,Ψn from U as follows. If given a
distribution R ∈ {Aϕ,Ψn ,U}, create two distributions R0

.
= R and

R1
.

= R · (1, τ) (i.e., R1 takes a sample (a,b) from R and outputs
(a,b τ)).
Main point: if R = U, then R0 = R1 = R, and if R = Aϕ,Ψn , then
R0 = E0 and R1 = E1.
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Work in Progress /
Open Questions

Complexity Reductions (worst case to average case, search to
decision)
Public-key encryption
Better computational methods for norms in B(n,3)
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Fin.

Questions?
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Public-Key Encryption?

The techniques of [Reg05] allow parties without any secret information
to sample Aϕ,Ψ (or something close) via subset sums. Doesn’t seem
to apply in the non-commutative setting:

Observations
Commutativity allows parties w/o private key to sample instances∑

(s · ai + ei ) =
∑

(s · ai ) +
∑

ei

In the non-commutative case,∏
(ϕ(ai )ei ) 6=

∏
ϕ(ai )

∏
ei

and hence small ei is not sufficient for correctness.
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Public-Key Encryption?

Possible Remedies
Perhaps there is a smarter error distribution Ψ?
Naı̈ve approach of restricting the support of Ψ to the center of
the group is not promising
More generally, the error terms should not be contained in any
proper normal subgroup
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