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Given (A,b), find small s' such that  

As'=b mod q 
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Why Construct Crypto Primitives 

Based on Knapsacks? 

 Substantially different from number 

theoretic constructions 

 Seem to resist quantum attacks 

 Possibly faster 

 Very interesting security guarantee 

 
Can we have the same properties and practicality? 
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as1 + s2 = b 
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Digital Signatures 

 Arguably the most important application of public 

key cryptography 

 Signature lengths for ~ 80 bits of security  

 Lattices: ~ 60,000 bits 

 RSA: ~ 1000 bits 

 If we want lattices to be a viable alternative, we 

must make signatures smaller 

 In my opinion, this, and constructing 'practical' 

fully-homomorphic encryption are the two most 

important problems in lattice-based crypto  
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In this Talk 

 A new way to construct lattice-based 

signature schemes 

 For ~ 80 bits of security: 

 public key ~ 12,000 bits 

 secret key ~ 1700 bits 

 signature size ~ 9000 bits 

 much faster than RSA/EC signatures 
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Two Properties 

Sign 
M Verify 

  S 

YES 

1. Correctness 

2. Security 

Unless M has been signed, cannot find an S such that   

Verify 
YES 

M 

S 

  sk pk 

pk 
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The Ring R 

 R = Zq[x]/(xn + 1)  

n is a power of 2 

q is a prime (q = 1 mod 2n) 

Elements in R are polynomials of degree < n 

Coefficients in the range [-(q-1)/2, (q-1)/2] 

 Rk = { polynomials in R with coefficients in   

   the range [-k,k] } 
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SCK( k ): 

 pick random a in R 

 pick random s1, s2 in Rk 

 output (a, b=as1 + s2 ) 

Given (a,b), find s1,s2 in Rk such that as1+s2 = b 

(note: there could be more than one solution) 
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The Compact Knapsack Problem 
(The Decision Version) 

DCK( k ): 

 pick random a,u in R 

 pick random c in {0,1} 

 pick random s1, s2 in Rk  

 output (a, b=as1 + s2 + cu) 

Given (a,b), find c (be correct with probability > 1/2) 

 Note: if k is too big, the problem is vacuously 

hard 
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Given `small' u1, u2 such that au1+u2 = 0, one 

can solve the DCK problem. 

Given (a,b), compute u1b   

    - If b=as1+s2 for `small' s1,s2, then 

            u1b = u1as1 + u1s2 = -u2s1 + u1s2  is also `small' 

      - If b is random, then the coefficients of 

            u1b  are also random (thus probably `large') 
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Thank You! 

 


