
Efficient Cryptography

from

Generalized Compact Knapsacks

Vadim Lyubashevsky

INRIA & ENS Paris

The Knapsack Problem

The Knapsack Problem

A

A is random in Zq
n x m

The Knapsack Problem

A

s
A is random in Zq

n x m

s is a random `small' vector in Zq
m

The Knapsack Problem

A

s

b =

A is random in Zq
n x m

s is a random `small' vector in Zq
m

b=As mod q

The Knapsack Problem

A

s

b =

A is random in Zq
n x m

s is a random `small' vector in Zq
m

b=As mod q

Given (A,b), find small s' such that

As'=b mod q

The Knapsack Problem

4

7

2

1

11

7

9

3

6

1

12

14

8

2

5

9

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

1

0

1

0

0

1

12

10

8

10

 =

A s b

mod 17

Hardness of the Knapsack Problem

4
7
2
1

11
7
9
3

6
1

12
14

8
2
5
9

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
1
1
0

1
0
0
1

12
10
8
10

=

A s b

mod q

hardness

||s||

0 ~ q√n ~ q/√n ~ n ~ √q

Hardness of the Knapsack Problem

4
7
2
1

11
7
9
3

6
1

12
14

8
2
5
9

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
1
1
0

1
0
0
1

12
10
8
10

=

A s b

mod q

hardness

||s||

0 ~ q√n ~ q/√n ~ n ~ √q

Reduction from

worst-case

lattice problems

A '96, … , MR '04

Hardness of the Knapsack Problem

4
7
2
1

11
7
9
3

6
1

12
14

8
2
5
9

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
1
1
0

1
0
0
1

12
10
8
10

=

A s b

mod q

hardness

||s||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

lattice problems

Reduction from

worst-case

lattice problems

R '05 A '96, … , MR '04

Cryptographic Primitives

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

lattice problems

Reduction from

worst-case

lattice problems

A '96, … , MR '04 R '05

Cryptographic Primitives

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

lattice problems

Reduction from

worst-case

lattice problems

A '96, … , MR '04 R '05

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Cryptographic Primitives

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

lattice problems

Reduction from

worst-case

lattice problems

A '96, … , MR '04 R '05

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Public-Key Encryption

Identity-Based Encryption

…

 (cryptomania)

Practical Cryptographic Primitives?

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

lattice problems

Reduction from

worst-case

lattice problems

A '96, … , MR '04 R '05

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Public-Key Encryption

Identity-Based Encryption

…

 (cryptomania)

Practical Cryptographic Primitives?

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

lattice problems

Reduction from

worst-case

lattice problems

A '96, … , MR '04 R '05

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Public-Key Encryption

Identity-Based Encryption

…

 (cryptomania)

NO!

Why Construct Crypto Primitives

Based on Knapsacks?

Why Construct Crypto Primitives

Based on Knapsacks?

 Substantially different from number

theoretic constructions

Why Construct Crypto Primitives

Based on Knapsacks?

 Substantially different from number

theoretic constructions

 Seem to resist quantum attacks

Why Construct Crypto Primitives

Based on Knapsacks?

 Substantially different from number

theoretic constructions

 Seem to resist quantum attacks

 Possibly faster

Why Construct Crypto Primitives

Based on Knapsacks?

 Substantially different from number

theoretic constructions

 Seem to resist quantum attacks

 Possibly faster

 Very interesting security guarantee

Why Construct Crypto Primitives

Based on Knapsacks?

 Substantially different from number

theoretic constructions

 Seem to resist quantum attacks

 Possibly faster

 Very interesting security guarantee

Can we have the same properties and practicality?

The Compact Knapsack Problem

4

7

2

1

-1

4

7

2

-2

-1

4

7

-7

-2

-1

4

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

1

0

1

0

0

1

12

10

8

10

 =

A s b

mod q

The Compact Knapsack Problem

4

7

2

1

-1

4

7

2

-2

-1

4

7

-7

-2

-1

4

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

1

0

1

0

0

1

12

10

8

10

 =

A s b

mod q

Equivalent to polynomial multiplication in the ring R = Zq[x]/(xn+1)

as1 + s2 = b

Hardness of the

Compact Knapsack Problem

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

as1 + s2 = b mod q

Hardness of the

Compact Knapsack Problem

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Reduction from

worst-case

ideal lattice problems

as1 + s2 = b mod q

M '02, PR '08, LM '08

Hardness of the

Compact Knapsack Problem

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

Reduction from

worst-case

ideal lattice problems

as1 + s2 = b mod q

M '02, PR '08, LM '08 SSTX '09, LPR '10

Cryptographic Primitives

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

Reduction from

worst-case

ideal lattice problems

M '02, PR '08, LM '08 SSTX '09, LPR '10

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Public-Key Encryption

Identity-Based Encryption

Homomorphic Encryption

 …

 (cryptomania)

Practical Cryptographic Primitives?

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

Reduction from

worst-case

ideal lattice problems

M '02, PR '08, LM '08 SSTX '09, LPR '10

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Public-Key Encryption

Identity-Based Encryption

Homomorphic Encryption

 …

 (cryptomania)

Practical Cryptographic Primitives?

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

Reduction from

worst-case

ideal lattice problems

M '02, PR '08, LM '08 SSTX '09, LPR '10

One-way functions

Collision resistant hash functions

Identification schemes

Digital signatures

(minicrypt)

Public-Key Encryption

Identity-Based Encryption

Homomorphic Encryption

 …

 (cryptomania)

Digital Signatures

Digital Signatures

 Arguably the most important application of public

key cryptography

Digital Signatures

 Arguably the most important application of public

key cryptography

 Signature lengths for ~ 80 bits of security

 Lattices: ~ 60,000 bits

 RSA: ~ 1000 bits

Digital Signatures

 Arguably the most important application of public

key cryptography

 Signature lengths for ~ 80 bits of security

 Lattices: ~ 60,000 bits

 RSA: ~ 1000 bits

 If we want lattices to be a viable alternative, we

must make signatures smaller

Digital Signatures

 Arguably the most important application of public

key cryptography

 Signature lengths for ~ 80 bits of security

 Lattices: ~ 60,000 bits

 RSA: ~ 1000 bits

 If we want lattices to be a viable alternative, we

must make signatures smaller

 In my opinion, this, and constructing 'practical'

fully-homomorphic encryption are the two most

important problems in lattice-based crypto

In this Talk

In this Talk

 A new way to construct lattice-based

signature schemes

In this Talk

 A new way to construct lattice-based

signature schemes

 For ~ 80 bits of security:

 public key ~ 12,000 bits

 secret key ~ 1700 bits

 signature size ~ 9000 bits

 much faster than RSA/EC signatures

Digital Signature Schemes

Consist of three algorithms: Key-Generate, Sign, and Verify

Digital Signature Schemes

Consist of three algorithms: Key-Generate, Sign, and Verify

Key-Gen (sk,pk) 1n

Digital Signature Schemes

Sign
M

S

Consist of three algorithms: Key-Generate, Sign, and Verify

 sk

Key-Gen (sk,pk) 1n

Digital Signature Schemes

Sign

Verify

M
S

M

 S YES/NO

Consist of three algorithms: Key-Generate, Sign, and Verify

 pk

 sk

Key-Gen (sk,pk) 1n

Two Properties

Two Properties

Sign
M Verify YES

1. Correctness

S

 sk pk

Two Properties

Sign
M Verify

 S

YES

1. Correctness

2. Security

Unless M has been signed, cannot find an S such that

Verify
YES

M

S

 sk pk

pk

Super High-Level Idea Behind the

New Construction

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

Reduction from

worst-case

ideal lattice problems

Is it better to have a scheme based on this problem or this problem?

(assuming all other parameters are equal)

hardness

||(s1,s2)||

0 ~ q√n

Super High-Level Idea Behind the

New Construction

hardness

||(s1,s2)||

0 ~ q√n

hardness of finding

the secret key

Previous constructions

Super High-Level Idea Behind the

New Construction

hardness

||(s1,s2)||

0 ~ q√n

hardness of finding

the secret key hardness of forging

signatures

a gap of ~ n

Previous constructions

Super High-Level Idea Behind the

New Construction

hardness

||(s1,s2)||

0 ~ q√n

hardness of finding

the secret key hardness of forging

signatures

a gap of ~ n

a gap of ~ n

Previous constructions

This construction

Super High-Level Idea Behind the

New Construction

hardness

||(s1,s2)||

0 ~ q√n

hardness of finding

the secret key hardness of forging

signatures

This construction

Super High-Level Idea Behind the

New Construction

A reduction

hardness

||(s1,s2)||

0 ~ q√n

hardness of finding

the secret key hardness of forging

signatures

This construction

Super High-Level Idea Behind the

New Construction

The Ring R

The Ring R

 R = Zq[x]/(xn + 1)

The Ring R

 R = Zq[x]/(xn + 1)

n is a power of 2

q is a prime (q = 1 mod 2n)

The Ring R

 R = Zq[x]/(xn + 1)

n is a power of 2

q is a prime (q = 1 mod 2n)

Elements in R are polynomials of degree < n

Coefficients in the range [-(q-1)/2, (q-1)/2]

The Ring R

 R = Zq[x]/(xn + 1)

n is a power of 2

q is a prime (q = 1 mod 2n)

Elements in R are polynomials of degree < n

Coefficients in the range [-(q-1)/2, (q-1)/2]

 Rk = { polynomials in R with coefficients in

 the range [-k,k] }

The Compact Knapsack Problem
(The Search Version)

The Compact Knapsack Problem
(The Search Version)

SCK(k):

 pick random a in R

 pick random s1, s2 in Rk

 output (a, b=as1 + s2)

The Compact Knapsack Problem
(The Search Version)

SCK(k):

 pick random a in R

 pick random s1, s2 in Rk

 output (a, b=as1 + s2)

Given (a,b), find s1,s2 in Rk such that as1+s2 = b

(note: there could be more than one solution)

The Compact Knapsack Problem
(The Decision Version)

The Compact Knapsack Problem
(The Decision Version)

DCK(k):

 pick random a,u in R

 pick random c in {0,1}

 pick random s1, s2 in Rk

 output (a, b=as1 + s2 + cu)

The Compact Knapsack Problem
(The Decision Version)

DCK(k):

 pick random a,u in R

 pick random c in {0,1}

 pick random s1, s2 in Rk

 output (a, b=as1 + s2 + cu)

Given (a,b), find c (be correct with probability > 1/2)

 Note: if k is too big, the problem is vacuously

hard

Hardness of the

Compact Knapsack Problem

(Decision Version)

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

LPR '10

Vacuously Hard

For Added Efficiency ...

hardness

||(s1,s2)||

0 ~ q√n ~ q/√n ~ n ~ √q

Quantum reduction

from worst-case

ideal lattice problems

LPR '10

Vacuously Hard

The Signature Scheme

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

Range of H: sparse polynomials in R1

(at most 32 non-zero elements)

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

Range of H: sparse polynomials in R1

(at most 32 non-zero elements)

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

Range of H: sparse polynomials in R1

(at most 32 non-zero elements)

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

Range of H: sparse polynomials in R1

(at most 32 non-zero elements)

Happens with probability ~ (1-32/k)2n

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

Range of H: sparse polynomials in R1

(at most 32 non-zero elements)

Happens with probability ~ (1-32/k)2n

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

signature size ~ nlog(2k)+nlog(2k)+160

The Signature Scheme
(improved version)

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

can “compress” z2

H only acts on the

“high order bits”

The Signature Scheme
(improved version)

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

can “compress” z2

H only acts on the

“high order bits”

signature size ~ nlog(2k)+2n+160

The Signature Scheme

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

Security Proof
(High Level Idea)

Security Proof
(High Level Idea)

Given random a in R

Security Proof
(High Level Idea)

Given random a in R

real signature

scheme

 scheme used in

the security

reduction

Security Proof
(High Level Idea)

Given random a in R
Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof
(High Level Idea)

Forger

Given random a in R
Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof
(High Level Idea)

Forger

Given random a in R

Knowledge

Extractor

`small' u1,u2

such that

au1+u2 = 0

Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof
(High Level Idea)

Forger

Given random a in R

Knowledge

Extractor

`small' u1,u2

such that

au1+u2 = 0

for any b in R,

we can figure out whether

there exist s1,s2 in R1 such

that as1+s2 = b

(i.e. solve the DCK problem)

Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof
(High Level Idea)

Forger

Given random a in R

Knowledge

Extractor

`small' u1,u2

such that

au1+u2 = 0

for any b in R,

we can figure out whether

there exist s1,s2 in R1 such

that as1+s2 = b

(i.e. solve the DCK problem)

Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

Security Proof

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. pick random y1,y2 in Rk (k ~ n)

2. c = H(ay1+y2 , m)

3. z1=cs1+y1 , z2=cs2+y2

4. if z1,z2 are not in Rk-32 , go back to step 1

5. output (z1, z2, c)

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

Pick random c in Range(H)

Pick random z1,z2 in Rk-32

Program H(az1+z2 – bc, m) = c

output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

Security Proof

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

sk: s1, s2 in Rk' pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

sk: s1, s2 in R1 pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

Security Proof

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

Security Proof
(High Level Idea)

Forger

Given random a in R

Knowledge

Extractor

`small' u1,u2

such that

au1+u2 = 0

for any b in R,

we can figure out whether

there exist s1,s2 in R1 such

that as1+s2 = b

(i.e. solve the DCK problem)

Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof

sk: s1, s2 in Rk' pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

Security Proof

sk: s1, s2 in Rk' pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

We can obtain from a forger

two signatures of m

 (z1,z2,c) and (z'1,z'2,c')

such that

az1+z2 – bc = az'1+z'2 – bc'

Security Proof

sk: s1, s2 in Rk' pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

We can obtain from a forger

two signatures of m

 (z1,z2,c) and (z'1,z'2,c')

such that

az1+z2 – bc = az'1+z'2 – bc'

Plugging in b=as1+s2 ...

a(z1-cs1-z'1+c's1) + (z2-cs2-z'2+c's2) = 0

u1 u2

Security Proof

sk: s1, s2 in Rk' pk: a in R, b=as1+s2

sign(m)

1. Pick random c in Range(H)

2. Pick random z1,z2 in Rk-32

3. Program H(az1+z2 – bc, m) = c

4. output (z1, z2, c)

verify(z1,z2,c)

check that z1,z2 are in Rk-32 and c=H(az1 + z2 – bc, m)

We can obtain from a forger

two signatures of m

 (z1,z2,c) and (z'1,z'2,c')

such that

az1+z2 – bc = az'1+z'2 – bc'

Plugging in b=as1+s2 ...

a(z1-cs1-z'1+c's1) + (z2-cs2-z'2+c's2) = 0

u1 u2

(Because s1,s2 are not unique, u1 and u2 are not both 0)

Security Proof
(High Level Idea)

Forger

Given random a in R

Knowledge

Extractor

`small' u1,u2

such that

au1+u2 = 0

for any b in R,

we can figure out whether

there exist s1,s2 in R1 such

that as1+s2 = b

(i.e. solve the DCK problem)

Indistinguishable based

on the DCK problem

real signature

scheme

 scheme used in

the security

reduction

Security Proof

Security Proof

Given `small' u1, u2 such that au1+u2 = 0, one

can solve the DCK problem.

Security Proof

Given `small' u1, u2 such that au1+u2 = 0, one

can solve the DCK problem.

Given (a,b), compute u1b

Security Proof

Given `small' u1, u2 such that au1+u2 = 0, one

can solve the DCK problem.

Given (a,b), compute u1b

 - If b=as1+s2 for `small' s1,s2, then

 u1b = u1as1 + u1s2 = -u2s1 + u1s2 is also `small'

Security Proof

Given `small' u1, u2 such that au1+u2 = 0, one

can solve the DCK problem.

Given (a,b), compute u1b

 - If b=as1+s2 for `small' s1,s2, then

 u1b = u1as1 + u1s2 = -u2s1 + u1s2 is also `small'

 - If b is random, then the coefficients of

 u1b are also random (thus probably `large')

Open Problems

Open Problems

 More efficient signatures?

Open Problems

 More efficient signatures?

 Is the decision assumption necessary?

Open Problems

 More efficient signatures?

 Is the decision assumption necessary?

 Can we construct other efficient lattice-

based primitives using this idea?

Open Problems

 More efficient signatures?

 Is the decision assumption necessary?

 Can we construct other efficient lattice-

based primitives using this idea?

Thank You!

