Efficient Cryptography from

Generalized Compact Knapsacks

Vadim Lyubashevsky
INRIA \& ENS Paris

The Knapsack Problem

The Knapsack Problem

A is random in $Z_{q}{ }^{n \times m}$

The Knapsack Problem

A is random in $Z_{q}{ }^{n \times m}$ s is a random `small' vector in $Z_{q}{ }^{m}$

The Knapsack Problem

A is random in $Z_{q}{ }^{n \times m}$ s is a random `small' vector in $Z_{q}{ }^{m}$ $b=A s \bmod q$

The Knapsack Problem

A is random in $Z_{q}{ }^{n \times m}$
s is a random 'small' vector in $Z_{q}{ }^{m}$ $b=A s \bmod q$

Given (A, b), find small s' such that $A s^{\prime}=b \bmod q$

The Knapsack Problem

Hardness of the Knapsack Problem

$\| s| |$

Hardness of the Knapsack Problem

$||s||$

Hardness of the Knapsack Problem

$\bmod q$

$\| s| |$

Cryptographic Primitives

$\left\|\left(s_{1}, s_{2}\right)\right\|$

Cryptographic Primitives

Cryptographic Primitives

Practical Cryptographic Primitives?

Practical Cryptographic Primitives?

Why Construct Crypto Primitives Based on Knapsacks?

Why Construct Crypto Primitives Based on Knapsacks?

- Substantially different from number theoretic constructions

Why Construct Crypto Primitives Based on Knapsacks?

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks

Why Construct Crypto Primitives Based on Knapsacks?

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks
- Possibly faster

Why Construct Crypto Primitives Based on Knapsacks?

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks
- Possibly faster
- Very interesting security guarantee

Why Construct Crypto Primitives Based on Knapsacks?

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks
- Possibly faster
- Very interesting security guarantee

Can we have the same properties and practicality?

The Compact Knapsack Problem

The Compact Knapsack Problem

Equivalent to polynomial multiplication in the ring $R=Z_{q}[x] /\left(x^{n}+1\right)$

$$
a s_{1}+s_{2}=b
$$

Hardness of the

Compact Knapsack Problem

$$
a s_{1}+s_{2}=b \bmod q
$$

Hardness of the

Compact Knapsack Problem

$$
a s_{1}+s_{2}=b \bmod q
$$

$\left\|\left(s_{1}, s_{2}\right)\right\|$

Hardness of the

Compact Knapsack Problem

$$
a s_{1}+s_{2}=b \bmod q
$$

Cryptographic Primitives

Practical Cryptographic Primitives?

Practical Cryptographic Primitives?

Digital Signatures

Digital Signatures

- Arguably the most important application of public key cryptography

Digital Signatures

- Arguably the most important application of public key cryptography
- Signature lengths for ~ 80 bits of security

Lattices: ~60,000 bits

- RSA: ~ 1000 bits

Digital Signatures

- Arguably the most important application of public key cryptography
- Signature lengths for ~ 80 bits of security

Lattices: ~ 60,000 bits

- RSA: ~ 1000 bits
- If we want lattices to be a viable alternative, we must make signatures smaller

Digital Signatures

- Arguably the most important application of public key cryptography
- Signature lengths for ~ 80 bits of security
- Lattices: ~ 60,000 bits
- RSA: ~ 1000 bits
- If we want lattices to be a viable alternative, we must make signatures smaller

In my opinion, this, and constructing 'practical' fully-homomorphic encryption are the two most important problems in lattice-based crypto

In this Talk

In this Talk

- A new way to construct lattice-based signature schemes

In this Talk

- A new way to construct lattice-based signature schemes
- For ~ 80 bits of security:
- public key $\sim 12,000$ bits
- secret key ~ 1700 bits
- signature size ~ 9000 bits
- much faster than RSA/EC signatures

Digital Signature Schemes

Consist of three algorithms: Key-Generate, Sign, and Verify

Digital Signature Schemes

Consist of three algorithms: Key-Generate, Sign, and Verify

Digital Signature Schemes

Consist of three algorithms: Key-Generate, Sign, and Verify

Digital Signature Schemes

Consist of three algorithms: Key-Generate, Sign, and Verify

Two Properties

Two Properties

1. Correctness

Two Properties

1. Correctness

2. Security

Unless M has been signed, cannot find an S such that

Super High-Level Idea Behind the New Construction

Is it better to have a scheme based on this problem or this problem?

$\left\|\left(s_{1}, s_{2}\right)\right\|$

Super High-Level Idea Behind the

 New Construction

Super High-Level Idea Behind the New Construction

\bigcirc Previous constructions

Super High-Level Idea Behind the New Construction

\bigcirc Previous constructions

Super High-Level Idea Behind the New Construction

\bigcirc Previous constructions

- This construction

Super High-Level Idea Behind the New Construction

- This construction

Super High-Level Idea Behind the New Construction

- This construction

The Ring R

The Ring R

- $R=Z_{q}[x] /\left(x^{n}+1\right)$

The Ring R

$R=Z_{q}[x] /\left(x^{n}+1\right)$
n is a power of 2
q is a prime $(q=1 \bmod 2 n)$

The Ring R

- $R=Z_{q}[x] /\left(x^{n}+1\right)$
n is a power of 2
q is a prime $(q=1 \bmod 2 n)$
Elements in R are polynomials of degree $<n$ Coefficients in the range $[-(q-1) / 2,(q-1) / 2]$

The Ring R

- $R=Z_{q}[x] /\left(x^{n}+1\right)$ n is a power of 2 q is a prime $(q=1 \bmod 2 n)$
Elements in R are polynomials of degree < n Coefficients in the range $[-(q-1) / 2,(q-1) / 2]$
- $R_{k}=\{$ polynomials in R with coefficients in the range $[-k, k]\}$

The Compact Knapsack Problem (The Search Version)

The Compact Knapsack Problem (The Search Version)

SCK(k):

- pick random a in R
- pick random s_{1}, s_{2} in R_{k}
- output ($\mathrm{a}, \mathrm{b}=\mathrm{as} \mathrm{S}_{1}+\mathrm{s}_{2}$)

The Compact Knapsack Problem (The Search Version)

SCK (k):

- pick random a in R
- pick random s_{1}, s_{2} in R_{k}
- output ($a, b=a s_{1}+s_{2}$)

Given (a, b), find s_{1}, s_{2} in R_{k} such that $a s_{1}+s_{2}=b$
(note: there could be more than one solution)

The Compact Knapsack Problem (The Decision Version)

The Compact Knapsack Problem (The Decision Version)

DCK (k):

- pick random a, u in R
- pick random cin $\{0,1\}$
- pick random s_{1}, s_{2} in R_{k}
- output ($a, b=a s_{1}+s_{2}+c u$)

The Compact Knapsack Problem (The Decision Version)

DCK(k):

- pick random a, u in R
- pick random cin $\{0,1\}$
- pick random s_{1}, s_{2} in R_{k}
- output ($\left.a, b=a s_{1}+s_{2}+c u\right)$

Given (a, b), find c (be correct with probability $>1 / 2$)

- Note: if k is too big, the problem is vacuously hard

Hardness of the

Compact Knapsack Problem (Decision Version)

$\left\|\left(s_{1}, s_{2}\right)\right\|$

For Added Efficiency ...

$\left\|\left(s_{1}, s_{2}\right)\right\|$

The Signature Scheme

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$ Range of H : sparse polynomials in R_{1} (at most 32 non-zero elements)

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$ Range of H : sparse polynomials in R_{1} (at most 32 non-zero elements)
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$ Range of H : sparse polynomials in R_{1} (at most 32 non-zero elements)
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$ Range of H : sparse polynomials in R_{1} (at most 32 non-zero elements)
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output $\left(z_{1}, z_{2}, c\right)$ Happens with probability $\sim(1-32 / k)^{2 n}$

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
sign(m)

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$ Range of H : sparse polynomials in R_{1} (at most 32 non-zero elements)
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output $\left(z_{1}, z_{2}, c\right)$ Happens with probability $\sim(1-32 / k)^{2 n}$
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
sign(m)

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output ($\left.z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$
signature size $\sim n \log (2 k)+n \log (2 k)+160$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

The Signature Scheme (improved version)

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$
Honly acts on the

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$
3. $z_{1}=C S_{1}+y_{1}, z_{2}=C S_{2}+y_{2}$ can "compress" z_{2}
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output $\left(z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

The Signature Scheme (improved version)

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$
H only acts on the

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$ can "compress" z_{2}
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output $\left(z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$
signature size \sim nlog $(2 k)+2 n+160$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

The Signature Scheme

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
sign(m)

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output ($\left.z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof (High Level Idea)

Security Proof (High Level Idea)

Given random a in R

Security Proof

(High Level Idea)

Given random a in R

Security Proof

 (High Level Idea)Given random a in R

Indistinguishable based on the DCK problem

Security Proof

(High Level Idea)

Given random a in R

Security Proof

(High Level Idea)

Given random a in R
Indistinguishable based
on the DCK problem

Security Proof (High Level Idea)

Given random a in R

Indistinguishable based on the DCK problem

for any b in R, we can figure out whether there exist s_{1}, s_{2} in R_{1} such that $a s_{1}+s_{2}=b$
(i.e. solve the DCK problem)

Security Proof

(High Level Idea)

Given random a in R

on the DCK problem

for any b in R, we can figure out whether there exist s_{1}, s_{2} in R_{1} such that $a s_{1}+s_{2}=b$
(i.e. solve the DCK problem)

Security Proof

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$
3. $z_{1}=C s_{1}+y_{1}, z_{2}=C s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output ($\left.z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$ $\operatorname{sign}(m)$

1. pick random y_{1}, y_{2} in $R_{k}(k \sim n)$
2. $c=H\left(a y_{1}+y_{2}, m\right)$
3. $z_{1}=c s_{1}+y_{1}, z_{2}=c s_{2}+y_{2}$
4. if z_{1}, z_{2} are not in R_{k-32}, go back to step 1
5. output ($\left.z_{1}, z_{2}, c\right)$
sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$ $\operatorname{sign}(m)$

Pick random cin Range(H)
Pick random z_{1}, z_{2} in R_{k-32}
Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
output ($\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{c}$)
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$
sign(m)

1. Pick random c in Range (H)
2. Pick random z_{1}, z_{2} in R_{k-32}
3. Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
4. output ($\left.z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

sk: s_{1}, s_{2} in R_{1} pk: a in $R, b=a s_{1}+s_{2}$ $\operatorname{sign}(m)$

1. Pick random cin Range (H)
2. Pick random z_{1}, z_{2} in R_{k-32}
3. Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
4. output ($\left.z_{1}, z_{2}, c\right)$
sk: s_{1}, s_{2} in $R_{k^{\prime}} \quad$ pk: a in $R, b=a s_{1}+s_{2}$ sign(m)
5. Pick random c in Range (H)
6. Pick random z_{1}, z_{2} in R_{k-32}
7. $\operatorname{Program~} H\left(a z_{1}+z_{2}-b c, m\right)=c$
8. output ($\left.z_{1}, z_{2}, c\right)$
verify $\left(z_{1}, z_{2}, c\right)$ check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

(High Level Idea)

Given random a in R

the DCK problem
`small' u_{1}, u_{2} such that $a u_{1}+\mathrm{u}_{2}=0$

for any b in R, we can figure out whether there exist s_{1}, s_{2} in R_{1} such that $a s_{1}+s_{2}=b$
(i.e. solve the DCK problem)

Security Proof

sk: s_{1}, s_{2} in $R_{k^{\prime}} \quad$ pk: a in $R, b=a s_{1}+s_{2}$
$\operatorname{sign}(m)$

1. Pick random cin Range (H)
2. Pick random z_{1}, z_{2} in R_{k-32}
3. Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
4. output ($\left.z_{1}, z_{2}, c\right)$
```
verify(z, z
    check that \mp@subsup{z}{1}{},\mp@subsup{z}{2}{}}\mathrm{ are in }\mp@subsup{R}{k-32}{}\mathrm{ and }c=H(a\mp@subsup{z}{1}{}+\mp@subsup{z}{2}{}-bc,m
```


Security Proof

sk: s_{1}, s_{2} in $R_{k^{\prime}} \quad$ pk: a in $R, b=a s_{1}+s_{2}$ $\operatorname{sign}(m)$

1. Pick random cin Range (H)
2. Pick random z_{1}, z_{2} in R_{k-32}
3. Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
4. output ($\left.z_{1}, z_{2}, c\right)$

We can obtain from a forger two signatures of m $\left(z_{1}, z_{2}, c\right)$ and $\left(z_{1}{ }_{1}, z^{\prime}{ }_{2}, c^{\prime}\right)$ such that
$a z_{1}+z_{2}-b c=a z_{1}{ }_{1}+z_{2}{ }_{2}-b c^{\prime}$
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

sk: s_{1}, s_{2} in $R_{k^{\prime}} \quad$ pk: a in $R, b=a s_{1}+s_{2}$ $\operatorname{sign}(m)$

1. Pick random cin Range (H)
2. Pick random z_{1}, z_{2} in R_{k-32}
3. Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
4. output ($\left.z_{1}, z_{2}, c\right)$

We can obtain from a forger two signatures of m $\left(z_{1}, z_{2}, c\right)$ and $\left(z_{1}{ }_{1}, z^{\prime}{ }_{2}, c^{\prime}\right)$ such that

$$
a z_{1}+z_{2}-b c=a z_{1}^{\prime}+z_{2}^{\prime}-b c^{\prime}
$$

Plugging in $b=a s_{1}+s_{2} \ldots$

verify $\left(z_{1}, z_{2}, c\right)$ check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

sk: s_{1}, s_{2} in $R_{k^{\prime}} \quad$ pk: a in $R, b=a s_{1}+s_{2}$ $\operatorname{sign}(m)$

1. Pick random cin Range (H)
2. Pick random z_{1}, z_{2} in R_{k-32}
3. Program $H\left(a z_{1}+z_{2}-b c, m\right)=c$
4. output ($\left.z_{1}, z_{2}, c\right)$

We can obtain from a forger two signatures of m
$\left(z_{1}, z_{2}, c\right)$ and $\left(z_{1}{ }_{1}, z^{\prime}{ }_{2}, c^{\prime}\right)$ such that

$$
a z_{1}+z_{2}-b c=a z_{1}^{\prime}+z_{2}^{\prime}-b c^{\prime}
$$

Plugging in $b=a s_{1}+s_{2} \ldots$

(Because s_{1}, s_{2} are not unique, u_{1} and u_{2} are not both 0)
verify $\left(z_{1}, z_{2}, c\right)$
check that z_{1}, z_{2} are in R_{k-32} and $c=H\left(a z_{1}+z_{2}-b c, m\right)$

Security Proof

(High Level Idea)

Given random a in R

 we can figure out whether there exist s_{1}, s_{2} in R_{1} such that $a s_{1}+s_{2}=b$
(i.e. solve the DCK problem)

Security Proof

Security Proof

Given 'small' u_{1}, u_{2} such that $a u_{1}+u_{2}=0$, one can solve the DCK problem.

Security Proof

Given `small' u_{1}, u_{2} such that $a u_{1}+u_{2}=0$, one can solve the DCK problem.
Given (a, b), compute $u_{1} b$

Security Proof

Given `small' u_{1}, u_{2} such that $a u_{1}+u_{2}=0$, one can solve the DCK problem.
Given (a, b), compute $u_{1} b$

- If $b={ }_{a} s 1{ }_{+s} 2$ for `small' $s 1$ s2, then

$$
u^{1 b}=u^{1 a s 1}+u^{1 s 2}=-u^{2 s 1}+u 1 s 2 \text { is also `small' }
$$

Security Proof

Given `small' u_{1}, u_{2} such that $a u_{1}+u_{2}=0$, one can solve the DCK problem.

Given (a, b), compute $u_{1} b$

- If $b={ }_{a} s 1_{+s} 2$ for `small' \(s 1\) s2, then \(u^{1 b}=u^{1 a s 1}+u^{1 s 2}=u^{2 s 1+u 1 s 2}\) is also `small'
- If b is random, then the coefficients of
u1b are also random (thus probably `large')

Open Problems

Open Problems

- More efficient signatures?

Open Problems

- More efficient signatures?

Is the decision assumption necessary?

Open Problems

- More efficient signatures?
- Is the decision assumption necessary?
- Can we construct other efficient latticebased primitives using this idea?

Open Problems

- More efficient signatures?
- Is the decision assumption necessary?
- Can we construct other efficient latticebased primitives using this idea?

> Thank You!

