Efficient Cryptography from Generalized Compact Knapsacks

> Vadim Lyubashevsky INRIA & ENS Paris



A is random in  $Z_q^{n \times m}$ 







As'=b mod q

S

| 4 | 11 | 6  | 8 | 1 | 0 | 0 | 0 |
|---|----|----|---|---|---|---|---|
| 7 | 7  | 1  | 2 | 0 | 1 | 0 | 0 |
| 2 | 9  | 12 | 5 | 0 | 0 | 1 | 0 |
| 1 | 3  | 14 | 9 | 0 | 0 | 0 | 1 |

A

mod 17













## Practical Cryptographic Primitives?



## Practical Cryptographic Primitives?



 Substantially different from number theoretic constructions

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks
- Possibly faster

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks
- Possibly faster
- Very interesting security guarantee

- Substantially different from number theoretic constructions
- Seem to resist quantum attacks
- Possibly faster
- Very interesting security guarantee

Can we have the same properties and practicality?

#### The Compact Knapsack Problem

S



A

b mod q

#### The Compact Knapsack Problem











# Practical Cryptographic Primitives?



# Practical Cryptographic Primitives?



Arguably the most important application of public key cryptography

- Arguably the most important application of public key cryptography
- Signature lengths for ~ 80 bits of security
  - Lattices: ~ 60,000 bits
  - RSA: ~ 1000 bits

- Arguably the most important application of public key cryptography
- Signature lengths for ~ 80 bits of security
  - Lattices: ~ 60,000 bits
  - RSA: ~ 1000 bits
- If we want lattices to be a viable alternative, we must make signatures smaller

- Arguably the most important application of public key cryptography
- Signature lengths for ~ 80 bits of security
  - Lattices: ~ 60,000 bits
  - RSA: ~ 1000 bits
- If we want lattices to be a viable alternative, we must make signatures smaller
  - In my opinion, this, and constructing 'practical' fully-homomorphic encryption are the two most important problems in lattice-based crypto

### In this Talk

#### In this Talk

 A new way to construct lattice-based signature schemes

# In this Talk

- A new way to construct lattice-based signature schemes
- For ~ 80 bits of security:
  - public key ~ 12,000 bits
  - secret key ~ 1700 bits
  - signature size ~ 9000 bits
  - much faster than RSA/EC signatures

<sup>\_1n</sup>→ Key-Gen (sk,pk)





Two Properties

# **Two Properties**

#### 1. Correctness



## **Two Properties**

#### 1. Correctness



2. Security

Unless M has been signed, cannot find an S such that



# Super High-Level Idea Behind the New Construction

















## • $R = Z_q[x]/(x^n + 1)$

R = Z<sub>q</sub>[x]/(x<sup>n</sup> + 1)
 n is a power of 2
 q is a prime (q = 1 mod 2n)

R = Z<sub>q</sub>[x]/(x<sup>n</sup> + 1)

 n is a power of 2
 q is a prime (q = 1 mod 2n)
 Elements in R are polynomials of degree < n</li>
 Coefficients in the range [-(q-1)/2, (q-1)/2]

•  $R = Z_q[x]/(x^n + 1)$ n is a power of 2 q is a prime  $(q = 1 \mod 2n)$ Elements in R are polynomials of degree < n Coefficients in the range  $\left[-(q-1)/2, (q-1)/2\right]$  R<sub>k</sub> = { polynomials in R with coefficients in the range [-k,k] }

### The Compact Knapsack Problem (The Search Version)

### The Compact Knapsack Problem (The Search Version)

#### SCK( k ):

- pick random a in R
- pick random  $s_1$ ,  $s_2$  in  $R_k$
- output (a,  $b=as_1 + s_2$ )

### The Compact Knapsack Problem (The Search Version)

SCK( k ):

- pick random a in R
- pick random  $s_1$ ,  $s_2$  in  $R_k$
- output (a,  $b=as_1 + s_2$ )

Given (a,b), find  $s_1,s_2$  in  $R_k$  such that  $as_1+s_2 = b$ (note: there could be more than one solution)

#### The Compact Knapsack Problem (The Decision Version)

### The Compact Knapsack Problem (The Decision Version)

#### **DCK(** k ):

- pick random a,u in R
- pick random c in {0,1}
- pick random  $s_1$ ,  $s_2$  in  $R_k$
- output (a,  $b=as_1 + s_2 + cu$ )

### The Compact Knapsack Problem (The Decision Version)

#### **DCK(** k ):

- pick random a,u in R
- pick random c in {0,1}
- pick random  $s_1$ ,  $s_2$  in  $R_k$
- output (a,  $b=as_1 + s_2 + cu$ )

Given (a,b), find c (be correct with probability > 1/2)

Note: if k is too big, the problem is vacuously hard





~ q√n



sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as\_1+s\_2

sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=a $s_1$ + $s_2$ sign(m)

1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)

- 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)
- 2.  $c = H(ay_1+y_2, m)$  Range of H: sparse polynomials in R<sub>1</sub> (at most 32 non-zero elements)

- 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)
- 2.  $c = H(ay_1+y_2, m)$  Range of H: sparse polynomials in R<sub>1</sub> (at most 32 non-zero elements)

3. 
$$z_1 = cs_1 + y_1$$
,  $z_2 = cs_2 + y_2$ 

- 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)
- 2.  $c = H(ay_1+y_2, m)$  Range of H: sparse polynomials in R<sub>1</sub> (at most 32 non-zero elements)
- 3.  $z_1 = cs_1 + y_1$ ,  $z_2 = cs_2 + y_2$
- 4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1

- 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)
- 2.  $C = H(ay_1+y_2, m)$  Range of H: sparse polynomials in R<sub>1</sub> (at most 32 non-zero elements)
- 3.  $z_1 = cs_1 + y_1$ ,  $z_2 = cs_2 + y_2$
- 4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1
- 5. output  $(z_1, z_2, c)$  Happens with probability ~  $(1-32/k)^{2n}$

sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as<sub>1</sub>+s<sub>2</sub> sign(m)

1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)

2.  $c = H(ay_1+y_2, m)$  Range of H: sparse polynomials in R<sub>1</sub> (at most 32 non-zero elements)

3. 
$$z_1 = cs_1 + y_1$$
,  $z_2 = cs_2 + y_2$ 

4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1

5. output  $(z_1, z_2, c)$  Happens with probability ~  $(1-32/k)^{2n}$ verify $(z_1, z_2, c)$ 

check that  $z_1, z_2$  are in  $R_{k-32}$  and  $c=H(az_1 + z_2 - bc, m)$ 

### The Signature Scheme

sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as<sub>1</sub>+s<sub>2</sub> sign(m)

1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)

2.  $c = H(ay_1 + y_2, m)$ 

3.  $z_1 = cs_1 + y_1$ ,  $z_2 = cs_2 + y_2$ 

4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1

5. output  $(z_1, z_2, c)$ 

signature size ~ nlog(2k)+nlog(2k)+160

check that  $z_1, z_2$  are in  $R_{k-32}$  and  $c=H(az_1 + z_2 - bc, m)$ 

The Signature Scheme (improved version) sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as\_1+s\_2 sign(m) H only acts on the 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n) "high order bits" 2.  $c = H(ay_1 + y_2, m)$ 3.  $z_1 = cs_1 + y_1$ ,  $z_2 = cs_2 + y_2$  can "compress"  $z_2$ 4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1 5. output  $(z_1, z_2, c)$  $verify(z_1, z_2, c)$ check that  $z_1, z_2$  are in  $R_{k-32}$  and  $c=H(az_1 + z_2 - bc, m)$ 

The Signature Scheme (improved version) sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as\_1+s\_2 sign(m) H only acts on the 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n) "high order bits" 2.  $c = H(ay_1 + y_2, m)$ 3.  $z_1 = CS_1 + y_1$ ,  $z_2 = CS_2 + y_2$  can "compress"  $z_2$ 4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1 5. output  $(z_1, z_2, c)$ signature size ~ n/log(2k)+2n+160  $verify(z_1, z_2, c)$ check that  $z_1, z_2$  are in  $R_{k-32}$  and  $c=H(az_1 + z_2 - bc, m)$ 

### The Signature Scheme

sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as<sub>1</sub>+s<sub>2</sub> sign(m)

1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)

2.  $c = H(ay_1 + y_2, m)$ 

3.  $z_1 = cs_1 + y_1$ ,  $z_2 = cs_2 + y_2$ 

4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1

5. output  $(z_1, z_2, c)$ 

verify $(z_1, z_2, c)$ 

check that  $z_1, z_2$  are in  $R_{k-32}$  and  $c=H(az_1 + z_2 - bc, m)$ 

Security Proof (High Level Idea)

### Security Proof (High Level Idea)

Given random a in R













- sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=a $s_1$ + $s_2$ sign(m)
- 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)
- 2.  $c = H(ay_1 + y_2, m)$
- 3.  $z_1 = cs_1 + y_1$ ,  $z_2 = cs_2 + y_2$
- 4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1
- 5. output (z<sub>1</sub>, z<sub>2</sub>, c)

- sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as<sub>1</sub>+s<sub>2</sub> sign(m)
- 1. pick random  $y_1, y_2$  in  $R_k$  (k ~ n)
- 2.  $c = H(ay_1 + y_2, m)$
- 3.  $Z_1 = CS_1 + Y_1$ ,  $Z_2 = CS_2 + Y_2$
- 4. if  $z_1, z_2$  are not in  $R_{k-32}$ , go back to step 1 output  $(z_1, z_2, c)$
- 5. output  $(z_1, z_2, c)$

sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as\_1+s\_2 sign(m)

Pick random c in Range(H)

Pick random  $z_1, z_2$  in  $R_{k-32}$ 

Program  $H(az_1+z_2 - bc, m) = c$ 

sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as\_1+s\_2 sign(m)

- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- **4**. output (z<sub>1</sub>, z<sub>2</sub>, c)

- sk:  $s_1$ ,  $s_2$  in  $R_1$  pk: a in R, b=as\_1+s\_2 sign(m)
- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- 4. output  $(z_1, z_2, c)$

sk:  $s_1, s_2$  in  $R_{k'}$  pk: a in R, b=a $s_1+s_2$ sign(m)

- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- **4**. output (z<sub>1</sub>, z<sub>2</sub>, c)



sk:  $s_1$ ,  $s_2$  in  $R_{k'}$  pk: a in R, b=a $s_1$ + $s_2$ sign(m)

- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- **4**. output (z<sub>1</sub>, z<sub>2</sub>, c)

- sk:  $s_1$ ,  $s_2$  in  $R_{k'}$  pk: a in R, b=a $s_1$ + $s_2$ sign(m)
- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- **4**. output (z<sub>1</sub>, z<sub>2</sub>, c)

We can obtain from a forger two signatures of m  $(z_1, z_2, c)$  and  $(z'_1, z'_2, c')$ such that  $az_1+z_2 - bc = az'_1+z'_2 - bc'$ 

- sk:  $s_1$ ,  $s_2$  in  $R_{k'}$  pk: a in R, b=a $s_1$ + $s_2$ sign(m)
- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- 4. output  $(z_1, z_2, c)$

We can obtain from a forger two signatures of m  $(z_1, z_2, c)$  and  $(z'_1, z'_2, c')$ such that  $az_1+z_2 - bc = az'_1+z'_2 - bc'$ 

Plugging in  $b=as_1+s_2...$ 



- sk:  $s_1$ ,  $s_2$  in  $R_{k'}$  pk: a in R, b=a $s_1$ + $s_2$ sign(m)
- 1. Pick random c in Range(H)
- 2. Pick random  $z_1, z_2$  in  $R_{k-32}$
- 3. Program  $H(az_1+z_2 bc, m) = c$
- 4. output  $(z_1, z_2, c)$

We can obtain from a forger two signatures of m  $(z_1, z_2, c)$  and  $(z'_1, z'_2, c')$ such that  $az_1+z_2 - bc = az'_1+z'_2 - bc'$ 

Plugging in  $b=as_1+s_2...$ 



(Because  $s_1, s_2$  are **not** unique,  $u_1$  and  $u_2$  are not both 0)





# Given `small' $u_1$ , $u_2$ such that $au_1+u_2 = 0$ , one can solve the DCK problem.

Given `small'  $u_1$ ,  $u_2$  such that  $au_1+u_2 = 0$ , one can solve the DCK problem.

Given (a,b), compute  $u_1b$ 

Given `small' u<sub>1</sub>, u<sub>2</sub> such that au<sub>1</sub>+u<sub>2</sub> = 0, one can solve the DCK problem.
Given (a,b), compute u<sub>1</sub>b
If b=as1+s2 for `small' s1s2, then
1b = 1as1 + 1s2 = -12s1 + u1s2 is also `small'

Given `small'  $u_1$ ,  $u_2$  such that  $au_1+u_2 = 0$ , one can solve the DCK problem. Given (a,b), compute  $u_1b$ - If  $b = s_1 + s_2$  for `small' s1 s2, then "1b = "1as1 + "1s2 = -"2s1 + u1s2 is also `small' - If b is random, then the coefficients of ulb are also random (thus probably `large')



#### • More efficient signatures?

- More efficient signatures?
- Is the decision assumption necessary?

- More efficient signatures?
- Is the decision assumption necessary?
- Can we construct other efficient latticebased primitives using this idea?

- More efficient signatures?
- Is the decision assumption necessary?
- Can we construct other efficient latticebased primitives using this idea?

# Thank You!