
Trapdoors for Lattices:
Signatures, ID-Based Encryption,

and Beyond

Chris Peikert
Georgia Institute of Technology

Symbolic Computations and Post-Quantum Cryptography

The Internet, 2 Mar 2011

1 / 23

Talk Agenda

1 Lattice-based trapdoor functions and preimage sampling

2 Applications: signatures, ID-based encryption (in RO model)

3 ‘Bonsai trees:’ removing the RO & more advanced apps

I C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008)
“Trapdoors for Hard Lattices and New Cryptographic Constructions”

I D. Cash, D. Hofheinz, E. Kiltz, C. Peikert (Eurocrypt 2010)
“Bonsai Trees, or How to Delegate a Lattice Basis”

2 / 23

Talk Agenda

1 Lattice-based trapdoor functions and preimage sampling

2 Applications: signatures, ID-based encryption (in RO model)

3 ‘Bonsai trees:’ removing the RO & more advanced apps

I C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008)
“Trapdoors for Hard Lattices and New Cryptographic Constructions”

I D. Cash, D. Hofheinz, E. Kiltz, C. Peikert (Eurocrypt 2010)
“Bonsai Trees, or How to Delegate a Lattice Basis”

2 / 23

Main Message

Lattices admit a hierarchy of
increasingly powerful

‘trapdoors,’ which enable
many rich applications

3 / 23

Part 1:

Trapdoor Functions and
Preimage Sampling

4 / 23

Digital Signatures

(Images courtesy xkcd.org) 5 / 23

Digital Signatures

(secret)

(public)

(Images courtesy xkcd.org) 5 / 23

Digital Signatures

(secret)

(public)

“I love you” 4

(Images courtesy xkcd.org) 5 / 23

Digital Signatures

(secret)

(public)

“It’s over” 7

(Images courtesy xkcd.org) 5 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I New twist: preimage sampleable trapdoor function

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I Trapdoor permutation [DH’76,RSA’77,. . .]

D D

x
y

f

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I Trapdoor permutation [DH’76,RSA’77,. . .]

D D

x
y

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I Trapdoor permutation [DH’76,RSA’77,. . .]

D D

x
y

f−1

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I Trapdoor permutation [DH’76,RSA’77,. . .]

D D

x
y

f−1

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I Trapdoor permutation [DH’76,RSA’77,. . .]

D D

x
y

f−1

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

I Candidate TDPs: [RSA’78,Rabin’79,Paillier’99] (“general assumption”)

All rely on hardness of factoring:

7 Complex: 2048-bit exponentiation
7 Broken by quantum algorithms [Shor’97]

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I New twist: preimage sampleable trapdoor function

D R

x
y

f

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I New twist: preimage sampleable trapdoor function

D R

x
y

f

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I New twist: preimage sampleable trapdoor function

D R

x
y

f−1

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I New twist: preimage sampleable trapdoor function

D R

x
y

f−1

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

6 / 23

Central Tool: Trapdoor Functions
I Public function f with secret ‘trapdoor’ f−1

I New twist: preimage sampleable trapdoor function

D R

x
y

f−1

I ‘Hash and sign:’ pk = f , sk = f−1. Sign(msg) = f−1(H(msg)).

I Still secure! Can generate (x, y) in two equivalent ways:

REALITY PROOF

Ryx

f−1

D x y

f

6 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

b1

b2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

b1

b2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

GGH Signatures [GoldreichGoldwasserHalevi’96]

I Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
I Sign H(msg) ∈ Rn with “nearest-plane” algorithm [Babai’86]

s1

s2

Technical Issues
1 Generating ‘hard’ lattice together with short basis

2 Signing algorithm leaks secret basis!
F Total break after several signatures [NguyenRegev’06]

7 / 23

Blurring a Lattice

‘Uniform’ in Rn when Gaussian std dev ≥ minimum basis length

I First used in worst/average-case reductions [Regev’03,MiccReg’04,. . .]

I Now an essential ingredient in many crypto protocols
[GPV’08,PV’08,ACPS’09,CHKP’10,OPW’11,. . .]

8 / 23

Blurring a Lattice

‘Uniform’ in Rn when Gaussian std dev ≥ minimum basis length

I First used in worst/average-case reductions [Regev’03,MiccReg’04,. . .]

I Now an essential ingredient in many crypto protocols
[GPV’08,PV’08,ACPS’09,CHKP’10,OPW’11,. . .]

8 / 23

Blurring a Lattice

‘Uniform’ in Rn when Gaussian std dev ≥ minimum basis length

I First used in worst/average-case reductions [Regev’03,MiccReg’04,. . .]

I Now an essential ingredient in many crypto protocols
[GPV’08,PV’08,ACPS’09,CHKP’10,OPW’11,. . .]

8 / 23

Blurring a Lattice

‘Uniform’ in Rn when Gaussian std dev ≥ minimum basis length

I First used in worst/average-case reductions [Regev’03,MiccReg’04,. . .]

I Now an essential ingredient in many crypto protocols
[GPV’08,PV’08,ACPS’09,CHKP’10,OPW’11,. . .]

8 / 23

Blurring a Lattice

‘Uniform’ in Rn when Gaussian std dev ≥ minimum basis length

I First used in worst/average-case reductions [Regev’03,MiccReg’04,. . .]

I Now an essential ingredient in many crypto protocols
[GPV’08,PV’08,ACPS’09,CHKP’10,OPW’11,. . .]

8 / 23

Blurring a Lattice

‘Uniform’ in Rn when Gaussian std dev ≥ minimum basis length

I First used in worst/average-case reductions [Regev’03,MiccReg’04,. . .]

I Now an essential ingredient in many crypto protocols
[GPV’08,PV’08,ACPS’09,CHKP’10,OPW’11,. . .]

8 / 23

Trapdoor Function: Evaluation
f

I ‘Bad’ basis for L specifies f

I f (v, x) = v + x for v ∈ L, Gaussian x.

⇒ Output u is uniform over Rn.

I Inverting⇔ decoding u (hard?)

b1

b2

I Distribution of preimage offsets x is a discrete Gaussian DL,u

Analyzed in
[Ban’93,B’95,R’03,AR’04,MR’04,P’07. . .]

Typical fact: ‖DL,u‖ ≤
√

n · std dev

9 / 23

Trapdoor Function: Evaluation
f

I ‘Bad’ basis for L specifies f

I f (v, x) = v + x for v ∈ L, Gaussian x.

⇒ Output u is uniform over Rn.

I Inverting⇔ decoding u (hard?)

v

x

u

I Distribution of preimage offsets x is a discrete Gaussian DL,u

Analyzed in
[Ban’93,B’95,R’03,AR’04,MR’04,P’07. . .]

Typical fact: ‖DL,u‖ ≤
√

n · std dev

9 / 23

Trapdoor Function: Evaluation
f

I ‘Bad’ basis for L specifies f

I f (v, x) = v + x for v ∈ L, Gaussian x.

⇒ Output u is uniform over Rn.

I Inverting⇔ decoding u (hard?)

u

I Distribution of preimage offsets x is a discrete Gaussian DL,u

Analyzed in
[Ban’93,B’95,R’03,AR’04,MR’04,P’07. . .]

Typical fact: ‖DL,u‖ ≤
√

n · std dev

9 / 23

Trapdoor Function: Evaluation
f

I ‘Bad’ basis for L specifies f

I f (v, x) = v + x for v ∈ L, Gaussian x.

⇒ Output u is uniform over Rn.

I Inverting⇔ decoding u (hard?)

u

I Distribution of preimage offsets x is a discrete Gaussian DL,u

Analyzed in
[Ban’93,B’95,R’03,AR’04,MR’04,P’07. . .]

Typical fact: ‖DL,u‖ ≤
√

n · std dev

9 / 23

Trapdoor Function: Evaluation
f

I ‘Bad’ basis for L specifies f

I f (v, x) = v + x for v ∈ L, Gaussian x.

⇒ Output u is uniform over Rn.

I Inverting⇔ decoding u (hard?)

u

I Distribution of preimage offsets x is a discrete Gaussian DL,u

Analyzed in
[Ban’93,B’95,R’03,AR’04,MR’04,P’07. . .]

Typical fact: ‖DL,u‖ ≤
√

n · std dev

9 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖

10 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖

10 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖

10 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖

10 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖

10 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖

10 / 23

Preimage Sampling
f−1

I Sample DL,u given any ‘short enough’ basis S: max‖s̃i‖ ≤ std dev
F Output distribution leaks no information about S !

I Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV’08]

us1

s2

I Proof idea: DL,u(plane) depends only on dist(u,plane)

I [P’10]: Efficient & parallel algorithm for std dev ≥ s1(S) ≈ max‖s̃i‖
10 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

Easy to find a ‘long’ solution: e.g., z = (q, 0, . . . , 0)

— but very hard to find a ‘short’ one!

Theorem: Worst-Case/Average-Case [Ajtai’96,. . . ,MR’04,GPV’08]

For uniform A and q ≥ β
√

n, finding solution z 6= 0 where ‖z‖ ≤ β
⇓

Solving β
√

n-approx GapSVP & more, on any n-dim lattice!

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

Easy to find a ‘long’ solution: e.g., z = (q, 0, . . . , 0)

— but very hard to find a ‘short’ one!

Theorem: Worst-Case/Average-Case [Ajtai’96,. . . ,MR’04,GPV’08]

For uniform A and q ≥ β
√

n, finding solution z 6= 0 where ‖z‖ ≤ β
⇓

Solving β
√

n-approx GapSVP & more, on any n-dim lattice!

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

Putting it all together:

1 Solutions z form a ‘hard’ lattice L ⊆ Zm

2 [Ajtai’99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0).

3 Gaussian x↔ syndrome u = Ax = fA(x)

F Given u, hard to find short x ∈ f−1
A (u).

F But given basis S, can sample f−1
A (u)!

O

(0, q)

(q, 0)

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

Putting it all together:

1 Solutions z form a ‘hard’ lattice L ⊆ Zm

2 [Ajtai’99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0).

3 Gaussian x↔ syndrome u = Ax = fA(x)

F Given u, hard to find short x ∈ f−1
A (u).

F But given basis S, can sample f−1
A (u)!

O

(0, q)

(q, 0)

s1

s2

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

Putting it all together:

1 Solutions z form a ‘hard’ lattice L ⊆ Zm

2 [Ajtai’99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0).

3 Gaussian x↔ syndrome u = Ax = fA(x)

F Given u, hard to find short x ∈ f−1
A (u).

F But given basis S, can sample f−1
A (u)!

O

(0, q)

(q, 0)

x

11 / 23

A Secure Instantiation [Ajtai96,. . .]

I Let n = sec param, q = poly(n) −→ additive group Zn
q

I Given a1, . . . , am ∈ Zn
q, consider integer solutions z ∈ Zm of:

fA(z) := Az =

 | | |
a1 a2 · · · am

| | |

︸ ︷︷ ︸

m� n

z

 =

 |0
|

 mod q

Putting it all together:

1 Solutions z form a ‘hard’ lattice L ⊆ Zm

2 [Ajtai’99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0).

3 Gaussian x↔ syndrome u = Ax = fA(x)
F Given u, hard to find short x ∈ f−1

A (u).

F But given basis S, can sample f−1
A (u)!

O

(0, q)

(q, 0)

x

11 / 23

Part 2:

Identity-Based Encryption

12 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:

F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)

I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)

I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)

I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)

I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)

I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)

I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)
I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)
I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

Identity-Based Encryption

I Proposed by [Shamir’84]:
F ‘Master’ keys mpk (public) and msk (held by trusted authority)

F Given mpk, can encrypt to ID “Alice” or “Bob” or . . .

F Using msk, authority can calculate skAlice or skBob or . . .

F Messages to Carol remain secret, even given skAlice, skBob, . . .

(Fast-forward 17 years. . .)
I [BonehFranklin’01,. . .]: construction using bilinear pairings

I [Cocks’01,BGH’07]: quadratic residuosity (mod N = pq)

I [GPV’08]: lattices!

13 / 23

‘Learning With Errors’ (LWE) Problem [Regev’05]

I Secret s ∈ Zn
q, uniform ai ∈ Zn

q (here q is prime)

I Goal: distinguish (ai , bi = 〈ai, s〉+ ei) from uniform (ai , bi)

√
n ≤ error� q

I Recall: as hard as worst-case lattice problems [Regev’05,P’09]

I Observe: given short nonzero z ∈ Zm such that Az = 0 mod q,

〈z,b〉 = 〈Az, s〉+ 〈z, e〉 ≈ 0 mod q

〈z,b〉 = uniform mod q

=⇒ z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14 / 23

‘Learning With Errors’ (LWE) Problem [Regev’05]

I Secret s ∈ Zn
q, uniform ai ∈ Zn

q (here q is prime)

I Goal: distinguish (ai , bi = 〈ai, s〉+ ei) from uniform (ai , bi)

a1 , b1 = 〈a1 , s〉+ e1

a2 , b2 = 〈a2 , s〉+ e2

... √
n ≤ error� q

I Recall: as hard as worst-case lattice problems [Regev’05,P’09]

I Observe: given short nonzero z ∈ Zm such that Az = 0 mod q,

〈z,b〉 = 〈Az, s〉+ 〈z, e〉 ≈ 0 mod q

〈z,b〉 = uniform mod q

=⇒ z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14 / 23

‘Learning With Errors’ (LWE) Problem [Regev’05]

I Secret s ∈ Zn
q, uniform ai ∈ Zn

q (here q is prime)

I Goal: distinguish (A , b = Ats + e) from uniform (A , b)

m

...
At

...

 ,

...
b
...

 = Ats + e

√
n ≤ error� q

I Recall: as hard as worst-case lattice problems [Regev’05,P’09]

I Observe: given short nonzero z ∈ Zm such that Az = 0 mod q,

〈z,b〉 = 〈Az, s〉+ 〈z, e〉 ≈ 0 mod q

〈z,b〉 = uniform mod q

=⇒ z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14 / 23

‘Learning With Errors’ (LWE) Problem [Regev’05]

I Secret s ∈ Zn
q, uniform ai ∈ Zn

q (here q is prime)

I Goal: distinguish (A , b = Ats + e) from uniform (A , b)

m

...
At

...

 ,

...
b
...

 = Ats + e

√
n ≤ error� q

I Recall: as hard as worst-case lattice problems [Regev’05,P’09]

I Observe: given short nonzero z ∈ Zm such that Az = 0 mod q,

〈z,b〉 = 〈Az, s〉+ 〈z, e〉 ≈ 0 mod q

〈z,b〉 = uniform mod q

=⇒ z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14 / 23

‘Learning With Errors’ (LWE) Problem [Regev’05]

I Secret s ∈ Zn
q, uniform ai ∈ Zn

q (here q is prime)

I Goal: distinguish (A , b = Ats + e) from uniform (A , b)

m

...
At

...

 ,

...
b
...

 = Ats + e

√
n ≤ error� q

I Recall: as hard as worst-case lattice problems [Regev’05,P’09]

I Observe: given short nonzero z ∈ Zm such that Az = 0 mod q,

〈z,b〉 = 〈Az, s〉+ 〈z, e〉 ≈ 0 mod q

〈z,b〉 = uniform mod q

=⇒ z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14 / 23

‘Learning With Errors’ (LWE) Problem [Regev’05]

I Secret s ∈ Zn
q, uniform ai ∈ Zn

q (here q is prime)

I Goal: distinguish (A , b = Ats + e) from uniform (A , b)

m

...
At

...

 ,

...
b
...

 = Ats + e

√
n ≤ error� q

I Recall: as hard as worst-case lattice problems [Regev’05,P’09]

I Observe: given short nonzero z ∈ Zm such that Az = 0 mod q,

〈z,b〉 = 〈Az, s〉+ 〈z, e〉 ≈ 0 mod q

〈z,b〉 = uniform mod q

=⇒ z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉

b′ + bit · b q
2c

(‘payload’)
b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

Warm-Up: Public-Key Encryption

A

x← Gauss s, e

u = Ax = fA(x)
(public key)

b = Ats + e
(ciphertext ‘preamble’)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

? (A,u,b, b′)

15 / 23

ID-Based Encryption

mpk = A

s, e

u = H(“Alice”)
(‘identity’ key)

b = Ats + e
(ciphertext randomness)

〈x,b〉 ≈ 〈u, s〉
b′ + bit · b q

2c
(‘payload’)

b′ = 〈u, s〉+ e′

(‘pad’)

x← f−1
A (u)

16 / 23

Part 3:

Bonsai Trees:
Removing the Random Oracle

and More Advanced Applications

17 / 23

CONTROLLED or NATURAL ?

I Bonsai: collection of techniques for selective control of tree
growth, for the creation of natural aesthetic forms

18 / 23

CONTROLLED or NATURAL ?

I Bonsai: collection of techniques for selective control of tree
growth, for the creation of natural aesthetic forms

18 / 23

Bonsai Trees in Cryptography

fε

f0

f00 f01

f1

f10 f11

1 Hierarchy of TDFs
(Functions specified by public key, random oracle, interaction, . . .)

2 Techniques for selective ‘control’ of growth & delegation of control

3 Applications: ‘hash-and-sign,’ (hierarchical) IBE
— all without random oracles!

19 / 23

Bonsai Trees in Cryptography

fε

f0

f00 f01

f1

f10 f11

1 Hierarchy of TDFs
(Functions specified by public key, random oracle, interaction, . . .)

2 Techniques for selective ‘control’ of growth & delegation of control

3 Applications: ‘hash-and-sign,’ (hierarchical) IBE
— all without random oracles!

19 / 23

Bonsai Trees in Cryptography

fε

f0

f00 f01

f1

f10 f11

1 Hierarchy of TDFs
(Functions specified by public key, random oracle, interaction, . . .)

2 Techniques for selective ‘control’ of growth & delegation of control

3 Applications: ‘hash-and-sign,’ (hierarchical) IBE
— all without random oracles!

19 / 23

Bonsai Trees: Abstract Properties

fε

f0

f00 f01

f1

f10 f11

1 Controlling fv (knowing trapdoor) =⇒ controlling fvz, for all z.

2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

3 Can delegate control of any subtree, w/o endangering ancestors.

20 / 23

Bonsai Trees: Abstract Properties

fε

f0

f00 f01

f1

f10 f11

1 Controlling fv (knowing trapdoor) =⇒ controlling fvz, for all z.

2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

3 Can delegate control of any subtree, w/o endangering ancestors.

20 / 23

Bonsai Trees: Abstract Properties

fε

f0

f00 f01

f1

f10 f11

1 Controlling fv (knowing trapdoor) =⇒ controlling fvz, for all z.

2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

3 Can delegate control of any subtree, w/o endangering ancestors.

20 / 23

Bonsai Trees: Abstract Properties

fε

f0

f00 f01

f1

f10 f11

1 Controlling fv (knowing trapdoor) =⇒ controlling fvz, for all z.

2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

3 Can delegate control of any subtree, w/o endangering ancestors.

20 / 23

Bonsai Trees: Abstract Properties

fε

f0

f00 f01

f1

f10 f11

1 Controlling fv (knowing trapdoor) =⇒ controlling fvz, for all z.

2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

3 Can delegate control of any subtree, w/o endangering ancestors.

20 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

21 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

21 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

21 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

Property 2: Grow a Controlled Branch
Given (uncontrolled) A1, create controlled extension A = [A1 | A2].

I Just generate A2 with short basis S2.

Then use above technique to control A !

21 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

Property 2: Grow a Controlled Branch
Given (uncontrolled) A1, create controlled extension A = [A1 | A2].

I Just generate A2 with short basis S2.

Then use above technique to control A !
21 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

Property 3: Securely Delegate Control ?

I Basis S contains S1, so unsafe to reveal!

Solution: Use S to sample new Gaussian basis.

21 / 23

Bonsai Trees: Realization
Property 1: Control fv ⇒ Control fvz

Short basis S1 for A1 ⇒ short basis S for A = [A1 | A2], for any A2.

I Using S1, compute a short integer soln X to A1X = −A2 mod q.
Then:

A · S = [A1 | A2] ·
[

S1 X
0 I

]
︸ ︷︷ ︸

S

= 0 mod q.

(In fact, X need not be short — we have S̃ =
(

S̃1 0
0 I

)
, so ‖S̃‖ = ‖S̃1‖.)

Property 3: Securely Delegate Control ?

I Basis S contains S1, so unsafe to reveal!
Solution: Use S to sample new Gaussian basis.

21 / 23

Other Applications of Today’s Tools

1 Noninteractive (Statistical) Zero Knowledge [PV’08]

2 Universally Composable Oblivious Transfer [PVW’08]

3 CCA-Secure Encryption [P’09]

4 Many-add, Single-mult Homomorphic Encryption [GHV’10]

5 Bonsai trees with smaller keys [ABB’10]

6 Group signatures [GKV’10]

7 (Bi-)Deniable Encryption [OPW’11]

8 Whatever you can invent!

22 / 23

Closing Thoughts
I A hierarchy of trapdoors for lattices:

Short vector (decryption)

< Short basis (sampling)

< Short basis for ‘ancestor’ lattice (delegation)

< · · ·

Thanks!

23 / 23

Closing Thoughts
I A hierarchy of trapdoors for lattices:

Short vector (decryption)

< Short basis (sampling)

< Short basis for ‘ancestor’ lattice (delegation)

< · · ·

Thanks!

23 / 23

