Trapdoors for Lattices:
Signatures, ID-Based Encryption,
and Beyond

Chris Peikert

Georgia Institute of Technology

Symbolic Computations and Post-Quantum Cryptography
The Internet, 2 Mar 2011

1/23

Talk Agenda

© Lattice-based trapdoor functions and preimage sampling
@ Applications: signatures, ID-based encryption (in RO model)

©® ‘Bonsai trees:’ removing the RO & more advanced apps

Talk Agenda

© Lattice-based trapdoor functions and preimage sampling
@ Applications: signatures, ID-based encryption (in RO model)

©® ‘Bonsai trees:’ removing the RO & more advanced apps

» C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008)
“Trapdoors for Hard Lattices and New Cryptographic Constructions”

» D. Cash, D. Hofheinz, E. Kiltz, C. Peikert (Eurocrypt 2010)
“Bonsai Trees, or How to Delegate a Lattice Basis”

Main Message

Lattices admit a hierarchy of
increasingly powerful
‘trapdoors, which enable
many rich applications

3/23

Part 1:

Trapdoor Functions and
Preimage Sampling

4/23

Digital Signatures

(Images courtesy xked.org) 5/23

Digital Signatures

(public)

(secret)

(Images courtesy xkcd.org) 5/23

Digital Signatures

Ep—

(public)

“I love you” v/

—@

(secret)

(Images courtesy xked.org) 5/23

Digital Signatures

(public)

(secret) /sover” X

(Images courtesy xked.org) 5/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ !
» Trapdoor permutation [DH'76,RSA’77,...]

f

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ !

» Trapdoor permutation [DH'76,RSA’77,...]

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ !

> Trapdoor permutation [DH76,RSA’77,...]

D ! D

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ !

> Trapdoor permutation [DH76,RSA’77,...]

D ! D

» ‘Hash and sign:’ pk = f, sk = f~!. Sign(msg) = f~!(H(msQ)).

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ !

> Trapdoor permutation [DH76,RSA’77,...]

D ! D

» ‘Hash and sign:’ pk = f, sk = f~!. Sign(msg) = f~!(H(msQ)).
> Candidate TDPs: [RSA'78,Rabin’79,Paillier99] (“general assumption”)

All rely on hardness of factoring:

X Complex: 2048-bit exponentiation
X Broken by quantum algorithms [Shor'97]

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

> New twist: preimage sampleable trapdoor function

f

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

> New twist: preimage sampleable trapdoor function

f

——

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

> New twist: preimage sampleable trapdoor function

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

> New twist: preimage sampleable trapdoor function

» ‘Hash and sign:’ pk = f, sk = f~'. Sign(msg) = f~!(H(msQ)).

6/23

Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

> New twist: preimage sampleable trapdoor function

» ‘Hash and sign:’ pk = f, sk = f~'. Sign(msg) = f~!(H(msQ)).

» Still secure! Can generate (x,y) in two equivalent ways:

REALITY PROOF
! f

6/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

=

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

=

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

=

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

=

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S

» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

=

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for L, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

Technical Issues
© Generating ‘hard’ lattice together with short basis

7/23

GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

i S|

Technical Issues
© Generating ‘hard’ lattice together with short basis

@ Signing algorithm leaks secret basis!
* Total break after several signatures [NguyenRegev'06]

7/23

Blurring a Lattice

8/23

Blurring a Lattice

8/23

Blurring a Lattice

8/23

Blurring a Lattice

‘Uniform’in R* when Gaussian std dev > minimum basis length

8/23

Blurring a Lattice

‘Uniform’in R* when Gaussian std dev > minimum basis length

> First used in worst/average-case reductions [Regev'03,MiccReg'04,. ..]

8/23

Blurring a Lattice

‘Uniform’in R* when Gaussian std dev > minimum basis length

> First used in worst/average-case reductions [Regev'03,MiccReg'04,. ..]

> Now an essential ingredient in many crypto protocols
[GPV'08,PV'08,ACPS'09,CHKP’10,0PW'11,...]

8/23

f
Trapdoor Function: Evaluation @\@

> ‘Bad’ basis for £ specifies f .

9/23

f
Trapdoor Function: Evaluation @\@

> ‘Bad’ basis for £ specifies f .

> f(v,x) =v+xforve L, Gaussian x. x

= QOutput u is uniform over R”. ou

9/23

f
Trapdoor Function: Evaluation @\@

> ‘Bad’ basis for £ specifies f .

> f(v,x) =v+xforve L, Gaussian x.

= QOutput u is uniform over R”.

» Inverting < decodingu (hard?) .

9/23

Trapdoor Function: Evaluation

> ‘Bad’ basis for £ specifies f .

> f(v,x) =v+xforve L, Gaussian x.

= QOutput u is uniform over R”.

» Inverting < decodingu (hard?) .

» Distribution of preimage offsets x is a discrete Gaussian D 4

A Analyzed in
O [Ban'93,B'95,R'03,AR'04,MR’04,P’07. . .]

o+ A
o+ 4T
2 4 +
+ E
it e R e,
B + A
R e d AT
PRARE A A
+ ¥ + A
AT e At
+ti + P i + ot L
R A et Ak ++++ F

+h
Lty

ot AT
Rt L S Fo e AT+
A T Ty R

9/23

Trapdoor Function: Evaluation

> ‘Bad’ basis for £ specifies f .

> f(v,x) =v+xforve L, Gaussian x.

= QOutput u is uniform over R”.

» Inverting < decodingu (hard?) .

» Distribution of preimage offsets x is a discrete Gaussian D 4

A Analyzed in
O [Ban'93,B'95,R'03,AR'04,MR’04,P’07. . .]

4 RS
o+ 4T
2 4ok +
St e B e
ARt At + + AL+ .
5 e o
e SR Typical fact: ||D < /n-std dev
il AT . E,ll = n
P e E
FAT R S At
et e e T e e
Ak A T

9/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev

* Qutput distribution leaks no information about S !

4
++++
W+++

FRa L
e 4k “,
ER
B + N
++H++H v»
ok

+
«tﬂ%«wﬁﬁu o o ++
‘;+ ++ ++++ AT
+ m + + L A AT
ptod
P

K
+ &
e Ty ++++ BT
Aty ++++ ATy
+++++++++++++++ T

Ht
Ay +++++ ++

10/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’g6,Klein’00,GPV'08]

it +
o+ £t f
it + .+ +
+ + ch FE M b s
P ++1W++‘m%¢%ﬁu Tl 1 °
bl 4 it
AT e S it
AR A
T T A
P s +
W LA °
R

10/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’g6,Klein’00,GPV'08]

¥
A
o
r o+ L
e LR
A
L
e ¥ *H v»

+
ettt +Wﬂ%ﬁ*ﬂﬁ*¢ ot +‘:r
AL A AT A
R ++ﬁ ++ + + R

Rty T
PR ALt
oty + e
T ety
R +t ++++++ e
+‘; +“‘++“‘tr+1++++++ gt ++ T -

10/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’g6,Klein’00,GPV'08]

4
oy
4
T
W++++
-+ e

PR

Rt +
AP

Ht
o+
R
e ET PRy
i+ + o+ +
S BT ST
et o o e AR
ey + 4 s
AT 4Pt
ot +HR
PR CALLANT
oataive it
e + e e
ST P T
ey e e
B e e +F

10/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’g6,Klein’00,GPV'08]

4
oy
4
T
W++++
-+ e

PR

Rt +
AP

Ht
o+
R
e ET PRy
i+ + o+ +
S BT ST
et o o e AR
ey + 4 s
AT 4Pt
ot +HR
PR CALLANT
oataive it
e + e e
ST P T
ey e e
B e e +F

10/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV'08]

n
4
"
s
W++++
FRa +*
e 4k “,
R
Fa
Y +
LA
At ET et
it +
o bl e e
Sttt . S ST
e R T

Ay
Pttt R
A + + 0t
R g + TR

¥ o
Pk i
RAORAES Ea A AL
e TR
R R
4 s
R Ty +

» Proof idea: D y(plane) depends only on dist(u, plane)

10/23

Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV'08]

N
oy
.
s
W++++
++“‘++ +*
e 4k “,
R
Hor
ity
MR
e r e
% .
o bl e e
bttt gt S R
e R T

ity
MRAT A R
O, A
ER VRS = +4 T

+ R
P T
AL T
s + A
R AT
ﬂ*ﬁ*ﬁ*ﬁﬂf’ [Al M S +

» Proof idea: D y(plane) depends only on dist(u, plane)

» [P'10]: Efficient & parallel algorithm for std dev > s, (S) ~ max||s;||

10/23

A Secure Instantiation [ajtaiss,...]
> Letn = sec param, g = poly(n) — additive group Z;

11/23

A Secure Instantiation [ajtaiss,...]
> Letn = sec param, g = poly(n) — additive group Z;
> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:

. | |
fa(z) == Az = (al a - am) Z| = (0) mod ¢
. | |

v~

m>n

11/23

A Secure Instantiation [ajtaigs....]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:
. | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
. | |
m;; n

Easy to find a ‘long’ solution: e.g., z = (¢,0,...,0)
— but very hard to find a ‘short’ one!

11/23

A Secure Instantiation [ajtaiss,...]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenay,...,a, € Zj, consider integer solutions z € Z" of:
. | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
. | |
m;; n

Easy to find a ‘long’ solution: e.g., z = (¢,0,...,0)
— but very hard to find a ‘short’ one!

Theorem: Worst-Case/Average-Case [Ajtai’96,...,MR’04,GPV’08]

For uniform A and ¢ > (+/n, finding solution z # 0 where ||z|| < 3

4
Solving S+/n-approx GapSVP & more, on any n-dim lattice!

11/23

A Secure Instantiation [ajtaigs....]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:
. | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
. | |
m;; n
Putting it all together: ©,4)
@ Solutions z form a ‘hard’ lattice £ C Z™ I |
4
<6 o \ @0
/
n A

A Secure Instantiation [ajtaigs....]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:
. | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
. | |
m;; n

Putting it all together: ©,9)

@ Solutions z form a ‘hard’ lattice £ C Z™

@ [Ajtai'99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0).

*
o (g, 0)

A Secure Instantiation [ajtaigs....]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:
| | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
| | |
m;; n
Putting it all together: . @9 .

@ Solutions z form a ‘hard’ lattice £ C Z™

@ [Ajtai'99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0). P

N\« i
© Gaussian x «» syndrome u = Ax = f (x) | // ot D
/
\ L] / L

11/23

A Secure Instantiation [ajtaigs....]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:
| | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
| | |
m;; n
Putting it all together: . @9 .

@ Solutions z form a ‘hard’ lattice £ C Z™

@ [Ajtai'99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0). P

©® Gaussian x «» syndrome u = Ax = f (x) oo D
* Given u, hard to find short x € ' (

u).
* But given basis S, can sample £, ' (u)!] .

11/23

Part 2:
Identity-Based Encryption

12/23

Identity-Based Encryption

> Proposed by [Shamirs4]:

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)

* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..

* Using msk, authority can calculate skajice OF skgop OF ...

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)
> [BonehFranklin’01,...]: construction using bilinear pairings

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)
> [BonehFranklin’01,...]: construction using bilinear pairings

P [Cocks’'01,BGH07]: quadratic residuosity (mod N = pq)

13/23

Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)
> [BonehFranklin’01,...]: construction using bilinear pairings

P [Cocks’'01,BGH07]: quadratic residuosity (mod N = pq)

> [GPV'08]: lattices!

13/23

‘Learning With Errors’ (LWE) Problem [regev'os]

> Secrets € Zj, uniform a; € Z (here ¢ is prime)

14/23

‘Learning With Errors’ (LWE) Problem [regev'os]

> Secrets € Zj, uniform a; € Z (here ¢ is prime)

» Goal: distinguish (a; , b; = (a;,s) + ¢;) from uniform (a; , b;)
ai , bi={(a;,s)+e
wo Tt |\‘ “|
il [14

Vvn <error < g

14/23

‘Learning With Errors’ (LWE) Problem [regev'os]
> Secrets € Zj, uniform a; € Z (here ¢ is prime)

» Goal: distinguish (A , b = A’s + e) from uniform (A , b)

| A [p] A
. . ol —|I|.

Vn < error < g

14/23

‘Learning With Errors’ (LWE) Problem [regev'os]
> Secrets € Zj, uniform a; € Z (here ¢ is prime)
» Goal: distinguish (A , b = A’s + e) from uniform (A , b)
. . ol o

Vvn <error < g

> Recall: as hard as worst-case lattice problems [Regev’'05,P'09]

14/23

‘Learning With Errors’ (LWE) Problem [regev'os]
> Secrets € Zj, uniform a; € Z (here ¢ is prime)

» Goal: distinguish (A , b = A’s + e) from uniform (A , b)

m Al . |Ib|l=As+e H |
. . 1||‘
Vi <error < g

> Recall: as hard as worst-case lattice problems [Regev’'05,P'09]

» Observe: given short nonzero z € Z™ such that Az = 0 mod ¢,
(z,b) = (Az,s)+ (z,e) ~0modg
(z,b) = uniform mod ¢

14/23

‘Learning With Errors’ (LWE) Problem [regev'os]
> Secrets € Zj, uniform a; € Z (here ¢ is prime)

» Goal: distinguish (A , b = A’s + e) from uniform (A , b)

EAT IR B B R
. . ol '

Vn < error < g

> Recall: as hard as worst-case lattice problems [Regev’'05,P'09]

» Observe: given short nonzero z € Z™ such that Az = 0 mod ¢,
(z,b) = (Az,s)+ (z,e) ~0modg
(z,b) = uniform mod ¢
= z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14/23

Warm-Up: Public-Key Encryption

f x + Gauss s, e a\

15/23

Warm-Up: Public-Key Encryption

ﬁ x < Gauss

u=Ax = fi(x)

(public key)

15/23

Warm-Up: Public-Key Encryption

ﬁ x < Gauss

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

15/23

Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b= (u,s)+¢

(pad)

15/23

Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

b= (u,s)+¢

(pad)

15/23

Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

(x,b) = (u,s)

b= (u,s)+¢

(pad)

15/23

Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

15/23

Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

15/23

ID-Based Encryption

e,

u = H(“Alice’)

(‘identity’ key)

b=A's+e

(ciphertext randomness)

b+ bit - 4]

(‘payload’)

(x,b) = (u,s) b =(u,s)+¢€

(‘pad’)

16/23

Part 3:

Bonsai Trees:

Removing the Random Oracle
and More Advanced Applications

17/23

CONTROLLED or NATURAL ?

18/23

CONTROLLED or NATURAL ?

> Bonsai: collection of techniques for selective control of tree
growth, for the creation of natural aesthetic forms

18/23

Bonsai Trees in Cryptography

© Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)

19/23

Bonsai Trees in Cryptography

© Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)

@ Techniques for selective ‘control’ of growth & delegation of control

19/23

Bonsai Trees in Cryptography

© Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)
@ Techniques for selective ‘control’ of growth & delegation of control

© Applications: ‘hash-and-sign, (hierarchical) IBE
— all without random oracles!

19/23

Bonsai Trees: Abstract Properties

Bonsai Trees: Abstract Properties

© Controlling f, (knowing trapdoor) = controlling f,., for all z.

20/23

Bonsai Trees: Abstract Properties

© Controlling f, (knowing trapdoor) = controlling f,., for all z.

@® Can grow a controlled branch off of any uncontrolled node.

20/23

Bonsai Trees: Abstract Properties

© Controlling f, (knowing trapdoor) = controlling f,., for all z.
@® Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

20/23

Bonsai Trees: Abstract Properties

© Controlling f, (knowing trapdoor) = controlling f,., for all z.
@® Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

© Can delegate control of any subtree, w/o endangering ancestors.

20/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,.
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

21/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

» Using S;, compute a short integer soln X to A;X = —A, mod ¢.

Then:

A-S=[A|Ay- [SO‘ ﬂ = 0 mod g.

———
S

21/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

> Using S;, compute a short integer soln X to A;X = —A; mod g¢.
Then:

A-S=[A|Ay- [SO‘ ﬂ = 0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

21/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

> Using S;, compute a short integer soln X to A;X = —A; mod g¢.
Then:

A-S=[A|Ay- [SO‘ ﬂ =0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

Property 2: Grow a Controlled Branch
Given (uncontrolled) A, create controlled extension A = [A; | A,].

21/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

> Using S;, compute a short integer soln X to A;X = —A; mod g¢.
Then:

A-S=[A|Ay- [SO‘ ﬂ =0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

Property 2: Grow a Controlled Branch
Given (uncontrolled) A, create controlled extension A = [A; | A,].

» Just generate A, with short basis S,.

Then use above technique to control A !

21/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

> Using S;, compute a short integer soln X to A;X = —A; mod g¢.
Then:

A-S=[A|Ay- [SO‘ ﬂ = 0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

Property 3: Securely Delegate Control ?

» Basis S contains S, so unsafe to reveal!

21/23

Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

» Using S;, compute a short integer soln X to A;X = —A, mod ¢.

Then:
A-S=[A|Ay- [SO‘ ﬂ = 0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

Property 3: Securely Delegate Control ?

» Basis S contains S;, so unsafe to reveal!
Solution: Use S to sample new Gaussian basis. -

21/23

Other Applications of Today’s Tools

© Noninteractive (Statistical) Zero Knowledge [PV'08]

@ Universally Composable Oblivious Transfer [PVW'08]

©® CCA-Secure Encryption [P09]

O Many-add, Single-mult Homomorphic Encryption [GHV'10]
@ Bonsai trees with smaller keys [ABB'10]

O Group signatures [GKV'10]

@ (Bi-)Deniable Encryption [OPW'11]

©® Whatever you can invent!

22/23

Closing Thoughts
» A hierarchy of trapdoors for lattices:
Short vector (decryption)

< Short basis (sampling)

< Short basis for ‘ancestor’ lattice (delegation)

23/23

Closing Thoughts
» A hierarchy of trapdoors for lattices:
Short vector (decryption)

< Short basis (sampling)

< Short basis for ‘ancestor’ lattice (delegation)

Thanks!

23/23

