Trapdoors for Lattices:
Signatures, ID-Based Encryption,
and Beyond

Chris Peikert

Georgia Institute of Technology

Symbolic Computations and Post-Quantum Cryptography
The Internet, 2 Mar 2011

1/23



Talk Agenda

© Lattice-based trapdoor functions and preimage sampling
@ Applications: signatures, ID-based encryption (in RO model)

©® ‘Bonsai trees:’ removing the RO & more advanced apps



Talk Agenda

© Lattice-based trapdoor functions and preimage sampling
@ Applications: signatures, ID-based encryption (in RO model)

©® ‘Bonsai trees:’ removing the RO & more advanced apps

» C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008)
“Trapdoors for Hard Lattices and New Cryptographic Constructions”

» D. Cash, D. Hofheinz, E. Kiltz, C. Peikert (Eurocrypt 2010)
“Bonsai Trees, or How to Delegate a Lattice Basis”



Main Message

Lattices admit a hierarchy of
increasingly powerful
‘trapdoors, which enable
many rich applications
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Part 1:

Trapdoor Functions and
Preimage Sampling
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Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ !

> Trapdoor permutation [DH76,RSA’77,...]

D ! D

» ‘Hash and sign:’ pk = f, sk = f~!.  Sign(msg) = f~!(H(msQ)).
> Candidate TDPs: [RSA'78,Rabin’79,Paillier99] (“general assumption”)

All rely on hardness of factoring:

X Complex: 2048-bit exponentiation
X Broken by quantum algorithms [Shor'97]
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Central Tool: Trapdoor Functions

» Public function f with secret ‘trapdoor’ f~!

> New twist: preimage sampleable trapdoor function

» ‘Hash and sign:’ pk = f, sk = f~'.  Sign(msg) = f~!(H(msQ)).

» Still secure! Can generate (x,y) in two equivalent ways:

REALITY PROOF
! f
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GGH Signatures [GoldreichGoldwasserHalevi’96]
> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R" with “nearest-plane” algorithm [Babai'sé]

i S|

Technical Issues
© Generating ‘hard’ lattice together with short basis

@ Signing algorithm leaks secret basis!
* Total break after several signatures [NguyenRegev'06]
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Blurring a Lattice

‘Uniform’in R* when  Gaussian std dev > minimum basis length

> First used in worst/average-case reductions [Regev'03,MiccReg'04,. .. ]

> Now an essential ingredient in many crypto protocols
[GPV'08,PV'08,ACPS'09,CHKP’10,0PW'11,...]
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Trapdoor Function: Evaluation

> ‘Bad’ basis for £ specifies f .

> f(v,x) =v+xforve L, Gaussian x.

= QOutput u is uniform over R”.

» Inverting < decodingu  (hard?) .

» Distribution of preimage offsets x is a discrete Gaussian D 4

A Analyzed in
O [Ban'93,B'95,R'03,AR'04,MR’04,P’07. . .]
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> ‘Bad’ basis for £ specifies f .

> f(v,x) =v+xforve L, Gaussian x.

= QOutput u is uniform over R”.

» Inverting < decodingu  (hard?) .

» Distribution of preimage offsets x is a discrete Gaussian D 4

A Analyzed in
O [Ban'93,B'95,R'03,AR'04,MR’04,P’07. . .]
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Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev

* Qutput distribution leaks no information about S !
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» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’g6,Klein’00,GPV'08]
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Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV'08]
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Preimage Sampling

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Qutput distribution leaks no information about S !

» Randomized “nearest-plane” algorithm [Babai’86,Klein’00,GPV'08]
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» Proof idea: D y(plane) depends only on dist(u, plane)

» [P'10]: Efficient & parallel algorithm for std dev > s, (S) ~ max||s;||
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A Secure Instantiation [ajtaiss,...]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenay,...,a, € Zj, consider integer solutions z € Z" of:
. | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
. | |
m;; n

Easy to find a ‘long’ solution: e.g., z = (¢,0,...,0)
— but very hard to find a ‘short’ one!

Theorem: Worst-Case/Average-Case [Ajtai’96,...,MR’04,GPV’08]

For uniform A and ¢ > (+/n, finding solution z # 0 where ||z|| < 3

4
Solving S+/n-approx GapSVP & more, on any n-dim lattice!
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m;; n
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@ Solutions z form a ‘hard’ lattice £ C Z™

@ [Ajtai'99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0). P
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A Secure Instantiation [ajtaigs....]
> Letn = sec param, g = poly(n) — additive group Z;

> Givenai,...,a, € Zy, consider integer solutions z € Z™ of:
| | |
fa(z) =Az= |a; ay --- a, z|=|0| modg
| | |
m;; n
Putting it all together: . @9 .

@ Solutions z form a ‘hard’ lattice £ C Z™

@ [Ajtai'99,AlwenP’09]: can generate uniform A
together with a short basis S (i.e., AS = 0). P

©® Gaussian x «» syndrome u = Ax = f (x) oo D
* Given u, hard to find short x € ' (

u).
* But given basis S, can sample £, ' (u)! ] .

11/23



Part 2:
Identity-Based Encryption

12/23



Identity-Based Encryption

> Proposed by [Shamirs4]:

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)

* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..

* Using msk, authority can calculate skajice OF skgop OF ...

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)
> [BonehFranklin’01,...]: construction using bilinear pairings

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)
> [BonehFranklin’01,...]: construction using bilinear pairings

P [Cocks’'01,BGH07]: quadratic residuosity (mod N = pq)

13/23



Identity-Based Encryption

> Proposed by [Shamirs4]:
* ‘Master’ keys mpk (public) and msk (held by trusted authority)
* Given mpk, can encrypt to ID “Alice” or “Bob” or . ..
* Using msk, authority can calculate skajice OF skgop OF ...

* Messages to Carol remain secret, even given skajice, SkBob, - - -

(Fast-forward 17 years. . .)
> [BonehFranklin’01,...]: construction using bilinear pairings

P [Cocks’'01,BGH07]: quadratic residuosity (mod N = pq)

> [GPV'08]: lattices!
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> Secrets € Zj, uniform a; € Z  (here ¢ is prime)

» Goal: distinguish (a; , b; = (a;,s) + ¢;) from uniform (a; , b;)
ai , bi={(a;,s)+e
wo Tt |\‘ “|
il [14
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‘Learning With Errors’ (LWE) Problem [regev'os]
> Secrets € Zj, uniform a; € Z  (here ¢ is prime)

» Goal: distinguish (A , b = A’s + e) from uniform (A , b)

EAT IR B B R
. . ol '

Vn < error < g

> Recall: as hard as worst-case lattice problems [Regev’'05,P'09]

» Observe: given short nonzero z € Z™ such that Az = 0 mod ¢,
(z,b) = (Az,s)+ (z,e) ~0modg
(z,b) = uniform mod ¢
= z is a ‘weak’ trapdoor, for distinguishing LWE from uniform

14/23



Warm-Up: Public-Key Encryption

f x + Gauss s, e a\

15/23



Warm-Up: Public-Key Encryption

ﬁ x < Gauss

u=Ax = fi(x)

(public key)

15/23



Warm-Up: Public-Key Encryption

ﬁ x < Gauss

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

15/23



Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b= (u,s)+¢

(pad)

15/23



Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

b= (u,s)+¢

(pad)

15/23



Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

(x,b) = (u,s)

b= (u,s)+¢

(pad)

15/23



Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

15/23



Warm-Up: Public-Key Encryption

ﬁ x + Gauss s, e %

u=Ax = fi(x)

(public key)

b=As+e

(ciphertext ‘preamble’)

b + bit- |4

(‘payload’)

15/23



ID-Based Encryption

e,

u = H(“Alice’)

(‘identity’ key)

b=A's+e

(ciphertext randomness)

b+ bit - 4]

(‘payload’)

(x,b) = (u,s) b =(u,s)+¢€

(‘pad’)
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Part 3:

Bonsai Trees:

Removing the Random Oracle
and More Advanced Applications
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CONTROLLED or NATURAL ?

> Bonsai: collection of techniques for selective control of tree
growth, for the creation of natural aesthetic forms
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© Hierarchy of TDFs
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Bonsai Trees in Cryptography

© Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)
@ Techniques for selective ‘control’ of growth & delegation of control

© Applications: ‘hash-and-sign, (hierarchical) IBE
— all without random oracles!
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Bonsai Trees: Abstract Properties

© Controlling f, (knowing trapdoor) = controlling f,., for all z.
@® Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to
answer queries.)

© Can delegate control of any subtree, w/o endangering ancestors.
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Bonsai Trees: Realization

Property 1: Control f, = Control f,.
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.
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Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

> Using S;, compute a short integer soln X to A;X = —A; mod g¢.
Then:

A-S=[A|Ay- [SO‘ ﬂ =0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

Property 2: Grow a Controlled Branch
Given (uncontrolled) A, create controlled extension A = [A; | A,].

» Just generate A, with short basis S,.

Then use above technique to control A !
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Bonsai Trees: Realization

Property 1: Control f, = Control f,,
Short basis S; for A; = short basis S for A = [A; | Ay], for any A,.

» Using S;, compute a short integer soln X to A;X = —A, mod ¢.

Then:
A-S=[A|Ay- [SO‘ ﬂ = 0 mod g.
S
(In fact, X need not be short —we have § = (% %), so [IS]| = [IS:].)

Property 3: Securely Delegate Control ?

» Basis S contains S;, so unsafe to reveal!
Solution: Use S to sample new Gaussian basis. -
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Other Applications of Today’s Tools

© Noninteractive (Statistical) Zero Knowledge [PV'08]

@ Universally Composable Oblivious Transfer [PVW'08]

©® CCA-Secure Encryption [P09]

O Many-add, Single-mult Homomorphic Encryption [GHV'10]
@ Bonsai trees with smaller keys [ABB'10]

O Group signatures [GKV'10]

@ (Bi-)Deniable Encryption [OPW'11]

©® Whatever you can invent!
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Closing Thoughts
» A hierarchy of trapdoors for lattices:
Short vector  (decryption)

< Short basis  (sampling)

< Short basis for ‘ancestor’ lattice  (delegation)
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Closing Thoughts
» A hierarchy of trapdoors for lattices:
Short vector  (decryption)

< Short basis  (sampling)

< Short basis for ‘ancestor’ lattice  (delegation)

Thanks!
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