Trapdoors for Lattices: Signatures, ID-Based Encryption, and Beyond

> Chris Peikert Georgia Institute of Technology

Symbolic Computations and Post-Quantum Cryptography The Internet, 2 Mar 2011

Talk Agenda

1 Lattice-based trapdoor functions and preimage sampling

2 Applications: signatures, ID-based encryption (in RO model)

3 'Bonsai trees:' removing the RO & more advanced apps

Talk Agenda

Lattice-based trapdoor functions and preimage sampling

- 2 Applications: signatures, ID-based encryption (in RO model)
- 3 'Bonsai trees:' removing the RO & more advanced apps

- C. Gentry, C. Peikert, V. Vaikuntanathan (STOC 2008)
 "Trapdoors for Hard Lattices and New Cryptographic Constructions"
- D. Cash, D. Hofheinz, E. Kiltz, C. Peikert (Eurocrypt 2010)
 "Bonsai Trees, or How to Delegate a Lattice Basis"

Main Message

Lattices admit a hierarchy of increasingly powerful 'trapdoors,' which enable many rich applications

Part 1:

Trapdoor Functions and Preimage Sampling

(public)

(secret)

• Public function f with secret 'trapdoor' f^{-1}

- Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- Public function f with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...]

- ▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.
- Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] ("general assumption")
 All rely on hardness of factoring:
 - X Complex: 2048-bit exponentiation
 - X Broken by quantum algorithms [Shor'97]

- Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

- Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

- Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

- Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- Public function f with secret 'trapdoor' f^{-1}
- New twist: preimage sampleable trapdoor function

- ▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.
- Still secure! Can generate (*x*, *y*) in two equivalent ways:

• Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**

- Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- Key idea: pk ='bad' basis **B** for \mathcal{L} , sk ='short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

Technical Issues

1 Generating 'hard' lattice together with short basis

- Key idea: pk = 'bad' basis **B** for \mathcal{L} , sk = 'short' trapdoor basis **S**
- Sign $H(msg) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

Technical Issues

- **1** Generating 'hard' lattice together with short basis
- 2 Signing algorithm leaks secret basis!
 - * Total break after several signatures [NguyenRegev'06]

'Uniform' in \mathbb{R}^n when Gaussian std dev \geq minimum basis length

'Uniform' in \mathbb{R}^n when Gaussian std dev \geq minimum basis length

First used in worst/average-case reductions [Regev'03,MiccReg'04,...]
Blurring a Lattice

'Uniform' in \mathbb{R}^n when Gaussian std dev \geq minimum basis length

- First used in worst/average-case reductions [Regev'03,MiccReg'04,...]
- Now an essential ingredient in many crypto protocols [GPV'08,PV'08,ACPS'09,CHKP'10,OPW'11,...]

• 'Bad' basis for \mathcal{L} specifies f

- 'Bad' basis for \mathcal{L} specifies f
- $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .

 \Rightarrow Output **u** is uniform over \mathbb{R}^n .

- 'Bad' basis for \mathcal{L} specifies f
- $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .

 \Rightarrow Output **u** is uniform over \mathbb{R}^n .

• Inverting \Leftrightarrow decoding **u** (hard?)

- 'Bad' basis for \mathcal{L} specifies f
- $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .

 \Rightarrow Output **u** is uniform over \mathbb{R}^n .

- Inverting \Leftrightarrow decoding **u** (hard?)
- Distribution of preimage offsets x is a discrete Gaussian D_{L,u}

Analyzed in [Ban'93,B'95,R'03,AR'04,MR'04,P'07...]

- 'Bad' basis for \mathcal{L} specifies f
- $f(\mathbf{v}, \mathbf{x}) = \mathbf{v} + \mathbf{x}$ for $\mathbf{v} \in \mathcal{L}$, Gaussian \mathbf{x} .

 \Rightarrow Output **u** is uniform over \mathbb{R}^n .

- Inverting \Leftrightarrow decoding **u** (hard?)
- Distribution of preimage offsets x is a discrete Gaussian D_{L,u}

Typical fact: $\|D_{\mathcal{L},\mathbf{u}}\| \leq \sqrt{n} \cdot \text{std dev}$

Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$

* Output distribution leaks no information about S !

► Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \mathsf{std} \mathsf{ dev}$

- * Output distribution leaks no information about S !
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$

- * Output distribution leaks no information about S !
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$

- * Output distribution leaks no information about S !
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \text{std dev}$

- * Output distribution leaks no information about S !
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

► Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \mathsf{std} \mathsf{ dev}$

- * Output distribution leaks no information about S !
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

▶ Proof idea: $D_{\mathcal{L},\mathbf{u}}(\text{plane})$ depends only on dist($\mathbf{u},\text{plane})$

► Sample $D_{\mathcal{L},\mathbf{u}}$ given any 'short enough' basis S: $\max \|\tilde{\mathbf{s}}_i\| \leq \mathsf{std} \mathsf{ dev}$

- * Output distribution leaks no information about S !
- Randomized "nearest-plane" algorithm [Babai'86,Klein'00,GPV'08]

- Proof idea: $D_{\mathcal{L},\mathbf{u}}(\text{plane})$ depends only on dist($\mathbf{u}, \text{plane})$
- ▶ [P'10]: Efficient & parallel algorithm for std dev $\geq s_1(\mathbf{S}) \approx \max \|\tilde{\mathbf{s}}_i\|$

• Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Easy to find a 'long' solution: e.g., $\mathbf{z} = (q, 0, \dots, 0)$

- but very hard to find a 'short' one!

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Easy to find a 'long' solution: e.g., $\mathbf{z} = (q, 0, \dots, 0)$

- but very hard to find a 'short' one!

Theorem: Worst-Case/Average-Case [Ajtai'96,...,MR'04,GPV'08] For uniform A and $q \ge \beta \sqrt{n}$, finding solution $\mathbf{z} \ne \mathbf{0}$ where $\|\mathbf{z}\| \le \beta$ \downarrow Solving $\beta \sqrt{n}$ -approx GapSVP & more, on any *n*-dim lattice!

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

1 Solutions z form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

- **1** Solutions z form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$
- 2 [Ajtai'99,AlwenP'09]: can generate uniform A together with a short basis S (i.e., AS = 0).

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

- **1** Solutions z form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$
- 2 [Ajtai'99,AlwenP'09]: can generate uniform A together with a short basis S (i.e., AS = 0).
- **3** Gaussian $\mathbf{x} \leftrightarrow$ syndrome $\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})$

- Let $n = \text{sec param}, q = \text{poly}(n) \longrightarrow \text{additive group } \mathbb{Z}_q^n$
- Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$, consider integer solutions $\mathbf{z} \in \mathbb{Z}^m$ of:

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \underbrace{\begin{pmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \\ | & | & | \end{pmatrix}}_{m \gg n} \left(\mathbf{z} \right) = \begin{pmatrix} | \\ \mathbf{0} \\ | \end{pmatrix} \mod q$$

Putting it all together:

- **1** Solutions z form a 'hard' lattice $\mathcal{L} \subseteq \mathbb{Z}^m$
- 2 [Ajtai'99,AlwenP'09]: can generate uniform A together with a short basis S (i.e., AS = 0).
- **3** Gaussian $\mathbf{x} \leftrightarrow$ syndrome $\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})$
 - ★ Given **u**, hard to find short $\mathbf{x} \in f_{\mathbf{A}}^{-1}(\mathbf{u})$.
 - * But given basis S, can sample $f_{\mathbf{A}}^{-1}(\mathbf{u})!$

Part 2: Identity-Based Encryption

Proposed by [Shamir'84]:

Proposed by [Shamir'84]:

* 'Master' keys mpk (public) and msk (held by trusted authority)

- Proposed by [Shamir'84]:
 - ★ 'Master' keys *mpk* (public) and *msk* (held by trusted authority)
 - ★ Given mpk, can encrypt to ID "Alice" or "Bob" or ...

- Proposed by [Shamir'84]:
 - ★ 'Master' keys *mpk* (public) and *msk* (held by trusted authority)
 - ★ Given *mpk*, can encrypt to ID "Alice" or "Bob" or ...
 - ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or ...

- Proposed by [Shamir'84]:
 - ★ 'Master' keys *mpk* (public) and *msk* (held by trusted authority)
 - ★ Given *mpk*, can encrypt to ID "Alice" or "Bob" or ...
 - ★ Using *msk*, authority can calculate *sk*_{Alice} or *sk*_{Bob} or ...
 - ★ Messages to Carol remain secret, even given *sk*_{Alice}, *sk*_{Bob}, ...

Proposed by [Shamir'84]:

- ★ 'Master' keys *mpk* (public) and *msk* (held by trusted authority)
- ★ Given *mpk*, can encrypt to ID "Alice" or "Bob" or ...
- ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or ...
- ★ Messages to Carol remain secret, even given *sk*_{Alice}, *sk*_{Bob}, ...

(Fast-forward 17 years...)

Proposed by [Shamir'84]:

- 'Master' keys mpk (public) and msk (held by trusted authority)
- ★ Given *mpk*, can encrypt to ID "Alice" or "Bob" or ...
- ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or ...
- ★ Messages to Carol remain secret, even given *sk*_{Alice}, *sk*_{Bob}, ...

(Fast-forward 17 years...)

[BonehFranklin'01,...]: construction using bilinear pairings

Proposed by [Shamir'84]:

- 'Master' keys mpk (public) and msk (held by trusted authority)
- ★ Given *mpk*, can encrypt to ID "Alice" or "Bob" or ...
- ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or ...
- ★ Messages to Carol remain secret, even given *sk*_{Alice}, *sk*_{Bob}, ...

(Fast-forward 17 years...)

- [BonehFranklin'01,...]: construction using bilinear pairings
- [Cocks'01,BGH'07]: quadratic residuosity (mod N = pq)

Proposed by [Shamir'84]:

- 'Master' keys mpk (public) and msk (held by trusted authority)
- ★ Given *mpk*, can encrypt to ID "Alice" or "Bob" or ...
- ★ Using msk, authority can calculate sk_{Alice} or sk_{Bob} or ...
- ★ Messages to Carol remain secret, even given *sk*_{Alice}, *sk*_{Bob}, ...

(Fast-forward 17 years...)

- [BonehFranklin'01,...]: construction using bilinear pairings
- [Cocks'01,BGH'07]: quadratic residuosity (mod N = pq)

[GPV'08]: lattices!

Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- **Goal:** distinguish $(\mathbf{a}_i, \mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$ from uniform $(\mathbf{a}_i, \mathbf{b}_i)$

$$\mathbf{a}_{1} , \mathbf{b}_{1} = \langle \mathbf{a}_{1} , \mathbf{s} \rangle + e_{1}$$
$$\mathbf{a}_{2} , \mathbf{b}_{2} = \langle \mathbf{a}_{2} , \mathbf{s} \rangle + e_{2}$$
$$\vdots$$
$$\sqrt{n} \leq \operatorname{error} \ll q$$

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- **<u>Goal</u>**: distinguish (A, $\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$) from uniform (A, \mathbf{b})

$$m \left\{ \begin{pmatrix} \vdots \\ \mathbf{A}^t \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- **<u>Goal</u>**: distinguish $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ from uniform (\mathbf{A}, \mathbf{b})

$$m \left\{ \begin{pmatrix} \vdots \\ \mathbf{A}^t \\ \vdots \end{pmatrix} , \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$

$$\sqrt{n} \le \operatorname{error} \ll q$$

Recall: as hard as worst-case lattice problems [Regev'05,P'09]

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- **Goal:** distinguish $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ from uniform (\mathbf{A}, \mathbf{b})

- Recall: as hard as worst-case lattice problems [Regev'05,P'09]
- Observe: given short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{z} = \mathbf{0} \mod q$,

$$\langle \mathbf{z}, \mathbf{b} \rangle = \langle \mathbf{A}\mathbf{z}, \mathbf{s} \rangle + \langle \mathbf{z}, \mathbf{e} \rangle \approx 0 \mod q$$

 $\langle \mathbf{z}, \mathbf{b} \rangle = \text{uniform mod } q$
'Learning With Errors' (LWE) Problem [Regev'05]

- Secret $\mathbf{s} \in \mathbb{Z}_q^n$, uniform $\mathbf{a}_i \in \mathbb{Z}_q^n$ (here q is prime)
- **<u>Goal</u>**: distinguish $(\mathbf{A}, \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e})$ from uniform (\mathbf{A}, \mathbf{b})

Recall: as hard as worst-case lattice problems [Regev'05,P'09]

• Observe: given short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that $A\mathbf{z} = \mathbf{0} \mod q$,

$$\langle \mathbf{z}, \mathbf{b} \rangle = \langle \mathbf{A}\mathbf{z}, \mathbf{s} \rangle + \langle \mathbf{z}, \mathbf{e} \rangle \approx 0 \mod q$$

 $\langle \mathbf{z}, \mathbf{b} \rangle = \text{uniform mod } q$

 $\Longrightarrow z$ is a 'weak' trapdoor, for distinguishing LWE from uniform

$$\xrightarrow{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}$$

(public key)

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\longrightarrow}$$

(public key)

$$\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}$$

(ciphertext 'preamble')

$$\xrightarrow{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}$$

(public key)

$$b' = \langle \mathbf{u}, \mathbf{s} \rangle + e'$$

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\text{(authin law)}}$$

(public key)

('pad')

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\text{(aublia (au))}}$$

(public key)

$$\langle \mathbf{x}, \mathbf{b} \rangle \approx \langle \mathbf{u}, \mathbf{s} \rangle \qquad \underbrace{\begin{array}{c} \mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e} \\ (\text{ciphertext 'preamble'}) \end{array}}_{('payload')} \qquad \underbrace{\begin{array}{c} \mathbf{b}' + \mathsf{bit} \cdot \lfloor \frac{q}{2} \rfloor \\ \mathbf{b}' = \langle \mathbf{u}, \mathbf{s} \rangle + e' \end{array}}_{('payload')}$$

('pad')

$$\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})$$

(public key)

$$\underbrace{\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}}_{\text{(ciphertext 'preamble')}}$$

$$\langle \mathbf{x}, \mathbf{b} \rangle \approx \langle \mathbf{u}, \mathbf{s} \rangle \qquad \underbrace{\begin{array}{c} b' + \mathsf{bit} \cdot \lfloor \frac{q}{2} \rfloor \\ \text{(payload')} \end{array}}_{\text{('pad')}} \qquad \underbrace{\begin{array}{c} b' = \langle \mathbf{u}, \mathbf{s} \rangle + e' \\ \end{array}}_{\text{('pad')}} \\ \hline \end{array}$$

$$\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})$$

(public key)

$$\underbrace{\mathbf{b} = \mathbf{A}^t \mathbf{s} + \mathbf{e}}_{\text{(ciphertext 'preamble')}}$$

$$|\mathbf{x}, \mathbf{b}\rangle \approx \langle \mathbf{u}, \mathbf{s} \rangle \qquad \stackrel{b' + \mathsf{bit} \cdot \lfloor \frac{q}{2} \rfloor}{(\mathsf{'payload'})} \qquad \boxed{b' = \langle \mathbf{u}, \mathbf{s} \rangle + e'}_{(\mathsf{'pad'})}$$

 $\bigwedge^{\bullet} ? (\mathbf{A}, \mathbf{u}, \mathbf{b}, b')$

ID-Based Encryption

Part 3:

Bonsai Trees: Removing the Random Oracle and More Advanced Applications

CONTROLLED or NATURAL?

CONTROLLED or NATURAL?

Bonsai: collection of techniques for selective control of tree growth, for the creation of natural aesthetic forms

Bonsai Trees in Cryptography

1 Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)

Bonsai Trees in Cryptography

1 Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)

2 Techniques for selective 'control' of growth & delegation of control

Bonsai Trees in Cryptography

Hierarchy of TDFs

(Functions specified by public key, random oracle, interaction, ...)

- 2 Techniques for selective 'control' of growth & delegation of control
- Applications: 'hash-and-sign,' (hierarchical) IBE
 all without random oracles!

1 Controlling f_v (knowing trapdoor) \implies controlling f_{vz} , for all z.

- **1** Controlling f_v (knowing trapdoor) \implies controlling f_{vz} , for all z.
- 2 Can grow a controlled branch off of any uncontrolled node.

- **1** Controlling f_v (knowing trapdoor) \implies controlling f_{vz} , for all z.
- 2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to answer queries.)

- **1** Controlling f_v (knowing trapdoor) \implies controlling f_{vz} , for all z.
- 2 Can grow a controlled branch off of any uncontrolled node.

(Allows simulation to embed its challenge into the tree, while still being able to answer queries.)

3 Can delegate control of any subtree, w/o endangering ancestors.

Property 1: Control $f_{\nu} \Rightarrow$ **Control** $f_{\nu z}$

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

Property 1: Control $f_{v} \Rightarrow$ **Control** f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

• Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \mod q.$$

Property 1: Control $f_v \Rightarrow$ **Control** f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

• Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \mod q.$$

(In fact, X need not be short — we have $\tilde{S} = \left(\begin{smallmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{smallmatrix} \right)$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 1: Control $f_{\nu} \Rightarrow$ **Control** $f_{\nu z}$

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

• Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \mod q.$$

(In fact, X need not be short — we have $\tilde{S} = \left(\begin{smallmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{smallmatrix} \right)$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 2: Grow a Controlled Branch

Given (uncontrolled) A_1 , create controlled extension $A = [A_1 | A_2]$.

Property 1: Control $f_{\nu} \Rightarrow$ **Control** $f_{\nu z}$

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

• Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \mod q.$$

(In fact, X need not be short — we have $\tilde{S} = \left(\begin{smallmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{smallmatrix} \right)$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 2: Grow a Controlled Branch

Given (uncontrolled) A_1 , create controlled extension $A = [A_1 | A_2]$.

• Just generate A_2 with short basis S_2 .

Then use above technique to control A !

Property 1: Control $f_{v} \Rightarrow$ **Control** f_{vz}

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

• Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \mod q.$$

(In fact, X need not be short — we have $\tilde{S} = \left(\begin{smallmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{smallmatrix} \right)$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 3: Securely Delegate Control ?

Basis S contains S_1 , so unsafe to reveal!

Property 1: Control $f_{\nu} \Rightarrow$ **Control** $f_{\nu z}$

Short basis S_1 for $A_1 \Rightarrow$ short basis S for $A = [A_1 | A_2]$, for any A_2 .

• Using S_1 , compute a short integer soln X to $A_1X = -A_2 \mod q$. Then:

$$\mathbf{A} \cdot \mathbf{S} = [\mathbf{A}_1 \mid \mathbf{A}_2] \cdot \underbrace{\begin{bmatrix} \mathbf{S}_1 & \mathbf{X} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}}_{\mathbf{S}} = \mathbf{0} \mod q.$$

(In fact, X need not be short — we have $\tilde{S} = \begin{pmatrix} \tilde{S}_1 & 0 \\ 0 & I \end{pmatrix}$, so $\|\tilde{S}\| = \|\tilde{S}_1\|$.)

Property 3: Securely Delegate Control ?

Basis S contains S₁, so unsafe to reveal!
Solution: Use S to sample new *Gaussian* basis.

Other Applications of Today's Tools

- 1 Noninteractive (Statistical) Zero Knowledge [PV'08]
- 2 Universally Composable Oblivious Transfer [PVW'08]
- 3 CCA-Secure Encryption [P'09]
- Many-add, Single-mult Homomorphic Encryption [GHV'10]
- 6 Bonsai trees with smaller keys [ABB'10]
- Group signatures [GKV'10]
- (Bi-)Deniable Encryption [OPW'11]
- 8 Whatever you can invent!

Closing Thoughts

A hierarchy of trapdoors for lattices:

Short vector (decryption)

- < Short basis (sampling)
 - < Short basis for 'ancestor' lattice (delegation)

 $< \cdots$

Closing Thoughts

A hierarchy of trapdoors for lattices:

Short vector (decryption)

- < Short basis (sampling)
 - < Short basis for 'ancestor' lattice (delegation)

 $< \cdots$

Thanks!

