Symbolic Computations and Post-Quantum Cryptography Online Seminar

Multivariate Public Key Cryptography

Jintai Ding
University of Cincinnati \& Southern Chinese University of technology

Feb. 2, 2011

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Challenges

Happy Chinese New Year!

Thank the organizers, in particular, (Alex Myasnikov) ${ }^{2}$.

Thank the generous support of the Charles Phelps Taft Memorial Fund and the Taft Family.

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Challenges

PKC and Quantum computer

■ 25195908475657893494027183240048398571429282126204 03202777713783604366202070759555626401852588078440 69182906412495150821892985591491761845028084891200 72844992687392807287776735971418347270261896375014 97182469116507761337985909570009733045974880842840 17974291006424586918171951187461215151726546322822 16869987549182422433637259085141865462043576798423 38718477444792073993423658482382428119816381501067 48104516603773060562016196762561338441436038339044 14952634432190114657544454178424020924616515723350 77870774981712577246796292638635637328991215483143 81678998850404453640235273819513786365643912120103 97122822120720357

What is this number?

PKC and Quantum computer

- The number for Microsoft updates

PKC and Quantum computer

- The number for Microsoft updates

■ Digital signature based on RSA

PKC and Quantum computer

- Mathematics behind: integer factorization

$$
\begin{gathered}
n=p q \\
15=3 \times 5
\end{gathered}
$$

PKC and Quantum computer

- Mathematics behind: integer factorization

$$
\begin{gathered}
n=p q \\
15=3 \times 5
\end{gathered}
$$

- The concept behind:

Public key Cryptography

PKC and Quantum computer

- What is PKC?
- What is PKC?
- Traditionally the information is symmetric.
- What is PKC?
- Traditionally the information is symmetric.
- PKC is asymmetric

PKC

- What is PKC?

■ Traditionally the information is symmetric.

- PKC is asymmetric
- There are two sets of keys, one public and one private
- What is PKC?
- Traditionally the information is symmetric.
- PKC is asymmetric
- There are two sets of keys, one public and one private
- Encryption: Public is for encryption and private for decryption
- What is PKC?

■ Traditionally the information is symmetric.

- PKC is asymmetric
- There are two sets of keys, one public and one private
- Encryption: Public is for encryption and private for decryption

■ Digital Signature: Public is for verification and private for signing

- What is PKC?

■ Traditionally the information is symmetric.

- PKC is asymmetric
- There are two sets of keys, one public and one private
- Encryption: Public is for encryption and private for decryption

■ Digital Signature: Public is for verification and private for signing

- RSA: n is public and p, q is private.
- What is PKC?

■ Traditionally the information is symmetric.

- PKC is asymmetric
- There are two sets of keys, one public and one private
- Encryption: Public is for encryption and private for decryption

■ Digital Signature: Public is for verification and private for signing

- RSA: n is public and p, q is private.
- One knows how to factor n, one can defeat RSA

PKC and Quantum computer

■ Quantum computer: using basic particles and quantum mechanics principles to perform computations

PKC and Quantum computer

■ Quantum computer: using basic particles and quantum mechanics principles to perform computations

- In 1995, Peter Shor at IBM showed theoretically that it can solve a family of mathematical problems including factoring.

PKC and Quantum computer

- Can quantum computer really work?

PKC and Quantum computer

- Can quantum computer really work?

15 million dollars to show that

$$
15=3 \times 5 .
$$

PKC and Quantum computer

- Can quantum computer really work?

15 million dollars to show that

$$
15=3 \times 5 .
$$

- The problem of scaling People have different opinions.

PKC and Quantum computer

■ PQC - to prepare for the future of quantum computer world

PKC and Quantum computer

- PQC - to prepare for the future of quantum computer world

■ Ubiquitous computing world .

■ Post-quantum cryptography
Public key cryptosystems that potentially could resist the future quantum computer attacks. Currently there are 4 main families.

■ Post-quantum cryptography
Public key cryptosystems that potentially could resist the future quantum computer attacks. Currently there are 4 main families.

- 1)Code-based public key cryptography Error correcting codes

■ Post-quantum cryptography
Public key cryptosystems that potentially could resist the future quantum computer attacks. Currently there are 4 main families.

- 1)Code-based public key cryptography Error correcting codes
- 2) Hash-based public key cryptography Hash-tree construction

■ Post-quantum cryptography
Public key cryptosystems that potentially could resist the future quantum computer attacks. Currently there are 4 main families.
■ 1)Code-based public key cryptography Error correcting codes

- 2) Hash-based public key cryptography Hash-tree construction

■ 3) Lattice-based public key cryptography Shortest and nearest vector problems

■ Post-quantum cryptography
Public key cryptosystems that potentially could resist the future quantum computer attacks. Currently there are 4 main families.

- 1)Code-based public key cryptography Error correcting codes
- 2) Hash-based public key cryptography Hash-tree construction

■ 3) Lattice-based public key cryptography Shortest and nearest vector problems
■ 4) Multivariate Public Key Cryptography

What is a MPKC?

■ Multivariate Public Key Cryptosystems

- Cryptosystems, whose public keys are a set of multivariate functions

What is a MPKC?

■ Multivariate Public Key Cryptosystems

- Cryptosystems, whose public keys are a set of multivariate functions
- The public key is given as:

$$
G\left(x_{1}, \ldots, x_{n}\right)=\left(G_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, G_{m}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Here the G_{i} are multivariate $\left(x_{1}, \ldots, x_{n}\right)$ polynomials over a finite field.

Encryption

- Any plaintext $M=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ has the ciphertext:

$$
G(M)=G\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
$$

Encryption

- Any plaintext $M=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ has the ciphertext:

$$
G(M)=G\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
$$

■ To decrypt the ciphertext $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$, one needs to know a secret (the secret key), so that one can invert the map to find the plaintext $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$.

Toy example

- We use the finite field $k=G F[2] /\left(x^{2}+x+1\right)$ with 2^{2} elements.

Toy example

- We use the finite field $k=G F[2] /\left(x^{2}+x+1\right)$ with 2^{2} elements.
- We denote the elements of the field by the set $\{0,1,2,3\}$ to simplify the notation.
Here 0 represent the 0 in $k, 1$ for 1,2 for x, and 3 for $1+x$. In this case, $1+3=2$ and $2 * 3=1$.

A toy example

$$
\begin{array}{lc}
G_{0}\left(x_{1}, x_{2}, x_{3}\right)= & 1+x_{2}+2 x_{0} x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2} \\
G_{1}\left(x_{1}, x_{2}, x_{3}\right)= & 1+3 x_{0}+2 x_{1}+x_{2}+x_{0}^{2}+x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2} \\
G_{2}\left(x_{1}, x_{2}, x_{3}\right)= & 3 x_{2}+x_{0}^{2}+3 x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}
\end{array}
$$

A toy example

$$
\begin{array}{cc}
G_{0}\left(x_{1}, x_{2}, x_{3}\right)= & 1+x_{2}+2 x_{0} x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2} \\
G_{1}\left(x_{1}, x_{2}, x_{3}\right)= & 1+3 x_{0}+2 x_{1}+x_{2}+x_{0}^{2}+x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2} \\
G_{2}\left(x_{1}, x_{2}, x_{3}\right)= & 3 x_{2}+x_{0}^{2}+3 x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}
\end{array}
$$

■ For example, if the plaintext is: $x_{0}=1, x_{1}=2, x_{2}=3$, then we can plug into G_{1}, G_{2} and G_{3} to get the ciphertext $y_{0}=0$, $y_{1}=0, y_{2}=1$.

A toy example

$$
\begin{array}{cc}
G_{0}\left(x_{1}, x_{2}, x_{3}\right)= & 1+x_{2}+2 x_{0} x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2} \\
G_{1}\left(x_{1}, x_{2}, x_{3}\right)= & 1+3 x_{0}+2 x_{1}+x_{2}+x_{0}^{2}+x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2} \\
G_{2}\left(x_{1}, x_{2}, x_{3}\right)= & 3 x_{2}+x_{0}^{2}+3 x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}
\end{array}
$$

■ For example, if the plaintext is: $x_{0}=1, x_{1}=2, x_{2}=3$, then we can plug into G_{1}, G_{2} and G_{3} to get the ciphertext $y_{0}=0$, $y_{1}=0, y_{2}=1$.

- This is a bijective map and we can invert it easily. This example is based on the Matsumoto-Imai cryptosystem.

Theoretical Foundation

■ Direct attack is to solve the set of equations:

$$
G(M)=G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

Theoretical Foundation

■ Direct attack is to solve the set of equations:

$$
G(M)=G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
$$

- Solving a set of n randomly chosen equations (nonlinear) with n variables is NP-complete, though this does not necessarily ensure the security of the systems.

Quadratic Constructions

■ 1) Efficiency considerations lead to mainly quadratic constructions.

$$
G_{l}\left(x_{1}, . . x_{n}\right)=\sum_{i, j} \alpha_{l i j} x_{i} x_{j}+\sum_{i} \beta_{l i} x_{i}+\gamma_{l}
$$

Quadratic Constructions

■ 1) Efficiency considerations lead to mainly quadratic constructions.

$$
G_{l}\left(x_{1}, . . x_{n}\right)=\sum_{i, j} \alpha_{l i j} x_{i} x_{j}+\sum_{i} \beta_{l i} x_{i}+\gamma_{l} .
$$

■ 2) Mathematical structure consideration: Any set of high degree polynomial equations can be reduced to a set of quadratic equations.

$$
x_{1} x_{2} x_{3}=5
$$

is equivalent to

$$
\begin{array}{r}
x_{1} x_{2}-y=0 \\
y x_{3}=5 .
\end{array}
$$

The view from the history of Mathematics(Diffie in Paris)

■ RSA - Number Theory - the 18th century mathematics

The view from the history of Mathematics(Diffie in Paris)

- RSA - Number Theory - the 18th century mathematics

■ ECC - Theory of Elliptic Curves - the 19th century mathematics

The view from the history of Mathematics(Diffie in Paris)

■ RSA - Number Theory - the 18th century mathematics
■ ECC - Theory of Elliptic Curves - the 19th century mathematics
■ Multivariate Public key cryptosystem - Algebraic Geometry the 20th century mathematics
Algebraic Geometry - Theory of Polynomial Rings

Early works

■ Early attempts by Diffie, Fell, Tsujii, Matsumoto, Imai, Ong, Schnorr, Shamir etc

Early works

■ Early attempts by Diffie, Fell, Tsujii, Matsumoto, Imai, Ong, Schnorr, Shamir etc

■ Fast development in the late 1990s.

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Challenges

Multivariate Signature schemes

- Public key:

$$
G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Multivariate Signature schemes

- Public key:
$G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$.
■ Private key: a way to compute G^{-1}.

Multivariate Signature schemes

- Public key:
$G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$.
■ Private key: a way to compute G^{-1}.
- Signing a hash of a document:

Multivariate Signature schemes

- Public key:
$G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$.
■ Private key: a way to compute G^{-1}.
■ Signing a hash of a document: $\left(x_{1}, \ldots, x_{n}\right) \in G^{-1}\left(y_{1}, \ldots, y_{m}\right)$.

Multivariate Signature schemes

■ Public key:
$G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$.
■ Private key: a way to compute G^{-1}.
■ Signing a hash of a document: $\left(x_{1}, \ldots, x_{n}\right) \in G^{-1}\left(y_{1}, \ldots, y_{m}\right)$.
■ Verifying: $\left(y_{1}, \ldots, y_{m}\right) \stackrel{?}{=} G\left(x_{1}, \ldots, x_{n}\right)$.
k, a small finite field.

A toy example over GF(3)

$$
\begin{aligned}
& G_{1}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{3}+x_{1} x_{2}+x_{3}^{2} \quad \text { Hash: } \\
& G_{2}\left(x_{1}, x_{2}, x_{3}\right)=2+x_{1}+2 x_{2} x_{3}+x_{2} \quad\left(y_{1}, y_{2}, y_{3}\right)=(0,1,1) . \\
& G_{3}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{2}+x_{1} x_{3}+x_{1}^{2}
\end{aligned}
$$

A toy example over GF(3)

$$
\begin{aligned}
& G_{1}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{3}+x_{1} x_{2}+x_{3}^{2} \quad \text { Hash: } \\
& G_{2}\left(x_{1}, x_{2}, x_{3}\right)=2+x_{1}+2 x_{2} x_{3}+x_{2} \quad\left(y_{1}, y_{2}, y_{3}\right)=(0,1,1) . \\
& G_{3}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{2}+x_{1} x_{3}+x_{1}^{2}
\end{aligned}
$$

A signature: $\left(x_{1}, x_{2}, x_{3}\right)=(2,0,1)$

A toy example over GF(3)

$G_{1}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{3}+x_{1} x_{2}+x_{3}^{2} \quad$ Hash:
$G_{2}\left(x_{1}, x_{2}, x_{3}\right)=2+x_{1}+2 x_{2} x_{3}+x_{2} \quad\left(y_{1}, y_{2}, y_{3}\right)=(0,1,1)$.
$G_{3}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{2}+x_{1} x_{3}+x_{1}^{2}$
A signature: $\left(x_{1}, x_{2}, x_{3}\right)=(2,0,1)$

$$
\begin{aligned}
& G_{1}(2,0,1) \quad=1+1+2 \times 0+1=0 \\
& G_{2}(2,0,1)=2+2+2 \times 0 \times 1+0=1 \\
& G_{3}(2,0,1) \quad=1+0+2 \times 1+1=1
\end{aligned}
$$

Security: polynomial solving.

■ Signature for $\left(y_{1}, y_{2}, y_{3}\right)=(0,0,0)$?

Security: polynomial solving.

■ Signature for $\left(y_{1}, y_{2}, y_{3}\right)=(0,0,0)$?

$$
\begin{aligned}
& G_{1}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{3}+x_{1} x_{2}+x_{3}^{2}=0 \\
& G_{2}\left(x_{1}, x_{2}, x_{3}\right)=2+x_{1}+2 x_{2} x_{3}+x_{2}=0 \\
& G_{3}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{2}+x_{1} x_{3}+x_{1}^{2}=0
\end{aligned}
$$

Security: polynomial solving.

■ Signature for $\left(y_{1}, y_{2}, y_{3}\right)=(0,0,0)$?

$$
\begin{aligned}
& G_{1}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{3}+x_{1} x_{2}+x_{3}^{2}=0 \\
& G_{2}\left(x_{1}, x_{2}, x_{3}\right)=2+x_{1}+2 x_{2} x_{3}+x_{2}=0 \\
& G_{3}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{2}+x_{1} x_{3}+x_{1}^{2}=0
\end{aligned}
$$

■ Direct attack: difficulty of solving a set of nonlinear polynomial equations over a finite field.

How to construct G?

■ A scheme by Kipnis, Patarin and Goubin 1999. (Eurocrypt 1999)

How to construct G?

■ A scheme by Kipnis, Patarin and Goubin 1999. (Eurocrypt 1999)

- $G=F \circ L$.
F : nonlinear, easy to compute F^{-1}.
L : invertible linear, to hide the structure of F.

Unbalanced Oil-vinegar (uov) schemes

$$
\square F=\left(f_{1}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right), \cdots, f_{o}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right)\right)
$$

Unbalanced Oil-vinegar (uov) schemes

$\square F=\left(f_{1}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right), \cdots, f_{o}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right)\right)$.
$f_{l}\left(x_{1}, ., x_{o}, x_{1}^{\prime}, ., x_{v}^{\prime}\right)=\sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l}$
Oil variables: x_{1}, \ldots, x_{o}.

Vinegar variables: $x_{1}^{\prime}, \ldots, x_{v}^{\prime}$.

How to invert F?

$$
\begin{aligned}
& f_{l}(x_{1}, ., x_{o}, \underbrace{x_{1}^{\prime}, ., x_{v}^{\prime}}_{\text {fix the values }})= \\
& \sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l}
\end{aligned}
$$

How to invert F?

$$
\begin{aligned}
& f_{l}\left(x_{1}, ., x_{o}, x_{1}^{\prime}, ., x_{v}^{\prime}\right)= \\
& \sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e .
\end{aligned}
$$

How to invert F?

$$
\begin{aligned}
& f_{l}\left(x_{1}, ., x_{o}, x_{1}^{\prime}, ., x_{v}^{\prime}\right)= \\
& \sum a_{l i} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l} .
\end{aligned}
$$

- F : linear in Oil variables: $x_{1}, . ., x_{0}$.
$\Longrightarrow F$: easy to invert.

Security analysis

■ $v=o$ and $v \gg 0$ not secure

Security analysis

■ $v=o$ and $v \gg o$ not secure

- $v=2 o, 3 o$

Security analysis

■ $v=o$ and $v \gg o$ not secure
■ $v=2 o, 3 o$

- Direct attacks does not work.

Security analysis

- The mathematical problem to find equivalent secret keys find the common null subspace spaces of a set of quadratic forms.

0	..	0	$*$..	$*$
.	.	0	$*$..	$*$
.	.	0	$*$..	$*$
.	.	.	$*$..	$*$
0	..	0	$*$..	$*$
$*$..	$*$	$*$..	$*$
$*$..	$*$	$*$..	$*$

Security analysis

- The mathematical problem to find equivalent secret keys find the common null subspace spaces of a set of quadratic forms.

- The problem above can also be transformed into solving a set of quadratic equations.

Rainbow - Ding, Schmidt, Yang etc - ACNS 05,06,07,08

■ Make F "small" without reducing security.

Rainbow - Ding, Schmidt, Yang etc - ACNS 05,06,07,08

- Make F "small" without reducing security.

$$
\begin{gathered}
G=\underbrace{L_{1}}_{\text {Hide the separation }} \circ F \circ \underbrace{L_{2}}_{\text {Hide } L_{1} \circ F} . \\
F=\left(F_{1}, F_{2}\right)
\end{gathered}
$$

Rainbow - Ding, Schmidt, Yang etc - ACNS 05,06,07,08

■ Make F "small" without reducing security.

$$
G=\underbrace{L_{1}}_{\text {Hide the separation }} \circ F \circ \underbrace{L_{2}}_{\text {Hide } L_{1} \circ F}
$$

$$
F=\left(F_{1}, F_{2}\right)
$$

- Rainbow $(18,12,12)$ over $\operatorname{GF}\left(2^{8}\right)$.

$$
\begin{aligned}
& F_{1}: o_{1}=12, v_{1}=18 \\
& F_{2}: o_{2}=12, v_{2}=12+18=30
\end{aligned}
$$

Rainbow

- Rainbow $(18,12,12)$

Rainbow

- Rainbow $(18,12,12)$
- Signature 400 bits Hash 336 bits

Implementations

■ IC for Rainbow: 804 cycles
A joint work of Cincinnati and Bochum.(ASAP 2008)

Implementations

- IC for Rainbow: 804 cycles

A joint work of Cincinnati and Bochum.(ASAP 2008)

- FPGA implementation by the research group of Professor Paar at Bochum (CHES 2009) Beat ECC in area and speed.

Side channel attack on Rainbow

■ Natural Side channel attack resistance.

Side channel attack on Rainbow

■ Natural Side channel attack resistance.

- Further optimizations.

Side channel attack on Rainbow

■ Natural Side channel attack resistance.

- Further optimizations.

■ Real implementations - Yang and Cheng In Taiwan.

Side channel attack on Rainbow

■ Natural Side channel attack resistance.

- Further optimizations.

■ Real implementations - Yang and Cheng In Taiwan.

- A good candidate for light-weight crypto for small devices like RFID.

Security

Security

- UOV: not broken since 1999.
- Rainbow - MinRank problem

Pros and Cons

Pros and Cons

- Computationally very efficient

■ Large public key size

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Challenges

Notation

- k is a small finite field with $|k|=q$

Notation

■ k is a small finite field with $|k|=q$

- $\bar{K}=k[x] /(g(x))$, a degree n extension of k.

Notation

■ k is a small finite field with $|k|=q$

- $\bar{K}=k[x] /(g(x))$, a degree n extension of k.

■ The standard k-linear invertible map $\phi: \bar{K} \longrightarrow k^{n}$, and $\phi^{-1}: k^{n} \longrightarrow \bar{K}$.

The idea of "BIG" field

■ Proposed in 1988 by Matsumoto-Imai.

The idea of "BIG" field

■ Proposed in 1988 by Matsumoto-Imai.

- Build up a map F over \bar{K} :

$$
\bar{F}=L_{1} \circ \phi \circ F \circ \phi^{-1} \circ L_{2} .
$$

where the L_{i} are randomly chosen invertible affine maps over k^{n}

The idea of "BIG" field

■ Proposed in 1988 by Matsumoto-Imai.

- Build up a map F over \bar{K} :

$$
\bar{F}=L_{1} \circ \phi \circ F \circ \phi^{-1} \circ L_{2}
$$

where the L_{i} are randomly chosen invertible affine maps over k^{n}

- The L_{i} are used to "hide" \bar{F}.

The idea of "BIG" field

■ Proposed in 1988 by Matsumoto-Imai.

- Build up a map F over \bar{K} :

$$
\bar{F}=L_{1} \circ \phi \circ F \circ \phi^{-1} \circ L_{2}
$$

where the L_{i} are randomly chosen invertible affine maps over k^{n}

- The L_{i} are used to "hide" \bar{F}.
- IP problem.

Encryption

- The MI construction:

$$
F: X \longmapsto X^{q^{\theta}+1}
$$

Encryption

- The MI construction:

$$
F: X \longmapsto X^{q^{\theta}+1}
$$

■ Let $\tilde{F}\left(x_{1}, \ldots, x_{n}\right)=\phi \circ F \circ \phi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left(\tilde{F}_{1}, \ldots, \tilde{F}_{n}\right)$.

Encryption

- The MI construction:

$$
F: X \longmapsto X^{q^{\theta}+1}
$$

■ Let $\tilde{F}\left(x_{1}, \ldots, x_{n}\right)=\phi \circ F \circ \phi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left(\tilde{F}_{1}, \ldots, \tilde{F}_{n}\right)$.

- The $\tilde{F}_{i}=\tilde{F}_{i}\left(x_{1}, \ldots, x_{n}\right)$ are quadratic polynomials in n variables. Why quadratic?

$$
X^{q^{\theta}+1}=X^{q^{\theta}} \times X
$$

Decryption

- The condition: $\operatorname{gcd}\left(q^{\theta}+1, q^{n}-1\right)=1$, ensures the invertibility of the map for purposes of decryption. It requires that k must be of characteristic 2.

Decryption

- The condition: $\operatorname{gcd}\left(q^{\theta}+1, q^{n}-1\right)=1$, ensures the invertibility of the map for purposes of decryption. It requires that k must be of characteristic 2.
- $F^{-1}(X)=X^{t}$ such that:

$$
t \times\left(q^{\theta}+1\right) \equiv 1 \quad\left(\bmod q^{n}-1\right)
$$

Decryption

- The condition: $\operatorname{gcd}\left(q^{\theta}+1, q^{n}-1\right)=1$, ensures the invertibility of the map for purposes of decryption. It requires that k must be of characteristic 2.
- $F^{-1}(X)=X^{t}$ such that:

$$
t \times\left(q^{\theta}+1\right) \equiv 1 \quad\left(\bmod q^{n}-1\right)
$$

- The public key includes the field structure of k, θ and $\bar{F}=\left(\bar{F}_{1}, . ., \bar{F}_{n}\right)$. The secret keys are L_{1} and L_{2}.

Decryption

- The condition: $\operatorname{gcd}\left(q^{\theta}+1, q^{n}-1\right)=1$, ensures the invertibility of the map for purposes of decryption. It requires that k must be of characteristic 2.
- $F^{-1}(X)=X^{t}$ such that:

$$
t \times\left(q^{\theta}+1\right) \equiv 1 \quad\left(\bmod q^{n}-1\right)
$$

- The public key includes the field structure of k, θ and $\bar{F}=\left(\bar{F}_{1}, . ., \bar{F}_{n}\right)$. The secret keys are L_{1} and L_{2}.
- The first toy example is produced by setting $n=3$ and $\theta=2$.

Decryption

- The condition: $\operatorname{gcd}\left(q^{\theta}+1, q^{n}-1\right)=1$, ensures the invertibility of the map for purposes of decryption. It requires that k must be of characteristic 2.
- $F^{-1}(X)=X^{t}$ such that:

$$
t \times\left(q^{\theta}+1\right) \equiv 1 \quad\left(\bmod q^{n}-1\right)
$$

- The public key includes the field structure of k, θ and $\bar{F}=\left(\bar{F}_{1}, . ., \bar{F}_{n}\right)$. The secret keys are L_{1} and L_{2}.
- The first toy example is produced by setting $n=3$ and $\theta=2$.
- This scheme is defeated by linearization equation method by Patarin 1995.

HFE by Patarin etc

- The only difference from MI is that F is replaced by a new map given by:

$$
F(X)=\sum_{i, j=0}^{D} a_{i j} X^{q^{i}+q^{j}}+\sum_{i=0}^{D} b_{i} X^{q^{i}}+c
$$

HFE by Patarin etc

- The only difference from MI is that F is replaced by a new map given by:

$$
F(X)=\sum_{i, j=0}^{D} a_{i j} X^{q^{i}+q^{j}}+\sum_{i=0}^{D} b_{i} X^{q^{i}}+c
$$

■ Due to the work of Kipnis and Shamir, Faugere, Joux, D cannot be too small. Therefore, the system is much slower.

HFE by Patarin etc

- The only difference from MI is that F is replaced by a new map given by:

$$
F(X)=\sum_{i, j=0}^{D} a_{i j} X^{q^{i}+q^{j}}+\sum_{i=0}^{D} b_{i} X^{q^{i}}+c
$$

- Due to the work of Kipnis and Shamir, Faugere, Joux, D cannot be too small. Therefore, the system is much slower.
■ D can not too large due to the inversion of using Berlakemp algorithms of solving one variable equations.

Internal Perturbation

- (Internal) Perturbation was introduced at PKC 2004 as a general method to improve the security of multivariate public key cryptosystems.

Internal Perturbation

■ (Internal) Perturbation was introduced at PKC 2004 as a general method to improve the security of multivariate public key cryptosystems.

- Construction - small-scale "noise" is added to the system in a controlled way so as to not fundamentally alter the main structure, but yet substantially increase the "entropy."

Internal Perturbation

- Let r be a small integer and

$$
\begin{aligned}
z_{1}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{j=1}^{n} \alpha_{j 1} x_{j}+\beta_{1} \\
& \vdots \\
z_{r}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{j=1}^{n} \alpha_{j r} x_{j}+\beta_{r}
\end{aligned}
$$

be a set of randomly chosen affine linear functions in the x_{i} over k^{n} such that the $z_{j}-\beta_{j}$ are linearly independent.

Internal Perturbation

- Let r be a small integer and

$$
\begin{aligned}
z_{1}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{j=1}^{n} \alpha_{j 1} x_{j}+\beta_{1} \\
& \vdots \\
z_{r}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{j=1}^{n} \alpha_{j r} x_{j}+\beta_{r}
\end{aligned}
$$

be a set of randomly chosen affine linear functions in the x_{i} over k^{n} such that the $z_{j}-\beta_{j}$ are linearly independent.

- We can use these linear functions to create quadratic "perturbation" in HFE (including MI) systems.

IP of MI

Figure: Structure of Perturbation of the Matsumoto-Imai System.

Decryption

■ We need to a search of size of q^{r}, therefore slower.

Decryption

■ We need to a search of size of q^{r}, therefore slower.
■ We need to use Plus Method, Adding random polynomial, to help it to resist differential attacks.

Decryption

■ We need to a search of size of q^{r}, therefore slower.
■ We need to use Plus Method, Adding random polynomial, to help it to resist differential attacks.
■ Despite the cost of the search, it is still efficient.

Efficient schemes

■ PMI+

Efficient schemes

■ PMI+

- IPHFE+ (odd characteristics)

Efficient schemes

■ PMI+

- IPHFE+ (odd characteristics)
- IPMHFE+ (odd characteristics)

Other works

■ Quartz - HFEV- - very short signature

Other works

■ Quartz - HFEV- - very short signature
■ MHFEv- short but much more efficinet schemes

Other works

- Quartz - HFEV- - very short signature

■ MHFEv- short but much more efficinet schemes

- MFE, TTM

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Challenges

Direct attacks

■ New polynomial solving algorithms, MXL, MGB, ZZ.

Direct attacks

■ New polynomial solving algorithms, MXL, MGB, ZZ.
■ Complexity analysis - recent work of Dubois, Gamma

Direct attacks

■ New polynomial solving algorithms, MXL, MGB, ZZ.
■ Complexity analysis - recent work of Dubois, Gamma
■ SAT solver is not really a threat but needs more understanding

Direct attacks

■ New polynomial solving algorithms, MXL, MGB, ZZ.
■ Complexity analysis - recent work of Dubois, Gamma
■ SAT solver is not really a threat but needs more understanding

- The connection with algebraic cryptanalysis of symmetric ciphers

Direct attacks

■ New polynomial solving algorithms, MXL, MGB, ZZ.
■ Complexity analysis - recent work of Dubois, Gamma
■ SAT solver is not really a threat but needs more understanding

- The connection with algebraic cryptanalysis of symmetric ciphers
- Quantum computer attacks?

Provable security

- A very difficult question

Provable security

- A very difficult question
- Some new results are coming out.

New constructions

■ New algebraic structure to explore Heindl, Gao - Diophantine Equations

New constructions

■ New algebraic structure to explore Heindl, Gao - Diophantine Equations

- Other structures
- Thank you very much!
- Questions?

