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RSA – 2003 Turing prize

Diffie-Hellman – inventors of the idea of
PKC
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Traditionally the information is symmetric.

PKC is asymmetric

There are two sets of keys, one public and one private

Encryption: Public is for encryption and private for decryption

Digital Signature: Public is for verification and private for
signing

RSA: n is public and p,q is private.

One knows how to factor n, one can defeat RSA
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R. Feynman

In 1995, Peter Shor at IBM showed theoretically that it can
solve a family of mathematical problems including factoring.
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Post-quantum cryptography
Public key cryptosystems that potentially could resist the
future quantum computer attacks. Currently there are 4 main
families.

1)Code-based public key cryptography
Error correcting codes

2) Hash-based public key cryptography
Hash-tree construction

3) Lattice-based public key cryptography
Shortest and nearest vector problems

4) Multivariate Public Key Cryptography
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What is a MPKC?

Multivariate Public Key Cryptosystems
- Cryptosystems, whose public keys are a set of multivariate
functions

The public key is given as:

G (x1, ..., xn) = (G1(x1, ..., xn), ...,Gm(x1, ..., xn)).

Here the Gi are multivariate (x1, ..., xn) polynomials over a
finite field.
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Encryption

Any plaintext M = (x ′1, ..., x
′
n) has the ciphertext:

G (M) = G (x ′1, ..., x
′
n) = (y ′1, ..., y

′
m).

To decrypt the ciphertext (y ′1, ..., y
′
n), one needs to know a

secret (the secret key), so that one can invert the map to
find the plaintext (x ′1, ..., x

′
n).
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Toy example

We use the finite field k = GF [2]/(x2 + x + 1) with 22

elements.

We denote the elements of the field by the set {0 , 1 , 2 , 3} to
simplify the notation.
Here 0 represent the 0 in k, 1 for 1, 2 for x , and 3 for 1 + x .
In this case, 1 + 3 = 2 and 2 ∗ 3 = 1 .
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A toy example

G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

G2(x1, x2, x3) = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1,G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .

This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.
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Theoretical Foundation

Direct attack is to solve the set of equations:

G (M) = G (x1, ..., xn) = (y ′1, ..., y
′
m).

- Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-complete, though this does not
necessarily ensure the security of the systems.
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Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic
constructions.

Gl(x1, ..xn) =
∑
i ,j

αlijxixj +
∑

i

βlixi + γl .

2) Mathematical structure consideration: Any set of high
degree polynomial equations can be reduced to a set of
quadratic equations.

x1x2x3 = 5,

is equivalent to

x1x2 − y = 0

yx3 = 5.
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RSA – Number Theory – the 18th century mathematics

ECC – Theory of Elliptic Curves – the 19th century
mathematics

Multivariate Public key cryptosystem – Algebraic Geometry –
the 20th century mathematics
Algebraic Geometry – Theory of Polynomial Rings
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Multivariate Signature schemes

Public key:
G (x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Private key: a way to compute G−1.

Signing a hash of a document:
(x1, . . . , xn) ∈ G−1(y1, . . . , ym) .

Verifying: (y1, . . . , ym)
?
= G (x1, . . . , xn).

k, a small finite field.
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A toy example over GF(3)

G1(x1, x2, x3) = 1 + x3 + x1x2 + x2
3 Hash:

G2(x1, x2, x3) = 2 + x1 + 2x2x3 + x2 (y1, y2, y3) = (0, 1, 1).

G3(x1, x2, x3) = 1 + x2 + x1x3 + x2
1

A signature: (x1, x2, x3) = (2, 0, 1)

G1(2, 0, 1) = 1 + 1 + 2× 0 + 1 = 0

G2(2, 0, 1) = 2 + 2 + 2× 0× 1 + 0 = 1

G3(2, 0, 1) = 1 + 0 + 2× 1 + 1 = 1
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A scheme by Kipnis, Patarin and Goubin 1999. (Eurocrypt
1999)

G = F ◦ L.
F : nonlinear, easy to compute F−1.
L: invertible linear, to hide the structure of F .
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′
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The mathematical problem to find equivalent secret keys —
find the common null subspace spaces of a set of quadratic
forms.

0 .. 0 ∗ .. ∗
. . 0 ∗ .. ∗
. . 0 ∗ .. ∗
. . . ∗ .. ∗
0 .. 0 ∗ .. ∗
∗ .. ∗ ∗ .. ∗
∗ .. ∗ ∗ .. ∗

The problem above can also be transformed into solving a set
of quadratic equations.
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Rainbow – Ding, Schmidt, Yang etc – ACNS 05,06,07,08

Make F ”small” without reducing security.

G = L1︸︷︷︸
Hide the separation

◦ F ◦ L2︸︷︷︸
Hide L1◦F

.

F = (F1,F2).

Rainbow(18,12,12) over GF(28).

F1 : o1 = 12, v1 = 18.
F2 : o2 = 12, v2 = 12 + 18 = 30.
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IC for Rainbow: 804 cycles
A joint work of Cincinnati and Bochum.(ASAP 2008)

FPGA implementation by the research group of Professor Paar
at Bochum (CHES 2009)
Beat ECC in area and speed.
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Further optimizations.
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A good candidate for light-weight crypto for small
devices like RFID.
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where the Li are randomly chosen invertible affine maps over
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The Li are used to “hide” F̄ .
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Decryption

The condition: gcd (qθ + 1, qn − 1) = 1, ensures the
invertibility of the map for purposes of decryption.
It requires that k must be of characteristic 2.

F−1(X ) = X t such that:

t × (qθ + 1) ≡ 1 (mod qn − 1).

The public key includes the field structure of k, θ and
F̄ = (F̄1, .., F̄n). The secret keys are L1 and L2.

The first toy example is produced by setting n = 3 and θ = 2.

This scheme is defeated by linearization equation method by
Patarin 1995.
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HFE by Patarin etc

The only difference from MI is that F is replaced by a new
map given by:

F (X ) =
D∑

i ,j=0

aijX
qi+qj

+
D∑

i=0

biX
qi

+ c .

Due to the work of Kipnis and Shamir, Faugere, Joux, D
cannot be too small. Therefore, the system is much slower.

D can not too large due to the inversion of using Berlakemp
algorithms of solving one variable equations.
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(Internal) Perturbation was introduced at PKC 2004 as a
general method to improve the security of multivariate public
key cryptosystems.

Construction – small-scale “noise” is added to the system in a
controlled way so as to not fundamentally alter the main
structure, but yet substantially increase the “entropy.”
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Let r be a small integer and

z1(x1, . . . , xn) =
n∑

j=1

αj1xj + β1

...

zr (x1, . . . , xn) =
n∑

j=1

αjrxj + βr

be a set of randomly chosen affine linear functions in the xi

over kn such that the zj − βj are linearly independent.

We can use these linear functions to create quadratic
”perturbation” in HFE (including MI) systems.
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IP of MI

x1, . . . , xn

?

?

L1

F̃1, . . . , F̃n

-

?

z1, . . . , zr

f1, . . . , fn

�+

?
L2

y1, . . . , yn

Figure: Structure of Perturbation of the Matsumoto-Imai System.
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We need to a search of size of qr , therefore slower.

We need to use Plus Method, Adding random polynomial,
to help it to resist differential attacks.

Despite the cost of the search, it is still efficient.
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SAT solver is not really a threat but needs more understanding

The connection with algebraic cryptanalysis of symmetric
ciphers

Quantum computer attacks?
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The end

Thank you very much!

Questions?
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